

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs

1/50

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

(Adapted from Ethem Alpaydin and Tom Mitchell)

sscott@cse.unl.edu

Introduction

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs

2/50

Consider humans:

- Total number of neurons $\approx 10^{10}$
- Neuron switching time $\approx 10^{-3}$ second (vs. 10^{-10})
- Connections per neuron $\approx 10^4 10^5$
- Scene recognition time ≈ 0.1 second
- 100 inference steps doesn't seem like enough
- ⇒ much parallel computation

Properties of artificial neural nets (ANNs):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for biological modeling

Nebraska When to Consider ANNs

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs

 Input is high-dimensional discrete- or real-valued (e.g., raw sensor input)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

- Output is discrete- or real-valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant
- Long training times acceptable

Outline

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs

• Linear threshold units: Perceptron

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Gradient descent
- Multilayer networks
- Backpropagation
- Support Vector Machines

Nebraska The Perceptron

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction Outline

The Perceptron Training a Perceptron Implementation Approaches

Nonlinearly Separable Problems

Backprop

SVMs

 $x_{1} w_{1} x_{0} = 1$ $x_{2} w_{2}$ \vdots $\sum_{i=0}^{n} w_{i} x_{i}$ $o = \begin{cases} 1 \text{ if } \sum_{i=0}^{n} w_{i} x_{i} > 0 \\ -1 \text{ otherwise} \end{cases}$

 $y = o(x_1, \dots, x_n) = \begin{cases} +1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0\\ -1 & \text{otherwise} \end{cases}$

(sometimes use 0 instead of -1)

Sometimes we'll use simpler vector notation:

$$y = o(\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{w} \cdot \mathbf{x} > 0\\ -1 & \text{otherwise} \end{cases}$$

Nebraska Lincol Decision Surface

Outline

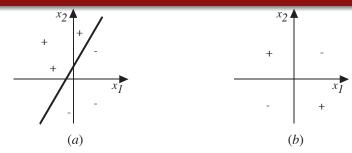
The Perceptron Training a Perceptron Implementation Approaches

Nonlinearly Separable Problems

Backprop

SVMs

6/50



Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)$?

But some functions not representable

- I.e., those not *linearly separable*
- Therefore, we'll want *networks* of neurons

Nebraska Perceptron Training Rule

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction

Outline

The Perceptron

Training a Perceptron Implementation Approaches

Nonlinearly Separable Problems

Backprop

SVMs

 $w_i^{t+1} \leftarrow w_i^t + \Delta w_i^t$, where $\Delta w_i^t = \eta \left(r^t - y^t \right) x_i^t$

and

- r^t is label of training instance t
- y^t is perceptron output on training instance t
- η is small constant (e.g., 0.1) called *learning rate*

I.e., if $(r^t - y^t) > 0$ then increase w_i^t w.r.t. x_i^t , else decrease

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Can prove rule will converge if training data is linearly separable and η sufficiently small

Where Does the Training Rule Come From?

478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron

Training a Perceptron Implementation Approaches

Nonlinearly Separable Problems

Backprop

SVMs

8/50

Consider simpler linear unit, where output

$$y^{t} = w_{0}^{t} + w_{1}^{t} x_{1}^{t} + \dots + w_{n}^{t} x_{n}^{t}$$

(i.e., no threshold)

- For each example, want to compromise between correctiveness and conservativeness
 - Correctiveness: Tendency to improve on x^t (reduce) error)
 - Conservativeness: Tendency to keep w^{t+1} close to w^t (minimize distance)

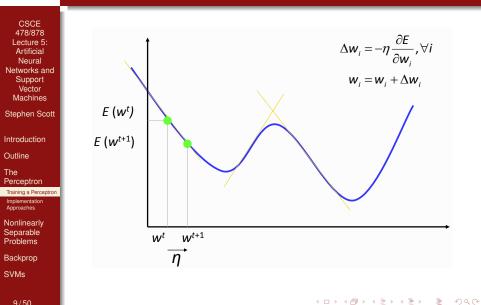
1

A D A 4 B A 4 B A 4 B A

Use cost function that measures both:

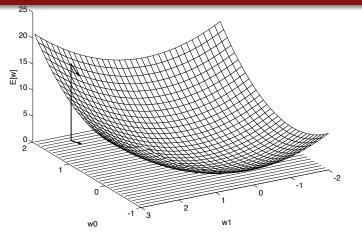
$$U(\mathbf{w}) = dist\left(\mathbf{w}^{t+1}, \mathbf{w}^{t}\right) + \eta \, error\left(\mathbf{r}^{t}, \, \mathbf{w}^{t+1} \cdot \mathbf{x}^{t}\right)$$

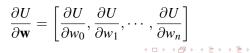
Nebraska Gradient Descent



9/50

Nebraska Gradient Descent (cont'd)





