CSCE 478/878 Lecture 4:
Artificial Neural Networks

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)

When to Consider Neural Networks

Input is high-dimensional discrete- or real-valued (e.g.
raw sensor input)

Output is discrete- or real-valued

Output is a vector of values

Possibly noisy data

Form of target function is unknown

Human readability of result is unimportant

Long training times acceptable

Examples:

e Speech phoneme recognition [Waibel]
o Image classification [Kanade, Baluja, Rowley]

e Financial prediction

Outline

e Threshold units: Perceptron, Winnow

e Gradient descent/exponentiated gradient

e Multilayer networks

e Backpropagation

e Support Vector Machines

The Perceptron & Winnow

O

n
Lif 2w ;>0
o= i=0
-1 otherwise

o(zy, —1 otherwise

(sometimes use 0 instead of —1)
Sometimes we’ll use simpler vector notation:

o) = | 1 i@ F>0
1 —1 otherwise

_{ +1 ifwg+wizy 4+ -+ wpzn >0
---al’n)—

Connectionist Models

Consider humans:

« Total number of neurons ~ 1010

o Neuron switching time ~ 10~3 second (vs. 10~10)
o Connections per neuron ~ 104-10°

e Scene recognition time =~ 0.1 second

e 100 inference steps doesn’t seem like enough

= much parallel computation

Properties of artificial neural nets (ANNs):

e Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

e Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for
biological modeling

Decision Surface of Perceptron/Winnow

(b)

Represents some useful functions

e What weights represent g(z1,z2) = AND(z1,22)?

But some functions not representable

e |.e. those not linearly separable

e Therefore, we’'ll want networks of neurons

Perceptron Training Rule

add

w; — w; + Awl where Awi =n(t —o)x;

i
and

o t = ¢(7) is target value
e o is perceptron output

e 7 is small constant (e.g. 0.1) called learning rate
l.e.if (¢t — o) > 0 then increase w; w.r.t. z;, else decrease

Can prove rule will converge if training data is linearly sep-
arable and 7 sufficiently small

Gradient Descent and Exponentiated Gradient

e Useful when linear separability impossible but still want
to minimize training error

e Consider simpler linear unit, where

o=wg+ wizry + -+ wnzn
(i.e. no threshold)

e For moment, assume that we update weights after
seeing each example Z;

e For each example, want to compromise between
correctiveness and conservativeness

— Correctiveness: Tendency to improve on Z,; (re-
duce error)

— Conservativeness: Tendency to keep
Wg41 close to Wy (minimize distance)

e Use cost function that measures both:

curr ex, new wts'
U(’lﬂ) = dist (if)d+17 ’LUd) + nerror (td; 117(1+1 . fd)

10

Winnow Training Rule

w; — w; - Awlmu”, where Awl-m“lt = o(t—o)z;

anda > 1

l.e. use multiplicative updates vs. additive updates

Problem: Sometimes negative weights are required
o Maintain two weight vectors @1 and @~ and replace
@ - & with (@ — @) - 7

e Update w1 and @~ independently as above, using
ij = a(t=9)%i and Aw; = l/ij_

Can also guarantee convergence

Gradient Descent and Exponentiated Gradient
(cont'd)

"
s
PR
KK
XSS
EIEKIKS
‘9 ::“t

XX
:‘t

e
o :‘"

0 ‘:‘“

i

X
:t

(X
%
“.:‘

3
5
&3
R
WS
N

’,
%
7
9e!
9
9o
5
5
K>
*
5

7
0
7
0
9 ‘ﬁﬂ
X
S
S
R
3
\
N

S S

S,
== SIS
ST S TS

==

w0

U _ [oU aU oU
0w |Owg dwy’ Own

Perceptron vs. Winnow

Winnow works well when most attributes irrelevant, i.e.
when optimal weight vector w* is sparse (many 0 entries)

E.g. let examples @ € {0, 1}" be labeled by a
k-disjunction over n attributes, k < n

Remaining n — k are irrelevant

e Eg. C(xl,...,$150) = x5V 29 V —x12, n = 150,
k=3

For disjunctions, number of prediction mistakes (in on-
line model) is O (klogn) for Winnow and (in worst
case) 2 (kn) for Perceptron

e So in worst case, need exponentially fewer updates
for learning with Winnow than Perceptron

Bound is only for disjunctions, but improvement for learn-
ing with irrelevant attributes is often true
When w* not sparse, sometimes Perceptron better

Also, have proofs for agnostic error bounds for both algo-
rithms

Gradient Descent

conserv. corrective
coef.

