

CSCE
478/878
Lecture 8:
Clustering
Clustering

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering

Hierarchical Clustering

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

sscott@cse.unl.edu

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Introduction

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

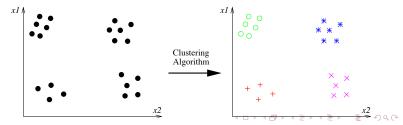
Outline

Clustering

k-Means Clustering

Hierarchical Clustering

- If no label information is available, can still perform *unsupervised learning*
- Looking for structural information about instance space instead of label prediction function
- Approaches: density estimation, clustering, dimensionality reduction
- *Clustering* algorithms group similar instances together based on a *similarity measure*



Outline

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering

Hierarchical Clustering Clustering background

Similarity/dissimilarity measures

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- k-means clustering
- Hierarchical clustering

Clustering Background

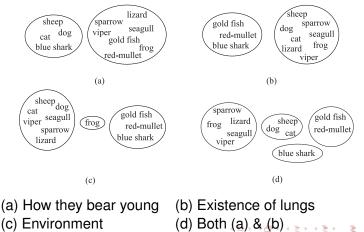
CSCE 478/878 Lecture 8: Clustering

- Stephen Scott
- Introduction
- Outline

Clustering

- Measures: Point-Point Measures: Point-Set Measures: Set-Set
- k-Means Clustering
- Hierarchical Clustering

- Goal: Place patterns into "sensible" clusters that reveal similarities and differences
- Definition of "sensible" depends on application



Clustering Background

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

Measures: Point-Point Measures: Point-Set Measures: Set-Set

k-Means Clustering

Hierarchical Clustering Types of clustering problems:

- *Hard (crisp):* partition data into non-overlapping clusters; each instance belongs in exactly one cluster
- *Fuzzy:* Each instance could be a member of multiple clusters, with a real-valued function indicating the degree of membership
- *Hierarchical:* partition instances into numerous small clusters, then group the clusters into larger ones, and so on (applicable to phylogeny)
 - End up with a tree with instances at leaves

Clustering Background (Dis-)similarity Measures: Between Instances

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

Measures: Point-Point Measures: Point-Set Measures: Set-Set

k-Means Clustering

Hierarchical Clustering Dissimilarity measure: Weighted L_p norm:

$$L_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^n w_i |x_i - y_i|^p\right)^{1/p}$$

Special cases include weighted *Euclidian distance* (p = 2), weighted *Manhattan distance*

$$L_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n w_i |x_i - y_i|,$$

and weighted L_{∞} norm

$$L_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \left\{ w_i \left| x_i - y_i \right| \right\}$$

Similarity measure: Dot product between two vectors (kernel)

Clustering Background (Dis-)similarity Measures: Between Instances (cont'd)

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

Measures: Point-Point Measures: Point-Set Measures: Set-Set

k-Means Clustering

Hierarchical Clustering If attributes come from $\{0, ..., k - 1\}$, can use measures for real-valued attributes, plus:

- *Hamming distance*: DM measuring number of places where x and y differ
- Tanimoto measure: SM measuring number of places where x and y are same, divided by total number of places
 - Ignore places *i* where $x_i = y_i = 0$
 - Useful for ordinal features where *x_i* is degree to which **x** possesses *i*th feature

Clustering Background (Dis-)similarity Measures: Between Instance and Set

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering Measures: Point-Point Measures: Point-Set Measures: Set-Set

k-Means Clustering

Hierarchical Clustering

- Might want to measure proximity of point **x** to existing cluster *C*
- Can measure proximity α by using all points of C or by using a representative of C
- If all points of *C* used, common choices:

$$\begin{split} \alpha^{ps}_{max}(\mathbf{x}, C) &= \max_{\mathbf{y} \in C} \left\{ \alpha(\mathbf{x}, \mathbf{y}) \right\} \\ \alpha^{ps}_{min}(\mathbf{x}, C) &= \min_{\mathbf{y} \in C} \left\{ \alpha(\mathbf{x}, \mathbf{y}) \right\} \\ \alpha^{ps}_{avg}(\mathbf{x}, C) &= \frac{1}{|C|} \sum_{\mathbf{y} \in C} \alpha(\mathbf{x}, \mathbf{y}) \;, \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

where $\alpha(\mathbf{x},\mathbf{y})$ is any measure between \mathbf{x} and \mathbf{y}

Clustering Background

(Dis-)similarity Measures: Between Instance and Set (cont'd)

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

0

Introduction

Outline

Clustering Measures: Point-Point Measures: Point-Set Measures: Set-Set

k-Means Clustering

Hierarchical Clustering Alternative: Measure distance between point \mathbf{x} and a *representative* of the cluster *C*

• Mean vector
$$\mathbf{m}_p = rac{1}{|C|} \sum_{\mathbf{y} \in C} \mathbf{y}$$

• Mean center $\mathbf{m}_c \in C$:

$$\sum_{\mathbf{y}\in C} d(\mathbf{m}_c, \mathbf{y}) \leq \sum_{\mathbf{y}\in C} d(\mathbf{z}, \mathbf{y}) \quad \forall \mathbf{z}\in C\,,$$

where $d(\cdot, \cdot)$ is DM (if SM used, reverse ineq.)