э

Nebraska Gradient Descent (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Outline

The Perceptron

Training a Perceptron Implementation Approaches

Nonlinearly Separable Problems

Backprop

SVMs

11/50

$$U(\mathbf{w}) = \underbrace{\|\mathbf{w}^{t+1} - \mathbf{w}^t\|_2^2}_{j=1} + \underbrace{\widehat{\eta}}_{j=1}^{conserv.} \underbrace{(r^t - \mathbf{w}^{t+1} \cdot \mathbf{x}^t)^2}_{(r^t - \mathbf{w}^{t+1} \cdot \mathbf{x}^t)^2}$$
$$= \sum_{j=1}^n \left(w_j^{t+1} - w_j^t\right)^2 + \eta \left(r^t - \sum_{j=1}^n w_j^{t+1} x_j^t\right)^2$$

Take gradient w.r.t. \mathbf{w}^{t+1} and set to **0**:

$$0 = 2\left(w_{i}^{t+1} - w_{i}^{t}\right) - 2\eta\left(r^{t} - \sum_{j=1}^{n} w_{j}^{t+1} x_{j}^{t}\right) x_{j}^{t}$$

Nebraska Gradient Descent (cont'd)

Approximate with

$$0 = 2\left(w_i^{t+1} - w_i^t\right) - 2\eta\left(r^t - \sum_{j=1}^n w_j^t x_j^t\right) x_i^t ,$$

which yields

$$w_i^{t+1} = w_i^t + \overbrace{\eta\left(r^t - y^t\right)x_i^t}^{\Delta w_i^t}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

12/50

CSCE 478/878 Lecture 5: Artificial Neural

Networks and Support Vector Machines Stephen Scott Introduction Outline

The Perceptron Taining a Perceptron Implementation Approaches Nonlinearly Separable Problems Backprop SVMs

Implementation Approaches

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron Training a Perceptron Implementation Approaches

Nonlinearly Separable Problems

Backprop

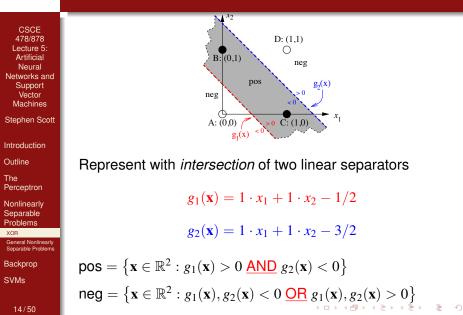
SVMs

13/50

- Can use rules on previous slides on an example-by-example basis, sometimes called incremental, stochastic, or on-line GD
 - Has a tendency to "jump around" more in searching, which helps avoid getting trapped in local minima
- Alternatively, can use *standard* or *batch* GD, in which the classifier is evaluated over all training examples, summing the error, and then updates are made
 - I.e., sum up Δw_i for all examples, but don't update w_i until summation complete
 - This is an inherent averaging process and tends to give better estimate of the gradient

Handling Nonlinearly Separable Problems

Nebraska



Handling Nonlinearly Separable Problems Nebraska The XOR Problem (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural	Let $z_i = \begin{cases} 0 & \text{if } g \\ 1 & \text{oth} \end{cases}$
Networks and Support	Class
Vector Machines	pos
Stephen Scott	pos
	neg
Introduction	neg
Outline	e e
The Perceptron	Now feed z_1 , z_2 i
Nonlinearly Separable Problems	
XOR	
General Nonlinearly Separable Problems	
Backprop	
SVMs	
15/50	

Lincoln

$$g_{i}(\mathbf{x}) < 0$$
therwise
$$\frac{s (x_{1}, x_{2})}{B: (0, 1)} \frac{g_{1}(\mathbf{x})}{1/2} \frac{z_{1}}{1} \frac{g_{2}(\mathbf{x})}{-1/2} \frac{z_{2}}{0}$$

$$\frac{B: (0, 1)}{C: (1, 0)} \frac{1/2}{1/2} \frac{1}{-1/2} \frac{-1/2}{0}$$

$$\frac{A: (0, 0)}{D: (1, 1)} \frac{-1/2}{3/2} \frac{0}{-3/2} \frac{0}{0}$$

$$\frac{B: (1, 1)}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{1/2} \frac{1}{0}$$

$$\frac{z_{1}}{0} \frac{z_{2}}{0} \frac{g(z)}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{z_{2}}{0} \frac{z_{1}}{0} \frac{$$

Handling Nonlinearly Separable Problems The XOR Problem (cont'd)

CSCE 478/878 Lecture 5: Artificial Networks and Support Vector Machines Stephen Scott