— T) . — =32
U(W@) = |@gg1— Tall5+ 7 (tg — Taq1 - T)

n

2
2 n

> (wi,d+1 - wi,d) +n (td - > wiat+1 Iz‘,d)

i i=1

i=

Take gradient w.r.t. @, 1 and set to 0:

n
0=2 (wi,d+1 - wz:,d) —2n <td =3 wig4 Ii,d) T d

i=

Approximate with

n
0=2(wia41—wig) —2n (td - > wig %d) Tid

i=1
which yields
dd
Awid
———
Wid41 = wig+n(tg — 04) Tid

Exponentiated Gradient

Conserv. portion uses unnormalized relative entropy:

conserv.
n coef.

corrective

= Wi,d+1 A
U(@) =5 (wz,d — Widt1 + Wig1 N %) + I (ta — B - Fa)®
i,d

i=1

Take gradient w.r.t. ;41 and set to G:

Wi d+1 L
O=In—"=—2nty— > w 44+1% 4| Tig
Wi,d i=1

Approximate with

Wi g1 n
O=In—"T=—2nty— > wgziq|zig ,
Wi,d i=1

which yields (for n = In a/2) At
(¢, 707)2
W1 = wig P (20 (tg — 04) 24,4) = w; gl 0T

Handling Nonlinearly Separable Data
xp The XOR Problem

N D: (1,1)
O

N neg

C, e S
A (00) 7 Ng0 C(0) N, !
g,(x) <0~\—>>_,/\/

e Can'’t represent with a single linear separator, but can
with intersection of two:

g@ =1-z1+1-25-1/2
@p@)=1-214+1-20—-3/2

pos = {7 € R’ : g (&) > 0 AND g5(7) < 0}

neg= {7 € R’ : g1 (), 92(%) < 0 OR (%), 92(#) > 0}

16

Implementation Approaches

e Can use rules on previous slides on an example-by-
example basis, sometimes called incremental, stochastic,

or on-line GD/EG

— Has a tendency to “jump around” more in search-
ing, which helps avoid getting trapped in local min-

ima

e Alternatively, can use standard or batch GD/EG, in
which the classifier is evaluated over all training exam-
ples, summing the error, and then updates are made

— l.e. sum up Aw; for all examples, but don’t update

w; until summation complete (p. 93, Table 4.1)

— This is an inherent averaging process and tends to

give better estimate of the gradient

The XOR Problem
(cont'd)

0 ifgi(@) <0

o Lety, =
Yi {1 otherwise

Class (z1,22) [91(Z) 31 | 92(F) w2
pos B:(0,1)| 1/2 1 |-1/2 0
pos C:(1,0)| 1/2 1 |-1/2 0
neg A:(0,0)[-1/2 0]-3/2 0
neg D:(1,1)] 3/2 1| 1/2 1

e Now feed y1, yo into:

g =1-y1-2-y2—-1/2

»2

2y)
D: (1) %7,
O 4
,/
7
7
neg 7 pos
7
7/
4
4
G—— ® Y
A:(00),” B,C:(10)

Remarks

e Perceptron and Winnow update weights based on thresh-
olded output, while GD and EG use unthresholded
outputs

e P/W converge in finite number of steps to perfect hyp
if data linearly separable; GD/EG work on non-linearly
separable data, but only converge asymptotically (to
wts with minimum squared error)

e As with P vs. W, EG tends to work better than GD
when many attributes are irrelevant

— Allows the addition of attributes that are nonlinear
combinations of original ones, to work around lin-
ear sep. problem (perhaps get linear separability
in new, higher-dimensional space)

— E.g. if two attributes are =1 and x5, use as EG
inputs

= 2 .2
= {xlvm%xleaxlva}

e Also, both have provable agnostic results

The XOR Problem
(cont'd)

e In other words, we remapped all vectors Z to such
that the classes are linearly separable in the new vec-
tor space

. =-1/2
Hidden Layer Y34

\

Input Layer

/T‘ w,=-2 \, Output

Layer
2

W 32

e This is a two-layer perceptron or two-layer
feedforward neural network

e Each neuron outputs 1 if its weighted sum exceeds its
threshold, 0 otherwise

Generally Handling Nonlinearly Separable Data Sigmoid Unit

e By adding up to 2 hidden layers of perceptrons, can
represent any union of intersection of halfspaces