Median center: For each point y ∈ C, find median dissimilarity from y to all other points of C, then take min; so m_{med} ∈ C is defined as

 $\mathsf{med}_{\mathbf{y}\in C}\left\{d(\mathbf{m}_{med}, \mathbf{y})
ight\} \le \mathsf{med}_{\mathbf{y}\in C}\left\{d(\mathbf{z}, \mathbf{y})
ight\} \quad \forall \mathbf{z}\in C$

Nebraska Lincoln

Clustering Background (Dis-)similarity Measures: Between Sets

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering Measures: Point-Point Measures: Point-Set Measures: Set-Set

k-Means Clustering

Hierarchical Clustering Given sets of instances C_i and C_j and proximity measure $\alpha(\cdot, \cdot)$

• Max:
$$\alpha_{max}^{ss}(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} \{\alpha(\mathbf{x}, \mathbf{y})\}$$

• Min: $\alpha_{min}^{ss}(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} \{\alpha(\mathbf{x}, \mathbf{y})\}$
• Average: $\alpha_{avg}^{ss}(C_i, C_j) = \frac{1}{|C_i| |C_j|} \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_j} \alpha(\mathbf{x}, \mathbf{y})$

• Representative (mean): $\alpha_{mean}^{ss}(C_i, C_j) = \alpha(\mathbf{m}_{C_i}, \mathbf{m}_{C_j})$,

k-Means Clustering

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering Algorithm

Example Hierarchical

Hierarchical Clustering

- Very popular clustering algorithm
- Represents cluster *i* (out of *k* total) by specifying its representative m_i (not necessarily part of the original set of instances X)
- Each instance $x \in \mathcal{X}$ is assigned to the cluster with nearest representative
- Goal is to find a set of k representatives such that sum of distances between instances and their representatives is minimized
 - NP-hard in general
- Will use an algorithm that alternates between determining representatives and assigning clusters until convergence (in the style of the EM algorithm)

k-Means Clustering Algorithm

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering Algorithm

Example

Hierarchical Clustering

- Choose value for parameter k
- Initialize k arbitrary representatives $\mathbf{m}_1, \ldots, \mathbf{m}_k$
 - E.g., k randomly selected instances from \mathcal{X}
- Repeat until representatives $\mathbf{m}_1, \ldots, \mathbf{m}_k$ don't change

 $\bigcirc \quad \text{For all } \mathbf{x} \in \mathcal{X}$

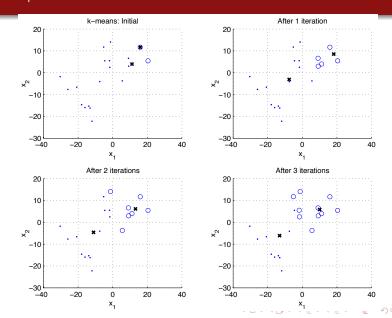
- Assign x to cluster C_j such that ||x m_j|| (or other measure) is minimized
- I.e., nearest representative
- **2** For each $j \in \{1, ..., k\}$

$$\mathbf{m}_j = \frac{1}{C_j} \sum_{\mathbf{y} \in C_j} \mathbf{y}$$

・ロト・西ト・山下・山下・ 白・ ろくの

Nebraska Lincoln

k-Means Clustering Example with k = 2



Hierarchical Clustering

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering

Hierarchical Clustering

Definitions Pseudocode Example

- Useful in capturing hierarchical relationships, e.g., evolutionary tree of biological sequences
- End result is a sequence (hierarchy) of clusterings
- Two types of algorithms:
 - Agglomerative: Repeatedly merge two clusters into one