Nebraska

Outline

The Perceptron

Nonlinearly Separable Problems

XOR

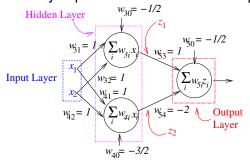
General Nonlinearly Separable Problems

Backprop

SVMs

16/50

In other words, we *remapped* all vectors \mathbf{x} to \mathbf{z} such that the classes are linearly separable in the new vector space

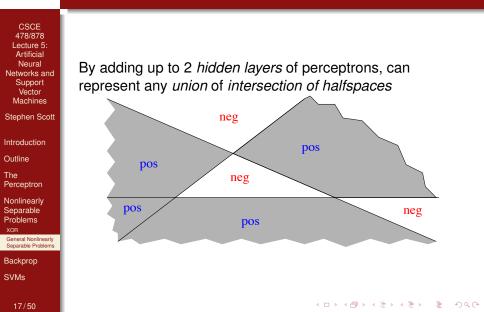


This is a two-layer perceptron or two-layer feedforward neural network

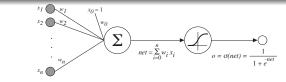
Each neuron outputs 1 if its weighted sum exceeds its threshold, 0 otherwise

Nebraska

Handling Nonlinearly Separable Problems General Nonlinearly Separable Problems



Nebraska The Sigmoid Unit



 $\sigma(net)$ is the *logistic function*

Introduction

Stephen Scott

CSCE 478/878 Lecture 5:

Artificial

Neural

Networks and Support Vector Machines

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg Overfitting Remarks Hyd \$va50

Nice property:

$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

э

 $1 + e^{-net}$

Continuous, differentiable approximation to threshold

Sigmoid Unit Gradient Descent

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg Overfitting Remarks Hvd 9/a50 Again, use squared error for correctiveness:

$$E(\mathbf{w}^t) = \frac{1}{2} \left(r^t - y^t \right)^2$$

(folding 1/2 of correctiveness into error func)

Thus
$$\frac{\partial E}{\partial w_j^t} = \frac{\partial}{\partial w_j^t} \frac{1}{2} (r^t - y^t)^2$$

$$=\frac{1}{2}2\left(r^{t}-y^{t}\right) \frac{\partial}{\partial w_{j}^{t}}\left(r^{t}-y^{t}\right)=\left(r^{t}-y^{t}\right)\left(-\frac{\partial y^{t}}{\partial w_{j}^{t}}\right)$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Sigmoid Unit Gradient Descent (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg Overfitting Remarks Hy29/a50 Since y^t is a function of $net^t = \mathbf{w}^t \cdot \mathbf{x}^t$,

$$\frac{\partial E}{\partial w_j^t} = -(r^t - y^t) \frac{\partial y^t}{\partial net^t} \frac{\partial net^t}{\partial w_j^t} = -(r^t - y^t) \frac{\partial \sigma (net^t)}{\partial net^t} \frac{\partial net^t}{\partial w_j^t} = -(r^t - y^t) y^t (1 - y^t) x_j^t$$

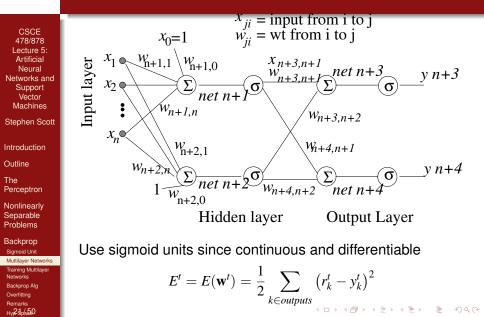
Update rule:

$$w_{j}^{t+1} = w_{j}^{t} + \eta y^{t} (1 - y^{t}) (r^{t} - y^{t}) x_{j}^{t}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Multilayer Networks

Nebraska



Training Multilayer Networks Output Units

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction Outline

The Perceptron

Nonlinearly Separable Problems

Backprop Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg

Overfitting Remarks Hy**22**0a50 Adjust weight w_{ji}^t according to E^t as before

For output units, this is easy since contribution of w_{ji}^t to E^t when *j* is an output unit is the same as for single neuron case¹, i.e.,

$$\frac{\partial E^t}{\partial w_{ji}^t} = -\left(r_j^t - y_j^t\right) y_j^t \left(1 - y_j^t\right) x_{ji}^t = -\delta_j^t x_{ji}^t$$

where $\delta_j^t = -\frac{\partial E^t}{\partial net_j^t} = error term$ of unit j

¹This is because all other outputs are constants $\underline{w}.r.t. \underline{w}_{ii}^{t} < \underline{w} = - 2$

Nebraška Lincol Hidden Units

- CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines
- Stephen Scott
- Introduction
- Outline
- The Perceptron
- Nonlinearly Separable Problems
- Backprop Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg
- Overfitting Remarks Hy**23**pa50