2

T . GDJ/EG for Sigmoid Unit
1

Vit
i=0 “net
+e

e First note that conservativeness and correctiveness
are only additively related = derivatives always inde-
pendent

o(net) is the logistic function

pos neg 71
pos 14+ e—net

(a type of sigmoid function) o Thus in general get

n O correc

o Problem: The above is still defined linearly Squashes net into [0, 1] range Widhl = Wid— 5 oo for GD
i,d

%9 o head Nice property: d correc
*hod do () Wi 41 = Wi g €XP | =1 T ow . for EG
e T = 0(2)(1 — 0(2)) id

2000 v heard dx
o hoed

F2 (Hz) S mata W derive GD/EG rul . e So all we have to do is define an error function, take
1000 »hee € can derlve rules to train its gradient, and substitute into the equations
e One sigmoid unit
" o Multilayer networks of sigmoid units =

i
o 500 1600 1400

F1 (H2) Backpropagation

GD/EG for Sigmoid Unit
(contd)

Multilayer Networks
Return to book notation, where correctiveness is:

o, 1 > X ; = input from i to j Training
E(wWy) = > (tq — o0q) x=1 W, =wt fromitoj Output Units
(folding 1 /2 of correctiveness into error func) - N X 30+l
3 . w, net n+3 on+3
< — . .
- OE 0 1 5 = 2 o Adjust wt wj; 4 according to E; as before
us wig Owig 2 (ta — 0a) 5 Wis3 042
2 . .
1 P oy " Wit I o For output units, this is easy since contribution of wj; 4
=52(ta—0d) w; g (ta —04) = (tq = 0a) T ow, g __on+4 to E,; when j is an output unit is the same as for single
:) 7 ’ 1 net N2~y 4 tn+d * ie.
Since oy is a function of nety = @y - &y, W20 ez netn neuron case-, I.e
, Hidden layer Output Layer OEy
OB (1= og) 204 Oncta o =~ (tia = 05a) 0ja (1= 0ja) #jia = ~82j1
Ow; g d—od Onetq Ow; 4) . o) .) Wiid
(ty— 0g) 9o (nety) Onety Use sigmoid units since continuous and differentiable where §; = 76(23'2% = error term of unit
= —(g—04) ——
onety Ow; 4
= —(ta—0a)0a (1l —o04)Tiq4 Error:

Eq = E(uy) = % > (tha- Ok,d)2

[widt1 = wig+n0q (1~ 0g) (ta — 04) wi,q for GD| keontputs

w; = w; 4 exp (2no4 (1 — 0y) (tg — o]‘) forEG‘
i,d+1 i,d p (noq(1) (ta) i,d *This is because all other outputs are constants w.r.t. wj; 4

22 23 24

Training
Hidden Units

e How can we compute the error term for hidden layers
when there is no target output ¢ for these layers?

e Instead propagate back error values from output layer
toward input layers, scaling with the weights

e Scaling with the weights characterizes how much of
the error term each hidden unit is “responsible for”

25
The Backpropagation Algorithm
Example
target = y trial l:a=1,b=0,y=1

fix) =171 +exp(- x)) trial 2:a=0,b=1,y=0

Training
Hidden Units (contd)

The impact that wj; 4 has on Ej is only through net; and
units immediately “downstream” of j;:

OE, O0E; Onet; OE; Onety,
= J—
Owjiq Onet; Owjiq 7 kedown(j) Onety, Onet;
Onety, Onety, Qo;
ek Z Ok Onet; =i Z Ok do; 8nejt-
kedown(5) 7 kedown(j) J J

do;
=z Y *%%jﬁejtj =aji Y Gk (1 - o)

kedown(j) kedown(j)

Works for arbitrary number of hidden layers

26

Remarks on Backprop

e When to stop training? When weights don’t change
much, error rate sufficiently low, etc. (be aware of over-
fitting: use validation set)

Backpropagation Algorithm
Initialize all weights to small random numbers.
Until termination condition satisfied, Do
e For each training example, Do

1. Input the training example to the network and com-
pute the network outputs

2. For each output unit &
Ok — op(1 — o) (tg — o)
3. For each hidden unit b
Sp—on(l—op) > wppdy
kedown(h)

4. Update each network weight w; ;

Wy — wj;+ Awg

Cannot ensure convergence to global minimum due to
myriad local minima, but tends to work well in practice
(can re-run with new random weights)

