
CSCE 478/878 Lecture 6: Bayesian Learning

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)
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Bayesian Methods

Not all hypotheses are created equal (even if they are all
consistent with the training data)

Might have reasons (domain information) to favor some
hypotheses over others a priori

Bayesian methods work with probabilities, and have two
main roles:

1. Provide practical learning algorithms:

• Naı̈ve Bayes learning

• Bayesian belief network learning

• Combine prior knowledge (prior probabilities) with
observed data

• Requires prior probabilities

2. Provides useful conceptual framework

• Provides “gold standard” for evaluating other learn-
ing algorithms

• Additional insight into Occam’s razor
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Outline

• Bayes Theorem

• MAP, ML hypotheses

• MAP learners

• Minimum description length principle

• Bayes optimal classifier/Gibbs algorithm

• Naı̈ve Bayes classifier

• Bayesian belief networks
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Bayes Theorem

In general, an identity for conditional probabilities

For our work, we want to know the probability that a par-
ticular h ∈ H is the correct hypothesis given that we have
seen training data D (examples and labels). Bayes theo-
rem lets us do this.

P (h | D) =
P (D | h)P (h)

P (D)

• P (h) = prior probability of hypothesis h (might include
domain information)

• P (D) = probability of training data D

• P (h | D) = probability of h given D

• P (D | h) = probability of D given h

Note P (h | D) increases with P (D | h) and P (h) and
decreases with P (D)
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Choosing Hypotheses

P (h | D) =
P (D | h)P (h)

P (D)

Generally want the most probable hypothesis given the
training data

Maximum a posteriori hypothesis hMAP :

hMAP = argmax
h∈H

P (h | D)

= argmax
h∈H

P (D | h)P (h)

P (D)
= argmax

h∈H
P (D | h)P (h)

If assume P (hi) = P (hj) for all i, j, then can further sim-
plify, and choose the maximum likelihood (ML) hypothesis

hML = argmax
hi∈H

P (D | hi)
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Bayes Theorem Example

Does patient have cancer or not?

A patient takes a lab test and the result comes
back positive. The test returns a correct positive
result in only 98% of the cases in which the dis-
ease is actually present, and a correct negative
result in only 97% of the cases in which the dis-
ease is not present. Furthermore, 0.008 of the
entire population have this cancer.

P (cancer) = P (¬cancer) =

P (+ | cancer) = P (− | cancer) =

P (+ | ¬cancer) = P (− |¬ cancer) =

Now consider new patient for whom the test is positive.
What is our diagnosis?
P (+ | cancer)P (cancer) =
P (+ | ¬cancer)P (¬cancer) =
So hMAP =
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Basic Formulas for Probabilities

• Product Rule: probability P (A ∧ B) of a conjunction
of two events A and B:

P (A ∧B) = P (A | B)P (B) = P (B | A)P (A)

• Sum Rule: probability of a disjunction of two events A
and B:

P (A ∨B) = P (A) + P (B)− P (A ∧B)

• Theorem of total probability: if events A1, . . . , An are
mutually exclusive with

∑n
i=1 P (Ai) = 1, then

P (B) =
n∑

i=1
P (B | Ai)P (Ai)
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Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the posterior
probability

P (h | D) =
P (D | h)P (h)

P (D)

2. Output the hypothesis hMAP with the highest poste-
rior probability

hMAP = argmax
h∈H

P (h | D)

Problem: what if H exponentially or infinitely large?
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Relation to Concept Learning

Consider our usual concept learning task: instance space
X, hypothesis space H, training examples D

Consider the Find-S learning algorithm (outputs most spe-
cific hypothesis from the version space V SH,D)

What would brute-force MAP learner output as MAP hy-
pothesis?