- How can we compute the error term for hidden layers when there is no target output **r**^{*t*} for these layers?
 - Instead propagate back error values from output layer toward input layers, scaling with the weights
- Scaling with the weights characterizes how much of the error term each hidden unit is "responsible for"

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Training Multilayer Networks Hidden Units (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott Introduction Outline

The Perceptron

Nonlinearly Separable Problems

Backprop Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg Overfitting

Bemarks

Hv24650

The impact that w_{ji}^t has on E^t is only through net_j^t and units immediately "downstream" of *j*:

$$\begin{split} \frac{\partial E^{t}}{\partial w_{ji}^{t}} &= \frac{\partial E^{t}}{\partial net_{j}^{t}} \frac{\partial net_{j}^{t}}{\partial w_{ji}^{t}} = x_{ji}^{t} \sum_{k \in down(j)} \frac{\partial E^{t}}{\partial net_{k}^{t}} \frac{\partial net_{k}^{t}}{\partial net_{j}^{t}} \\ &= x_{ji}^{t} \sum_{k \in down(j)} -\delta_{k}^{t} \frac{\partial net_{k}^{t}}{\partial net_{j}^{t}} = x_{ji}^{t} \sum_{k \in down(j)} -\delta_{k}^{t} \frac{\partial net_{k}^{t}}{\partial y_{j}} \frac{\partial y_{j}}{\partial net_{j}^{t}} \\ &= x_{ji}^{t} \sum_{k \in down(j)} -\delta_{k}^{t} w_{kj} \frac{\partial y_{j}}{\partial net_{j}^{t}} = x_{ji}^{t} \sum_{k \in down(j)} -\delta_{k}^{t} w_{kj} y_{j} (1 - y_{j}) \end{split}$$

Works for arbitrary number of hidden layers

Nebraska Lincoln

Backpropagation Algorithm

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg

Overfitting Remarks Hy**25**0450 Initialize all weights to small random numbers

Until termination condition satisfied do

For each training example (r^t, x^t) do
Input x^t to the network and compute the outputs y^t
For each output unit k

$$\delta_{k}^{t} \leftarrow y_{k}^{t} \left(1 - y_{k}^{t}\right) \left(r_{k}^{t} - y_{k}^{t}\right)$$

For each hidden unit h

$$\delta_{h}^{t} \leftarrow y_{h}^{t} \left(1 - y_{h}^{t}\right) \sum_{k \in down(h)} w_{k,h}^{t} \, \delta_{k}^{t}$$

Update each network weight w^t_{j,i}

$$w_{j,i}^t \leftarrow w_{j,i}^t + \Delta w_{j,i}^t$$

where

$$\Delta w^t_{j,i} = \eta \, {}^{t}_{{}^{t}_{j} \square} {}^{t}_{j,i} \, {}^{t}_{{}^{t}_{j} \square} \, {}^{t}_{{}^{t}_{j} \square}$$

Nebraska Lincol Backpropagation Algorithm Example

	t	arget =	y	trial 1: $a = 1, b = 0, y = 1$						
CSCE 478/878 Lecture 5:		f(x) = 1	$(1 + ex)^{1/2}$	(- x))	trial 2: $a = 0, b = 1, y = 0$					
Artificial Neural Networks and Support Vector Machines	$a \underbrace{w_{ca}}_{b} \underbrace{sum_{c}}_{cb} \underbrace{f}_{w_{c0}} \underbrace{y_{c}}_{dc} \underbrace{d}_{w_{d0}} \underbrace{sum_{d}}_{f} \underbrace{y_{d}}_{w_{d0}} $									
Stephen Scott					1					
Introduction	eta	1 0.3			1					
Outline										
		trial 1	trial 2							
The	w_ca	0.1	0.1008513	0.1008513						
Perceptron	w_cb	0.1	0.1	0.0987985						
Nonlinearly	w c0	0.1	0.1008513	0.0996498						
Separable	a	1	0							
Problems	b	0	1		target	1	0			
1 100101110	const	1	1		delta d	0.1146431	-0.136083			
Backprop	sum c	0.2	0.2008513		delta c	0.0028376	-0.004005			
Sigmoid Unit	v c	0.5498340	0.5500447							
Multilayer Networks	J									
Training Multilayer Networks	w dc	0.1	0.1189104	0.0964548	delta_d(t) =	= y_d(t) * (y(t) -	y_d(t)) * (1 -	y_d(t))		
Backprop Alg	w d0	0.1	0.1343929	0.0935679	$delta_c(t) = y_c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t)$					
Overfitting	sum d	0.1549834	0.1997990		w_dc(t+1) =	w_dc(t) + eta	* y_c(t) * delt	a_d(t)		
Remarks Hy 2S pa 50	y_d	y_d 0.5386685 0.5497842 w_ca(t+1) = w_ca(t) + eta * a * delta_c(t)								

