Combining Classifiers

- Sometimes a single classifier (e.g. neural network, decision tree) won't perform well, but a <u>weighted</u> <u>combination</u> of them will
- Each classifier (or expert) in the pool has its own weight
- When asked to predict the label for a new example, each expert makes its own prediction, and then the master algorithm combines them using the weights for its own prediction (i.e. the "official" one)
- If the classifiers themselves cannot learn (e.g. heuristics) then the best we can do is to learn a good set of weights
- If we are using a learning algorithm (e.g. ANN, dec. tree), then we can rerun the algorithm on different subsamples of the training set and set the classifiers' weights during training

3

6

Weighted Majority Mistake Bound (On-Line Model)

- Let $a_{opt} \in A$ be expert that makes fewest mistakes on arbitrary sequence S of exs; let k = number of mistakes a_{opt} makes
- Let $\beta = 1/2$ and $W_t = \sum_{i=1}^n w_{i,t}$ = sum of wts before trial t ($W_1 = n$)
- On trial *t* such that WM makes a mistake, the total weight reduced is

$$W_t^{mis} = \sum_{a_i(x_t) \neq c(x_t)} w_i \ge W_t/2$$

$$W_{t+1} = (W_t - W_t^{mis}) + W_t^{mis}/2 = W_t - W_t^{mis}/2 \le 3W_t/4$$

• After seeing all of $S, w_{opt,|S|+1} = (1/2)^k$ and $W_{|S|+1} \leq n(3/4)^M$ where M = total number of mistakes, yielding

$$\left(rac{1}{2}
ight)^k \le n \left(rac{3}{4}
ight)^M,$$

so

so

$$M \le \frac{k + \log_2 n}{-\log_2(3/4)} \le 2.4 \, (k + \log_2 n)$$

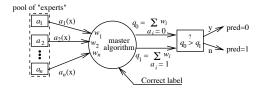
CSCE 478/878 Lecture 8: Combining Classifiers: Weighted Majority, Boosting, and Bagging

Stephen D. Scott (Adapted from Tom Mitchell's slides and Rob Schapire)

Weighted Majority Algorithm (WM)

[Sec. 7.5.4]

A = pool of <u>fixed</u> "experts"



4

Outline

- Combining classifiers to improve performance
- Combining arbitrary classifiers: Weighted Majority algorithm
- Combining while learning:
- Boosting
- Bagging

Weighted Majority Algorithm (WM) (cont'd)

 a_i is *i*th prediction algorithm in pool A of algorithms; each algorithm is arbitrary function from X to $\{0, 1\}$

 w_i is weight the master alg associates with a_i

- $\beta \in [0, 1)$ is parameter
- $\forall i \text{ set } w_i \leftarrow 1$
- For each training example (or trial) $\langle x, c(x) \rangle$
 - Set $q_0 \leftarrow q_1 \leftarrow 0$
 - For each algorithm a_i
 - * If $a_i(x) = 0$ then $q_0 \leftarrow q_0 + w_i$ else $q_1 \leftarrow q_1 + w_i$
- If $q_1 > q_0$ then predict 1 for c(x), else predict 0 (case for $q_1 = q_0$ is arbitrary)
- For each $a_i \in A$
- * If $a_i(x) \neq c(x)$ then $w_i \leftarrow \beta w_i$

Setting $\beta = 0$ yields Halving Algorithm over A

5

2

Weighted Majority Mistake Bound (cont'd)

- Thus for <u>any</u> arbitrary sequence of examples, WM guaranteed to not perform much worse than best expert in pool plus log of number of experts
- Other results:
 - Bounds hold for general values of $\beta \in [0, 1)$
 - Better bounds hold for more sophisticated algorithms, but only better by a constant factor (worstcase lower bound: $\Omega(k + \log n)$)
 - Get bounds for real-valued labels and predictions
 - Can track shifting concept, i.e. where best expert can suddenly change in S; key: don't let any weight get too low relative to other weights, i.e. don't overcommit

Bagging Classifiers [Breiman, ML Journal, '96]

Bagging = Bootstrap aggregating

Bootstrap sampling: given a set ${\cal D}$ containing m training examples:

- Create D_i by drawing m examples uniformly at random with replacement from D
- Expect D_i to omit \approx 37% of examples from D

Bagging:

- Create k bootstrap samples D_1, \ldots, D_k
- Train a classifier on each D_i
- Classify new instance x ∈ X by majority vote of learned classifiers (equal weights)

Result: An ensemble of classifiers

Bagging Experiment

(cont'd)

Same experiment, but using a nearest neighbor classifier (Chapt. 8), where prediction of new example x's label is that of x's nearest neighbor in training set, where distance is e.g. Euclidean distance

Results

What happened?