Does Find-S output a MAP hypothesis??
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Relation to Concept Learning
(cont’d)

Assume fixed set of instances 〈x1, . . . , xm〉

Assume D is the set of classifications
D = 〈c(x1), . . . , c(xm)〉

Assume no noise and c ∈ H, so choose

P (D | h) =






1 if di = h(xi) for all di ∈ D

0 otherwise

Choose P (h) = 1/|H| ∀h ∈ H, i.e. uniform dist.

If h inconsistent with D, then
P (h | D) = (0 · P (h)) /P (D) = 0

If h consistent with D, then
P (h | D) = (1 · 1/|H|) /P (D) = (1/|H|) /

(
|V SH,D|/|H|

)

= 1/|V SH,D| (see Thrm of total prob., slide 7)

Thus if D noise-free and c ∈ H and P (h) uniform,
every consistent hypothesis is a MAP hypothesis
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Characterizing Learning Algorithms by Equivalent
MAP Learners

Characterizing Learning Algorithms by Equivalent

MAP Learners
Inductive system

Output hypotheses

Output hypotheses

Brute force
MAP learner

Candidate
Elimination
Algorithm 

Prior assumptions
 made explicit

P(h) uniform
P(D|h) = 0 if inconsistent,
            = 1 if consistent

Equivalent Bayesian inference system

Training examples D

Hypothesis space H 

Hypothesis space H 

Training examples D

So we can characterize algorithms in a Bayesian frame-

work even though they don’t directly manipulate probabili-

ties

Other priors will allow Find-S, etc. to output MAP; e.g.

P(h) that favors more specific hypotheses
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So we can characterize algorithms in a Bayesian frame-
work even though they don’t directly manipulate probabili-
ties

Other priors will allow Find-S, etc. to output MAP; e.g.
P (h) that favors more specific hypotheses
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Learning A Real-Valued Function

Consider any real-valued target function f

Training examples 〈xi, di〉, where di is noisy training value

• di = f(xi) + ei

• ei is random variable (noise) drawn independently for
each xi according to some Gaussian distribution with
mean µei = 0

Then the maximum likelihood hypothesis hML is the one
that minimizes the sum of squared errors, e.g. a linear unit
trained with GD/EG:

hML = argmin
h∈H

m∑

i=1
(di − h(xi))

2
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Learning A Real-Valued Function
(cont’d)

hML = argmax
h∈H

p(D | h) = argmax
h∈H

p(d1, . . . , dm | h)

= argmax
h∈H

m∏

i=1
p(di | h) (if di’s cond. indep.)

= argmax
h∈H

m∏

i=1

1√
2πσ2

exp



−
1

2

(
di − h(xi)

σ

)2




(µei = 0 ⇒ E [di | h] = h(xi))

Maximize natural log instead:

hML = argmax
h∈H

m∑

i=1
ln

1√
2πσ2

−
1

2

(
di − h(xi)

σ

)2

= argmax
h∈H

m∑

i=1
−

1

2

(
di − h(xi)

σ

)2

= argmax
h∈H

m∑

i=1
− (di − h(xi))

2

= argmin
h∈H

m∑

i=1
(di − h(xi))

2

Thus have Bayesian justification for minimizing
squared error (under certain assumptions)
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Learning to Predict Probabilities

Consider predicting survival probability from patient data

Training examples 〈xi, di〉, where di is 1 or 0
(assume label is [or appears] probabilistically generated)

Want to train neural network to output the probability that
xi has label 1, not the label itself

Using approach similar to previous slide (p. 169), can show

hML = argmax
h∈H

m∑

i=1
di lnh(xi)+(1−di) ln(1−h(xi))

i.e. find h minimizing cross-entropy

For single sigmoid unit, use update rule

wj ← wj + η
m∑

i=1
(di − h(xi)) xij

to find hML (can also derive EG rule)
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Minimum Description Length Principle