Generally training very slow (thousands of iterations),
use is very fast

Setting n: Small values slow convergence, large val-
ues might overshoot minimum, can adapt it over time

Can add momentum term « < 1 that tends to keep
the updates moving in the same direction as previous
trials:

Awji g1 =N0jd+1Tjid+1 T e Dwj; g
Can help move through small local minima to better

w
a—_ca)
-ty R e L R

c

= U A

cb /F Weo Wao
1 1
eta 0.3
trial 1 trial 2

w_ca 0.1 0.1008513 : 0.1008513
lw_cb 0.1 0.1..0.0987985
w_c0 0.1 0.1008513 . 0.0996498
a 1 0
b 0 1
const 1 1
sum_c 0.2 0.2008513
y.C 0.5498340 . 0.5500447
w_dc 0.1..0.1189104 _0.0964548
w_do 0.1..0.1343929 . 0.0935679
sum_d 0.1549834 . 0.1997990
y.d 0.5386685 . 0.5497842
target 1 0
delta_d 0.1146431 . -0.136083
delta_c 0.0028376 . _-0.004005
delta_d(t) =y_d(t) * (y(t) - y_d(t)) * (1 - y_d(t))
delta_c(t) =y_c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t)
\w_dc(t+1) = w_dc(t) + eta * y_c(t) * delta_d(t)
w_ca(t+1) =w_ca(t) + eta * a * delta_c(t)

28

ones & move along flat surfaces

29

where
Aw]-'i = ’I”](ijjﬂ
27
Overfitting
Error versus weight updates (example 1)
001
N
0009 o Training seterror ~ + |
Validation seterror ~ +
0008 q
0007 Fo B
g oo 7W
5
0005 q
0004 q
0003 q
0002
0 5000 10000 15000 20000
Number of weight updates
Error versus weight updates (example 2)
008 T T
007 | * Training seteror + |
Validation seterror +
006 [, 9
00s | q
go00s oo]
H .
003 b g
002 5 1
0T ..'\-...___ 1
o .
0 1000 2000 3000 4000 5000 6000

Number of weight updates

Danger of stopping too soon!

30

Remarks on Backprop Support Vector Machines

(cont'd) Hypothesis Space [See refs. on slides page]

e Alternative error function: cross entropy

1. Hyp. space is set of all weight vectors (continuous vs. Introduced in 1992

Ej= Y (%,d'ﬂ opd+ (1 — ik,d) In (1 — Ok.d)) discrete of decision trees)

k€outputs e State-of-the-art technique for classification and regres-
“blows up” if t, 4 ~ 1 and o 4 = O or vice-versa (vs.))) . sion
squared error, which is always in [0, 1]) 2. Search via GD/EG: Possible because error function

and output functions are continuous & differentiable

Techniques can also be applied to e.g. clustering and

e Can penalize large weights to make space more linear principal components analysis
and reduce risk of overfitting: 3. Inductive bias: (Roughly) smooth interpolation between
) data points e Similar to ANNs, polynomial classifiers, and RBF net-
By = 5 S (tha— oo)? + A3 wﬁd works in that it remaps inputs and then finds a hyper-
k€outputs) 4000 © head plane
i — Main difference is how it works
o Representational power: Any boolean func. can be " hved
represented with 2 layers, any bounded, continuous 2 et .
func. can be rep. with arbitrarily small error with 2 lay- 2 (Hz) S * Feature.s ?f S,VMS.)
ers, any func. can be rep. with arbitrarily small error oo ~ hood — Maximization of margin
with 3 layers — Duality
— Use of kernels
— Number of required units may be large o

Use of problem convexity to find classifier (often

— GD/EG may not be able to find the right weights without local minima)
31 32 33
Support Vector Machines Support Vector Machines
Margins Duality