When Does Bagging Help?

When learner is <u>unstable</u>, i.e. if small change in training set causes large change in hypothesis produced

- Decision trees, neural networks
- Not nearest neighbor

Experimentally, bagging can help substantially for unstable learners; can somewhat degrade results for stable learners Bagging Experiment [Breiman, ML Journal, '96]

Given sample S of labeled data, Breiman did the following 100 times and reported avg:

- 1. Divide S randomly into test set T (10%) and training set D (90%)
- 2. Learn decision tree from D and let e_{S} be its error rate on T
- 3. Do 50 times: Create bootstrap set D_i and learn decision tree (so ensemble size = 50). Then let e_B be the error of a majority vote of the trees on T

Results

Boosting Classifiers

[Freund & Schapire, ICML '96; many more]

Similar to bagging, but don't always sample uniformly; instead adjust resampling distribution over D to focus attention on previously misclassified examples

Final classifier weights learned classifiers, but not uniform; instead weight of classifier h_t depends on its performance on data it was trained on

Repeat for $t = 1, \ldots, T$:

- 1. Run learning algorithm on examples randomly drawn from training set D according to distribution \mathcal{D}_t ($\mathcal{D}_1 =$ uniform)
- 2. Output of learner is hypothesis $h_t : X \to \{-1, +1\}$
- 3. Compute $error_{\mathcal{D}_t}(h_t)$ = error of h_t on examples drawn according to \mathcal{D}_t (can compute exactly)
- 4. Create \mathcal{D}_{t+1} from \mathcal{D}_t by increasing weight of examples that h_t mispredicts

Final classifier is weighted combination of h_1, \ldots, h_T , where h_t 's weight depends on its error w.r.t. \mathcal{D}_t

10

7

8

9

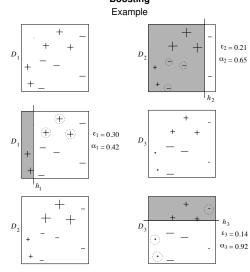
Boosting

(cont'd)

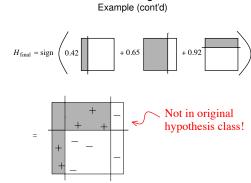
- <u>Preliminaries</u>: $D = \{(\vec{x}_1, y_1), \dots, (\vec{x}_m, y_m)\}, y_i \in$ $\{-1, +1\}, \mathcal{D}_t(i) =$ weight of (\vec{x}_i, y_i) under \mathcal{D}_t
- Initialization: $\mathcal{D}_1(i) = 1/m$ (in general, require $\forall t, \sum_{i=1}^{m} \mathcal{D}_t(i) = 1$)
- Error Computation: $\epsilon_t = \Pr_{\mathcal{D}_t} [h_t(\vec{x}_i) \neq y_i]$ (easy to do since we know \mathcal{D}_t)
- If $\epsilon_t > 1/2$ then halt; else:
- Weighting Factor: $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ (grows as ϵ_t decreases)
- Update: $\mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_t(i) \exp\left(-\alpha_t y_i h_t(\vec{x}_i)\right)}{\underbrace{Z_t}}$

normalization factor (increase weight of mispredicted examples, decrease wt of correctly predicted exs)

• Final Hypothesis:
$$H(\vec{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\vec{x})\right)$$



14



Boosting

Other advantages to ensembles (boost/bag):

- · Helps with problem of choosing one of several consistent hypotheses
- · Compensates for imperfect search algorithms (e.g. it is hard to find smallest decision tree or a consistent ANN)

Boosting Miscellany

- If each $\epsilon_t < 1/2 \gamma_t$, error of $H(\cdot)$ on D drops exponentially in $\sum_{t=1}^{T} \gamma_t$
- Can also bound generalization error of $H(\cdot)$ independent of T
- · Also successful empirically on neural network and decision tree learners
 - Empirically, generalization sometimes improves if training continues after $H(\cdot)$'s error on D drops to 0 [cf. generalization error's independence of T]
 - Contrary to intuition: would expect overfitting
 - Related to increasing the combined classifier's margin (confidence in prediction)
- Can apply to labels that are multi-valued using e.g. error-correcting output codes

16

13

Boosting

15