Occam’s razor: prefer the shortest hypothesis

MDL: prefer the hypothesis h that satisfies

hMDL = argmin
h∈H

LC1
(h) + LC2

(D | h)

where LC(x) is the description length of x under encoding
C

Example: H = decision trees, D = training data labels

• LC1
(h) is # bits to describe tree h

• LC2
(D | h) is # bits to describe D given h

– Note LC2
(D | h) = 0 if examples classified per-

fectly by h (need only describe exceptions)

• Hence hMDL trades off tree size for training errors
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Minimum Description Length Principle
Bayesian Justification

hMAP = argmax
h∈H

P (D | h)P (h)

= argmax
h∈H

log2 P (D | h) + log2 P (h)

= argmin
h∈H

− log2 P (D | h)− log2 P (h) (1)

Interesting fact from information theory: The optimal (short-
est expected coding length) code for an event with proba-
bility p is − log2 p bits.

So interpret (1):

• − log2 P (h) is length of h under optimal code

• − log2 P (D | h) is length of D given h under optimal
code

→ prefer the hypothesis that minimizes

length(h) + length(misclassifications)

Caveat: hMDL = hMAP doesn’t apply for arbitrary en-
codings (need P (h) and P (D | h) to be optimal); merely
a guide
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Bayes Optimal Classifier

• So far we’ve sought the most probable hypothesis given
the data D, i.e. hMAP

• But given new instance x, hMAP (x) is not necessar-
ily the most probable classification!

• Consider three possible hypotheses:

P (h1 | D) = 0.4, P (h2 | D) = 0.3, P (h3 | D) = 0.3

Given new instance x,

h1(x) = +, h2(x) = −, h3(x) = −

• hMAP (x) =

• What’s the most probable classification of x?
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Bayes Optimal Classifier
(cont’d)

Bayes optimal classification:

argmax
vj∈V

∑

hi∈H

P (vj | hi)P (hi | D)

where V is set of possible labels (e.g. {+,−})

Example:

P (h1 | D) = 0.4, P (− | h1) = 0, P (+ | h1) = 1

P (h2 | D) = 0.3, P (− | h2) = 1, P (+ | h2) = 0

P (h3 | D) = 0.3, P (− | h3) = 1, P (+ | h3) = 0

therefore
∑

hi∈H

P (+ | hi)P (hi | D) = 0.4

∑

hi∈H

P (− | hi)P (hi | D) = 0.6

and

argmax
vj∈V

∑

hi∈H

P (vj | hi)P (hi | D) = −

On average, no other classifier using same prior and
same hyp. space can outperform Bayes optimal!
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Gibbs Algorithm

Bayes optimal classifier provides best result, but can be
expensive or impossible if many hypotheses [Though some
cases can be made efficient, if one assumes particular
probability distributions.]

Gibbs algorithm:

1. Randomly choose one hypothesis according
to P (h | D)

2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at ran-
dom from H according to priors on H. Then:

E [errorGibbs] ≤ 2 E
[
errorBayes Optimal

]

i.e. if prior correct and c ∈ H, then average error at most
twice best possible!

E.g. Suppose correct, uniform prior distribution over H.
Then

• Pick any hypothesis from VS with uniform probability

• Expected error no worse than twice Bayes optimal

Still have to be able to choose random hypothesis!
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Naı̈ve Bayes Classifier

Along with decision trees, neural networks, nearest neigh-
bor, SVMs, boosting, one of the most practical learning
methods

When to use

• Moderate or large training set available

• Attributes that describe instances are conditionally in-
dependent given classification

Successful applications:

• Diagnosis

• Classifying text documents
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Naı̈ve Bayes Classifier
(cont’d)

Assume target function f : X → V , where each instance
x described by attributes 〈a1, a2, . . . , an〉

Most probable value of f(x) is:

vMAP = argmax
vj∈V

P (vj | a1, a2, . . . , an)

= argmax
vj∈V

P (a1, a2, . . . , an | vj)P (vj)

P (a1, a2, . . . , an)

= argmax
vj∈V

P (a1, a2, . . . , an | vj)P (vj)