Backpropagation Algorithm Remarks

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Nehraska

Stephen Scott

Introduction

Outline

The Perceptron

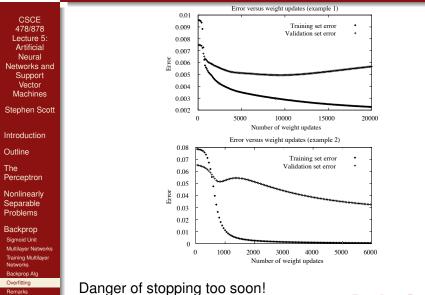
Nonlinearly Separable Problems

Backprop Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg

Overfitting Remarks Hy**23**pa50

- When to stop training? When weights don't change much, error rate sufficiently low, etc. (be aware of overfitting: use validation set)
- Cannot ensure convergence to global minimum due to myriad local minima, but tends to work well in practice (can re-run with new random weights)
- Generally training very slow (thousands of iterations), use is very fast
- Setting η: Small values slow convergence, large values might overshoot minimum, can adapt it over time

Nebraska Lincol Backpropagation Algorithm Overfitting



Remarks Hy280450 ◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Nebraska Lincon Backpropagation Algorithm Remarks

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg Overfitting Bamate

Remarks Hy29ba50 • Alternative error function: cross entropy

$$E^{t} = \sum_{k \in outputs} \left(r_{k}^{t} \ln y_{k}^{t} + \left(1 - r_{k}^{t} \right) \ln \left(1 - y_{k}^{t} \right) \right)$$

"blows up" if $r_k^t \approx 1$ and $y_k^t \approx 0$ or vice-versa (vs. squared error, which is always in [0, 1])

• *Regularization:* penalize large weights to make space more linear and reduce risk of overfitting:

$$E^{t} = \frac{1}{2} \sum_{k \in outputs} \left(r_{k}^{t} - y_{k}^{t} \right)^{2} + \gamma \sum_{i,j} (w_{ji}^{t})^{2}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Backpropagation Algorithm Remarks (cont'd)

Representational power:

Nebraska

CSCE 478/878 Lecture 5: Artificial Neural

Networks and Support Vector

Machines Stephen Scott

Introduction Outline

Perceptron Nonlinearly

Separable Problems <u>Ba</u>ckprop

> Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg Overfitting Bemarks

Hv390450

The

- Any boolean function can be represented with 2 layers
- Any bounded, continuous function can be represented with arbitrarily small error with 2 layers
- Any function can be represented with arbitrarily small error with 3 layers

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Number of required units may be large

May not be able to find the right weights

Hypothesis Space

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

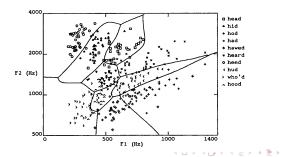
The Perceptron

Nonlinearly Separable Problems

Backprop Sigmoid Unit Multilayer Networks Training Multilayer Networks Backprop Alg Overfitting Remarks

Hyp Space

- Hyp. space \mathcal{H} is set of all weight vectors (continuous vs. discrete of decision trees)
- Search via Backprop: Possible because error function and output functions are continuous & differentiable
- Inductive bias: (Roughly) smooth interpolation between data points



Support Vector Machines

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs

Margins Duality Kernels Types of Kernels SVMs 32 / 50 Similar to ANNs, polynomial classifiers, and RBF networks in that it remaps inputs and then finds a hyperplane

Main difference is how it works

Features of SVMs:

- Maximization of margin
- Duality
- Use of kernels
- Use of problem *convexity* to find classifier (often without local minima)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Nebraska Linon Support Vector Machines Margins

Introductio

Outline

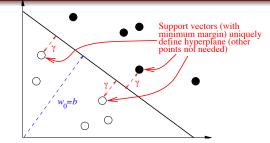
The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs

Margins Duality Kernels Types of Kernels SVMs 33 / 50



- A hyperplane's margin γ is the shortest distance from it to any training vector
- Intuition: larger margin ⇒ higher confidence in classifier's ability to generalize
 - Guaranteed generalization error bound in terms of $1/\gamma^2$ (under appropriate assumptions)
- Definition assumes linear separability (more general definitions exist that do not)

Support Vector Machines The Perceptron Algorithm Revisited

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

٦

Nebraska

Introduction Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality Kernels Types of Kernels

SVMs 34/50

$$\mathbf{w}_0 \leftarrow \mathbf{0}, \, b_0 \leftarrow 0, \, m \leftarrow 0, \, r^t \in \{-1, +1\} \, \forall t$$