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

• Divisive: Repeatedly divide one cluster into two

Hierarchical Clustering Definitions

CSCE 478/878 Lecture 8: Clustering

Nebraska

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering

Hierarchical Clustering

Definitions Pseudocode Example

- Let $C_t = \{C_1, \ldots, C_{m_t}\}$ be a *level-t clustering* of $X = \{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$, where C_t meets definition of hard clustering
- C_t is nested in C_{t'} (written C_t ⊂ C_{t'}) if each cluster in C_t is a subset of a cluster in C_{t'} and at least one cluster in C_t is a proper subset of some cluster in C_{t'}

$$\begin{aligned} \mathcal{C}_{1} = \{\{\mathbf{x}_{1}, \mathbf{x}_{3}\}, \{\mathbf{x}_{4}\}, \{\mathbf{x}_{2}, \mathbf{x}_{5}\}\} &\sqsubset \{\{\mathbf{x}_{1}, \mathbf{x}_{3}, \mathbf{x}_{4}\}, \{\mathbf{x}_{2}, \mathbf{x}_{5}\}\} \\ \mathcal{C}_{1} \not\sqsubset \{\{\mathbf{x}_{1}, \mathbf{x}_{4}\}, \{\mathbf{x}_{3}\}, \{\mathbf{x}_{2}, \mathbf{x}_{5}\}\} \end{aligned}$$

Hierarchical Clustering Definitions (cont'd)

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering

Hierarchical Clustering

Definitions Pseudocode Example Agglomerative algorithms start with
 C₀ = {{x₁},..., {x_N}} and at each step *t* merge two clusters into one, yielding |C_{t+1}| = |C_t| − 1 and C_t ⊂ C_{t+1}

• At final step (step N - 1) have hierarchy:

$$\mathcal{C}_0 = \{\{\mathbf{x}_1\}, \ldots, \{\mathbf{x}_N\}\} \sqsubset \mathcal{C}_1 \sqsubset \cdots \sqsubset \mathcal{C}_{N-1} = \{\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}\}$$

- Divisive algorithms start with C₀ = {{x₁,..., x_N}} and at each step *t* split one cluster into two, yielding |C_{t+1}| = |C_t| + 1 and C_{t+1} ⊏ C_t
- At step N 1 have hierarchy:

$$\mathcal{C}_{N-1} = \{\{\mathbf{x}_1\}, \ldots, \{\mathbf{x}_N\}\} \sqsubset \cdots \sqsubset \mathcal{C}_0 = \{\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}\}$$

Hierarchical Clustering Pseudocode

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering

Hierarchical Clustering Definitions Pseudocode Example Initialize $C_0 = \{\{\mathbf{x}_1\}, \dots, \{\mathbf{x}_N\}\}, t = 0$

2 For t = 1 to N - 1

• Find closest pair of clusters: $(C_i, C_j) = \underset{C_s, C_r \in \mathcal{C}_{t-1}, r \neq s}{\operatorname{argmin}} \{d(C_s, C_r)\}$

C_t = (C_{t-1} − {C_i, C_j}) ∪ {{C_i ∪ C_j}} and update representatives if necessary

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

If SM used, replace argmin with argmax

Number of calls to $d(C_k, C_r)$ is $\Theta(N^3)$

Hierarchical Clustering

CSCE 478/878 Lecture 8: Clustering

Nebraska

Stephen Scott

Introduction

Outline

Clustering

k-Means Clustering

Hierarchical Clustering Definitions Pseudocode Example

$\mathbf{x}_1 = [1, 1]^T$, $\mathbf{x}_2 = [2, 1]^T$, $\mathbf{x}_3 = [5, 4]^T$, $\mathbf{x}_4 = [6, 5]^T$, $\mathbf{x}_5 = [6.5, 6]^T$, DM = Euclidian/ α_{min}^{ss}

An $(N - t) \times (N - t)$ proximity matrix P_t gives the proximity between all pairs of clusters at level (iteration) t

$$P_0 = \begin{bmatrix} 0 & 1 & 5 & 6.4 & 7.4 \\ 1 & 0 & 4.2 & 5.7 & 6.7 \\ 5 & 4.2 & 0 & 1.4 & 2.5 \\ 6.4 & 5.7 & 1.4 & 0 & 1.1 \\ 7.4 & 6.7 & 2.5 & 1.1 & 0 \end{bmatrix}$$

Each iteration, find minimum off-diagonal element (i,j) in P_{t-1} , merge clusters *i* and *j*, remove rows/columns *i* and *j* from P_{t-1} , and add new row/column for new cluster to get P_t

Hierarchical Clustering Pseudocode (cont'd)

CSCE 478/878 Lecture 8: Clustering

Stephen Scott

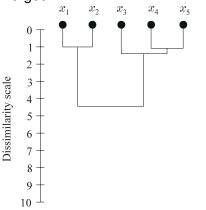
Introduction

Outline

Clustering

k-Means Clustering

Hierarchical Clustering Definitions Pseudocode Example A *proximity dendogram* is a tree that indicates hierarchy of clusterings, including the proximity between two clusters when they are merged



Cutting the dendogram at any level yields a single clustering