Problem with estimating probs from training data: estimat-
ing P (vj) easily done by counting, but there are exponen-
tially (in n) many combs. of values of a1, . . . , an, so can’t
get estimates for most combs

Naı̈ve Bayes assumption:

P (a1, a2, . . . , an | vj) =
∏

i

P (ai | vj)

so naı̈ve Bayes classifier:

vNB = argmax
vj∈V

P (vj)
∏

i

P (ai | vj)

Now have only polynomial number of probs to estimate
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Naı̈ve Bayes Algorithm

Naı̈ve Bayes Learn

1. For each target value vj

(a) P̂ (vj)← estimate P (vj) = fraction of exs with vj

(b) For each attribute value ai of each attrib a

i. P̂ (ai | vj) ← estimate P (ai | vj) = fraction of
vj-labeled exs with ai

Classify New Instance(x)

vNB = argmax
vj∈V

P̂ (vj)
∏

ai∈x
P̂ (ai | vj)

22

Naı̈ve Bayes Example

Training Examples (Table 3.2):
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Example to classify:
〈Outlk = sun, Temp = cool, Humid = high, Wind = strong〉

Assign label vNB = argmaxvj∈V P (vj)
∏

i P (ai | vj)

P (y)·P (sun | y)·P (cool | y)·P (high | y)·P (strong | y)

= (9/14) · (2/9) · (3/9) · (3/9) · (3/9) = 0.0053

P (n) P (sun | n) P (cool | n) P (high | n) P (strong | n)

= (5/14) · (3/5) · (1/5) · (4/5) · (3/5) = 0.0206

So vNB = n
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Naı̈ve Bayes
Subtleties

• Conditional independence assumption is often violated,
i.e.

P (a1, a2, . . . , an | vj) -=
∏

i

P (ai | vj)

. . . but it works surprisingly well anyway. Note don’t
need estimated posteriors P̂ (vj | x) to be correct;
need only that

argmax
vj∈V

P̂ (vj)
∏

i

P̂ (ai | vj) = argmax
vj∈V

P (vj)P (a1, . . . , an | vj)

Sufficient conditions given in
[Domingos & Pazzani, 1996]

24



Naı̈ve Bayes
Subtleties (cont’d)

• What if none of the training instances with target value
vj have attribute value ai? Then

P̂ (ai | vj) = 0, and P̂ (vj)
∏

i

P̂ (ai | vj) = 0

Typical solution is to use as estimate:

P̂ (ai | vj)←
nc + mp

n + m

where

– n is number of training examples for which v = vj,

– nc number of examples for which v = vj and a =
ai

– p is prior estimate for P̂ (ai | vj)

– m is weight given to prior (i.e. number of “virtual”
examples)

– Sometimes called pseudocounts
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Naı̈ve Bayes
Application: Learning to Classify Text

• Target concept Interesting? : Document → {+,−}
(can you also use NB as a ranker?)

• Each document is a vector of words (i.e. one attribute
per word position), e.g. a1 = “our”, a2 = “approach”,
etc.

• Naı̈ve Bayes very effective despite obvious violation
of conditional independence assumption

• See Section 6.10 for more detail
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Bayesian Belief Networks

• Sometimes naı̈ve Bayes assumption of conditional in-
dependence too restrictive

• But inferring probabilities is intractable without some
such assumptions

• Bayesian belief networks (also called Bayes Nets) de-
scribe conditional independence among subsets of
variables

• Allows combining prior knowledge about dependen-
cies among variables with observed training data
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Conditional Independence

Definition: X is conditionally independent of Y given Z if
the probability distribution governing X is independent of
the value of Y given the value of Z; that is, if
(∀xi, yj, zk) P (X = xi | Y = yj, Z = zk) = P (X = xi | Z = zk)

more compactly, we write

P (X | Y, Z) = P (X | Z)