While mistakes are made on training set

• For t = 1 to N (= # training vectors) • If $r^t (\mathbf{w}_m \cdot \mathbf{x}^t + b_m) \le 0$ • $\mathbf{w}_{m+1} \leftarrow \mathbf{w}_m + \eta r^t \mathbf{x}^t$ • $b_{m+1} \leftarrow b_m + \eta r^t$ • $m \leftarrow m + 1$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Final predictor: $h(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}_m \cdot \mathbf{x} + b_m)$

Support Vector Machines

The Perceptron Algorithm Revisited (partial example)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines	1 1 2 3 4 5 6
Stephen Scott	
Introduction	
Outline	5
	e
The Perceptron	
Nonlinearly	3
Separable	4
Problems	5
1 TODICINIS	l e
Backprop	
SVMs	
Margins	3
Duality	4
Kernels	
Types of Kernels	6
SVMs 35/50	

t	x_1^t	x_2^t	r^{t}	w1	w2	b	α	x_1^t	x_2^t	r^{t}	w1	w2	b	α
1	4	1	+1	0.4	0.1	0.1	1	4	1	+1	0.4	0.0	0.0	2
2	5	3	+1	0.4	0.1	0.1	0	5	3	+1	0.4	0.0	0.0	0
3	6	3	+1	0.4	0.1	0.1	0	6	3	+1	0.4	0.0	0.0	0
4	2	1	-1	0.4	0.1	0.1	0	2	1	-1	0.2	-0.1	-0.1	3
5	2	2	-1	0.4	0.1	0.1	0	2	2	-1	0.2	-0.1	-0.1	0
6	3	1	-1	0.4	0.1	0.1	0	3	1	-1	0.2	-0.1	-0.1	0
1	4	1	+1	0.4	0.1	0.1	1	4	1	+1	0.2	-0.1	-0.1	2
2	5	3	+1	0.4	0.1	0.1	0	5	3	+1	0.2	-0.1	-0.1	0
3	6	3	+1	0.4	0.1	0.1	0	6	3	+1	0.2	-0.1	-0.1	0
4	2	1	-1	0.2	0.0	0.0	1	2	1	-1	0.0	-0.2	-0.2	4
5	2	2	-1	0.2	0.0	0.0	0	2	2	-1	0.0	-0.2	-0.2	0
6	3	1	-1	0.2	0.0	0.0	0	3	1	-1	0.0	-0.2	-0.2	0
1	4	1	+1	0.2	0.0	0.0	1	4	1	+1	0.4	-0.1	-0.1	3
2	5	3	+1	0.2	0.0	0.0	0	5	3	+1	0.4	-0.1	-0.1	0
3	6	3	+1	0.2	0.0	0.0	0	6	3	+1	0.4	-0.1	-0.1	0
4	2	1	-1	0.0	-0.1	-0.1	2	2	1	-1	0.4	-0.1	-0.1	4
5	2	2	-1	0.0	-0.1	-0.1	0	2	2	-1	0.4	-0.1	-0.1	0
6	3	1	-1	0.0	-0.1	-0.1	0	3	1	-1	0.4	-0.1	-0.1	0
1	4	1	+1	0.4	0.0	0.0	2	4	1	+1	0.4	-0.1	-0.1	3
2	5	3	+1	0.4	0.0	0.0	0	5	3	+1	0.4	-0.1	-0.1	0
3	6	3	+1	0.4	0.0	0.0	0	6	3	+1	0.4	-0.1	-0.1	0
4	2	1	-1	0.4	0.0	0.0	2	2	1	-1	0.2	-0.2	-0.2	5
5	2	2	-1	0.4	0.0	0.0	0	2	2	-1	0.2	-0.2	-0.2	0
6	3	1	-1	0.4	0.0	0.0	0	3	1	-1	0.2	-0.2	-0.2	0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Support Vector Machines The Perceptron Algorithm Revisited (partial example)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality

Kernels

Types of Kernels SVMs 36 / 50

At this point,
$$\mathbf{w} = (0.2, -0.2), b = -0.2, \alpha = (3, 0, 0, 5, 0, 0)$$

Can compute

$$w_1 = \eta(\alpha_1 r^1 x_1^1 + \alpha_4 r^4 x_1^4) = 0.1(3(1)4 + 5(-1)2) = 0.2$$

$$w_2 = \eta(\alpha_1 r^1 x_2^1 + \alpha_4 r^4 x_2^4) = 0.1(3(1)1 + 5(-1)1) = -0.2$$

I.e., $\mathbf{w} = \eta \sum_{t=1}^{N} \alpha_t r^t \mathbf{x}^t$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nebraska Support Vector Machines