[J s . Support Vector Machines
upport vectors (witl ; . Another way of representing predictor:

minqum margin) uniquely Perceptron Algorithm Revisited . y P gp

define hyperplane (other

points not needed)

o (0) «— 0,b(0) «— 0,k —0,y; € {—1,+1}Vi i=1

N
h(Z) = sgn (@ - £+ b) = sgn (77 S (Y @) -5:‘+b)
N
[) =sgn (nzwz'yi (fi'f)‘l'b)
e While mistakes are made on training set =1
(o; = # mistakes on ;)
— Fori = 1to N (= # training vectors)

e So perceptron alg has equivalent dual form:
« My, (@ - &+ b)) <0 - a@—0,b—0,
" W1 < G Y S — While mistakes are made in For loop
e A hyperplane’s margin ~ is the shortest distance from
it to any training vector cbpr1 < bty x Fori = 1to N (= # training vectors)

e Intuition: larger margin = higher confidence in clas- k—k+1 Sy, (77 Z;VII a;yj (fj @) + b) <0
sifier’s ability to generalize

izati i aj —a;+1
— Guaranteed generalization error bound in terms of

1/~2 (under appropriate assumptions) e Final predictor: h(¥) = sgn (@, - & + b) b b+ny;
e Definition assumes linear separability (more general
definitions exist that do not) e Now data only in dot products

34 35 36

Kernels

Duality lets us remap to many more features!

Let ¢ : ®¢ — F be nonlinear map of f.v.s, so

N
h(#) = sgn (z aivi (3@ -3@) + b)
i=1

Can we compute (q?(.»z,;) . 43(5)) without evaluating
& (Z;) and ¢ (£)? YES!

Z = [z1,22], Z = [21, 22]:

(&-2)? = (v121 + 2222)?
— .2 2+ 2.2 2
=ai2] + 2525 +2x1 20021 22
= [I%vzgx \/51'1 I2] : {Z%ngv \/521 ZQ}
- - =

&(F)

LHS requires 2 mults + 1 squaring to compute, RHS
takes 3 mults

In general, (& - 2‘)‘1 takes ¢ mults + 1 expon., vs.
) d -
(H'Z*l) > (%) mults if compute ¢ first

37

Support Vector Machines
Finding a Hyperplane

Can show [Cristianini & Shawe-Taylor] that if data lin-
early separable in remapped space, then get maxi-
mum margin classifier by minimizing « - @ subject to

yi (0-&;+b)>1

Can reformulate this in dual form as a convex quadratic
program that can be solved optimally, i.e. won't encounter
local optima:

m
. 1 R
maximize Z ai—EZaiajyiyjk(zi,zj)
i=1 (%)
s.t. a;>0,i=1,....,m
m

> oy =0
i=1

After optimization, we can label new vectors with the
decision function:

f(&) =sgn (i a;yi k(Z,7;) + b)
i=1

Can always find a kernel that will make training set lin-
early separable, but beware of choosing a kernel that
is too powerful (overfitting)

40

Kernels

(cont'd)
Kernels
e In general, a kernel is a function k& such that V Z, Z, (cont'd)
k(@,2) = ¢(Z) - ¢(2)
o Typically start with kernel and take the feature map- o Commonly-used kernels:

ping that it yields

e Eg. lett=1,F=2,7= 2z k(z,2) =sin(z — 2) — Polynomial:

Kpoly(zvm,) = (z- a + C)d

By Fourier expansion,
sin(z—2) =ag+ Y. ansin(na)sin(nz) — Gaussian Radial Basis Function (RBF):

n=1

_ 02
Kppr(z,«') = exp (*M>

+ i an cos(nz) cos(n z) 202
for Fourier coeficientsna_OTaI, .. — Hyperbolic tangent (sigmoid):
e This is the dot product of two infinite sequences of Kig(z,2") = tanh(k(z - 2’) + 6)
nonlinear functions:
{¢i(2)}Z0 = [1,sin(z), cos(z),sin(2z), cos(2z), . .] e Also have ones for structured data: e.g. graphs, trees,

sequences, and sets of points

o |.e. there are an infinite number of features in
this remapped space!

38 39

Support Vector Machines
Finding a Hyperplane (cont'd)

If kernel doesn’t separate, can soften the margin with
slack variables &;:

m
minimize |32 +C Y &
@,b.€

i=1
s.t. yi((@- @) +b)>1-¢,i=1,...,m
£ >0,i=1,...,m

e The dual is similar to that for hard margin:

m

maximize Y- i = Y aq oy yi y; ki, ;)
i=1 ,j

s.t. 0<<C,i=1,....,m

m

> iy =0
i=1

Can still solve optimally

If number of training vectors is very large, may opt to
approximately solve these problems to save time and
space

e Use e.g. gradient ascent and sequential minimal opti-
mization (SMO) [Cristianini & Shawe-Taylor]

e When done, can throw out non-SVs

41