Example: Thunder is conditionally independent of Rain,
given Lightning

P (Thunder | Rain, Lightning) = P (Thunder | Lightning)

Naı̈ve Bayes uses conditional independence and product
rule (slide 7) to justify

P (X, Y | Z) = P (X | Y, Z)P (Y | Z)

= P (X | Z)P (Y | Z)
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Bayesian Belief Network
Bayesian Belief Network

(cont’d)

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Represents joint probability distribution over all network

variables 〈Y1, . . . , Yn〉, e.g.
P(Storm, BusTourGroup, . . . , ForestF ire)

• In general, for yi = value of Yi

P(y1, . . . , yn) =
n
∏

i=1

P(yi | Parents(Yi))

where Parents(Yi) denotes immediate predecessors

of Yi in graph

• E.g. P(S, B, C,¬L,¬T,¬F) =

P (S)·P (B)·P (C | B, S)
︸ ︷︷ ︸

0.4

·P (¬L | S)·P (¬T | ¬L)·P (¬F | S,¬L,¬C)

30

Network represents a set of conditional independence as-
sertions:

• Each node is asserted to be conditionally indepen-
dent of its nondescendants, given its immediate pre-
decessors

• Directed acyclic graph
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Bayesian Belief Network
(cont’d)

Bayesian Belief Network

(cont’d)

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Represents joint probability distribution over all network

variables 〈Y1, . . . , Yn〉, e.g.
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n
∏
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where Parents(Yi) denotes immediate predecessors

of Yi in graph
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︸ ︷︷ ︸
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Represents joint probability distribution over all network
variables 〈Y1, . . . , Yn〉, e.g.
P (Storm, BusTourGroup, . . . , ForestF ire)

• In general, for yi = value of Yi

P (y1, . . . , yn) =
n∏

i=1
P (yi | Parents(Yi))

where Parents(Yi) denotes immediate predecessors
of Yi in graph

• E.g. P (S, B, C,¬L,¬T,¬F ) =

P (S)·P (B)·P (C | B, S)︸ ︷︷ ︸
0.4

·P (¬L | S)·P (¬T | ¬L)·P (¬F | S,¬L,¬C)
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Inference in Bayesian Networks

Want to infer probabilities of values of one or more network
variables (attributes), given observed values of others, i.e.
want the probability distribution of a subset of variables
given values of a subset of the others

• Bayes net contains all information needed for this in-
ference: can simply brute force try all combinations of
values of the unknown variables

• Of course, this takes time exponential in number of
unknowns

• In general case, problem is NP-hard

In practice, can succeed in many cases

• Exact inference methods work well for some network
structures

• Monte Carlo methods “simulate” the network randomly
to calculate approximate solutions
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Learning of Bayesian Networks

We know how to use Bayesian Networks, but how do we
learn one?

Several variants of this learning task

• Network structure might be known or unknown

• Training examples might provide values of all network
variables, or just some

If structure known and all variables observed, then it’s as
easy as training a naı̈ve Bayes classifier (just count occur-
rences as before)
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Learning of Bayesian Networks
(cont’d)

Suppose structure known, variables partially observable

E.g. observe ForestFire, Storm, BusTourGroup, Thunder,
but not Lightning, Campfire

• Similar to training neural network with hidden units;
in fact can learn network conditional probability tables
using gradient ascent

• Converge to network h that (locally) maximizes
P (D | h), i.e. search for ML hypothesis

• Can also use EM (expectation maximization)
algorithm

– Use observations of variables to predict their val-
ues in cases when they’re not observed

– EM has many other applications, e.g. hidden Markov
models (HMMs) used for e.g. biological sequence
analysis
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Bayesian Belief Networks
Summary

• Combine prior knowledge with observed data

• Impact of prior knowledge (when correct!) is to lower
the sample complexity

• Active research area

– Extend from boolean to real-valued
variables

– Parameterized distributions instead of
tables

– More effective inference methods
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