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality Kernels Types of Kernels SVMs 37/50 Another way of representing predictor:

$$h(\mathbf{x}) = \operatorname{sgn}\left(\mathbf{w} \cdot \mathbf{x} + b\right) = \operatorname{sgn}\left(\eta \sum_{t=1}^{N} \left(\alpha_{t} r^{t} \mathbf{x}^{t}\right) \cdot \mathbf{x} + b\right)$$
$$= \operatorname{sgn}\left(\eta \sum_{t=1}^{N} \alpha_{t} r^{t} \left(\mathbf{x}^{t} \cdot \mathbf{x}\right) + b\right)$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

 $(\alpha_t = \# \text{ prediction mistakes on } \mathbf{x}^t)$

Support Vector Machines Duality (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality Kernels Types of Kernels SVMs 38/50 So perceptron alg has equivalent *dual* form:

$$\alpha \leftarrow \mathbf{0}, b \leftarrow 0$$

While mistakes are made in For loop

For
$$t = 1$$
 to N (= # training vectors)
• If $r^t \left(\eta \sum_{j=1}^N \alpha_j r^j \left(\mathbf{x}^j \cdot \mathbf{x}^t \right) + b \right) \leq 0$
 $\alpha_t \leftarrow \alpha_t + 1$
 $b \leftarrow b + \eta r^t$

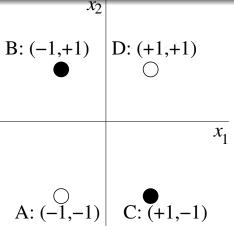
Replace weight vector with data in dot products So what?

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

39/50

XOR Revisited

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott Introduction Outline The Perceptron Nonlinearly Separable Problems Backprop **SVMs** Margins Duality Kernels Types of Kernels SVMs

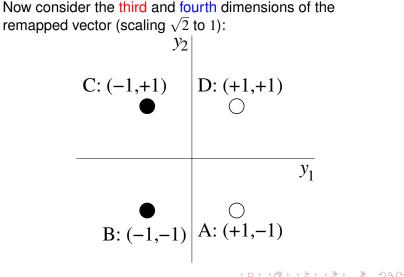


Remap to new space:

 $\phi(x_1, x_2) = \left[x_1^2, x_2^2, \sqrt{2} x_1 x_2, \sqrt{2} x_1, \sqrt{2} x_2, 1 \right]$

XOR Revisited (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott Introduction Outline The Perceptron Nonlinearly Separable Problems Backprop **SVMs** Margins Duality Kernels Types of Kernels SVMs 40/50



Nebraska XOR Revisited (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott Introduction Outline The

Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins

Duality

Types of Kernels SVMs 41 / 50 • Can easily compute the dot product $\phi(\mathbf{x}) \cdot \phi(\mathbf{z})$ (where $\mathbf{x} = [x_1, x_2]$) without first computing ϕ :

$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z} + 1)^2 = (x_1 z_1 + x_2 z_2 + 1)^2$$

= $(x_1 z_1)^2 + (x_2 z_2)^2 + 2x_1 z_1 x_2 z_2 + 2x_1 z_1 + 2x_2 z_2 + 1$
= $\underbrace{\left[x_1^2, x_2^2, \sqrt{2} x_1 x_2, \sqrt{2} x_1, \sqrt{2} x_2, 1\right]}_{\phi(\mathbf{x})}$
 $\cdot \underbrace{\left[z_1^2, z_2^2, \sqrt{2} z_1 z_2, \sqrt{2} z_1, \sqrt{2} z_2, 1\right]}_{\phi(\mathbf{z})}$

 I.e., since we use dot products in new Perceptron algorithm, we can *implicitly* work in the remapped y space via k

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality Kernels

> Types of Kernels SVMs 42/50

- A *kernel* is a function *K* such that $\forall \mathbf{x}, \mathbf{z}, K(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x}) \cdot \phi(\mathbf{z})$
- E.g., previous slide (quadratic kernel)
- In general, for degree-*q* polynomial kernel, computing $(\mathbf{x} \cdot \mathbf{z} + 1)^q$ takes ℓ multiplications + 1 exponentiation for $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{\ell}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

• In contrast, need over $\binom{\ell+q-1}{q} \ge \left(\frac{\ell+q-1}{q}\right)^q$ multiplications if compute ϕ first

Nebraska

Kernels (cont'd)

S

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality

> Types of Kernels SVMs 43/50

• Typically start with kernel and take the feature mapping that it yields

• E.g., Let
$$\ell = 1, \mathbf{x} = x, \mathbf{z} = z, K(x, z) = \sin(x - z)$$

By Fourier expansion,

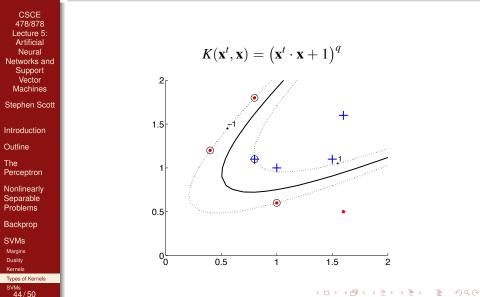
$$in(x-z) = a_0 + \sum_{n=1}^{\infty} a_n \sin(nx) \sin(nz) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nz)$$

for Fourier coeficients a_0, a_1, \ldots

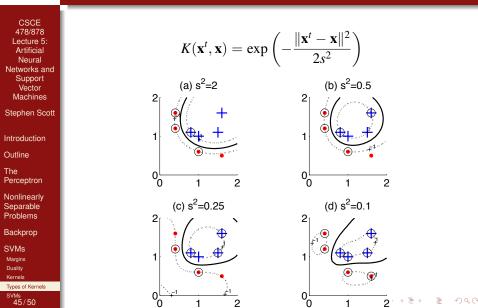
 This is the dot product of two *infinite sequences* of nonlinear functions:

 $\{\phi_i(x)\}_{i=0}^{\infty} = [1, \sin(x), \cos(x), \sin(2x), \cos(2x), \ldots]$

• I.e., there are an infinite number of features in this remapped space!



Types of Kernels Gaussian



Types of Kernels Others

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality Kernels Types of Kernels

SVMs

46/50

Hyperbolic tangent:

$$K(\mathbf{x}^t, \mathbf{x}) = \tanh\left(2\mathbf{x}^t \cdot \mathbf{x} + 1\right)$$

(not a true kernel)

Also have ones for structured data: e.g., graphs, trees, sequences, and sets of points

In addition, the sum of two kernels is a kernel, the product of two kernels is a kernel

Finally, note that a kernel is a *similarity measure*, useful in clustering, nearest neighbor, etc.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Support Vector Machines Finding a Hyperplane

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction Outline

Catilite

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality Kernels Types of Kernels SVMs 4//50 Can show that if data linearly separable in remapped space, then get maximum margin classifier by minimizing $\mathbf{w} \cdot \mathbf{w}$ subject to $r^t (\mathbf{w} \cdot \mathbf{x}^t + b) \ge 1$

Can reformulate this in *dual form* as a *convex quadratic program* that can be solved optimally, i.e., *won't encounter local optima*:

maximize $\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j r^i r^j K(\mathbf{x}^i, \mathbf{x}^j)$ s.t. $\alpha_i \ge 0, i = 1, \dots, m$ $\sum_{i=1}^{N} \alpha_i r^i = 0$

Nebraska Lincon Support Vector Machines Finding a Hyperplane (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMS Margins Duality Kernels Types of Kernels SVMs 48/50 After optimization, label new vectors with decision function:

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{N} \alpha_i r^t K(\mathbf{x}, \mathbf{x}^t) + b\right)$$

(Note only need to use \mathbf{x}^t such that $\alpha_t > 0$, i.e., *support* vectors)

Can always find a kernel that will make training set linearly separable, but *beware of choosing a kernel that is too powerful* (overfitting)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Nebraska Lincoln

Support Vector Machines Finding a Hyperplane (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines Stephen Scott

Introduction

Outline

The Perceptron

Nonlinearly Separable Problems

Backprop

SVMS Margins Duality Kernels Types of Kernels SVMs 49/50 If kernel doesn't separate, can *soften* the margin with *slack* variables ξ^i :

 $\begin{array}{ll} \underset{\mathbf{w},b,\boldsymbol{\xi}}{\text{minimize}} & \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi^i \\ \text{s.t.} & r^i((\mathbf{x}^i \cdot \mathbf{w}) + b) \ge 1 - \xi^i, \ i = 1, \dots, N \\ & \xi^i \ge 0, \ i = 1, \dots, N \end{array}$

The dual is similar to that for hard margin:

maximize
$$\sum_{i=1}^{N} \alpha_i - \sum_{i,j} \alpha_i \alpha_j r^i r^j K(\mathbf{x}^i, \mathbf{x}^j)$$

s.t.
$$0 \le \alpha_i \le C, \ i = 1, \dots, N$$
$$\sum_{i=1}^{N} \alpha_i r^i = 0$$

Can still solve optimally

Support Vector Machines Finding a Hyperplane (cont'd)

CSCE 478/878 Lecture 5: Artificial Neural Networks and Support Vector Machines

Stephen Scott

Introduction Outline

The

Perceptron

Nonlinearly Separable Problems

Backprop

SVMs Margins Duality Kernels Types of Kernels SVMs 50 / 50 If number of training vectors is very large, may opt to approximately solve these problems to save time and space

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Use e.g., gradient ascent and sequential minimal optimization (SMO)

When done, can throw out non-SVs