
CSCE 478/878 Lecture 4:
Artificial Neural Networks

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)

1

Outline

• Threshold units: Perceptron, Winnow

• Gradient descent/exponentiated gradient

• Multilayer networks

• Backpropagation

• Support Vector Machines

2

Connectionist Models

Consider humans:

• Total number of neurons ≈ 1010

• Neuron switching time ≈ 10−3 second (vs. 10−10)

• Connections per neuron ≈ 104–105

• Scene recognition time ≈ 0.1 second

• 100 inference steps doesn’t seem like enough

⇒ much parallel computation

Properties of artificial neural nets (ANNs):

• Many neuron-like threshold switching units

• Many weighted interconnections among units

• Highly parallel, distributed process

• Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for
biological modeling

3

When to Consider Neural Networks

• Input is high-dimensional discrete- or real-valued (e.g.
raw sensor input)

• Output is discrete- or real-valued

• Output is a vector of values

• Possibly noisy data

• Form of target function is unknown

• Human readability of result is unimportant

• Long training times acceptable

Examples:

• Speech phoneme recognition [Waibel]

• Image classification [Kanade, Baluja, Rowley]

• Financial prediction

4

The Perceptron & Winnow

w1

w2

wn

w0

x1

x2

xn

x0=1

.

.

.

!
! w

i
 x

i

n

i=0
1 if > 0

-1 otherwise{o =
! w

i
 x

i

n

i=0

o(x1, . . . , xn) =

{
+1 if w0 + w1x1 + · · · + wnxn > 0
−1 otherwise

(sometimes use 0 instead of −1)

Sometimes we’ll use simpler vector notation:

o(!x) =

{
+1 if !w · !x > 0
−1 otherwise

5

Decision Surface of Perceptron/Winnow

x1

x2

+
+

-
-

+

-

x1

x2

(a) (b)

-

+ -

+

Represents some useful functions

• What weights represent g(x1, x2) = AND(x1, x2)?

But some functions not representable

• I.e. those not linearly separable

• Therefore, we’ll want networks of neurons

6

Perceptron Training Rule

wi ← wi + ∆wadd
i , where ∆wadd

i = η(t− o)xi

and

• t = c(!x) is target value

• o is perceptron output

• η is small constant (e.g. 0.1) called learning rate

I.e. if (t− o) > 0 then increase wi w.r.t. xi, else decrease

Can prove rule will converge if training data is linearly sep-
arable and η sufficiently small

7

Winnow Training Rule

wi ← wi · ∆wmult
i , where ∆wmult

i = α(t−o)xi

and α > 1

I.e. use multiplicative updates vs. additive updates

Problem: Sometimes negative weights are required

• Maintain two weight vectors !w+ and !w− and replace
!w · !x with

(
!w+ − !w−

)
· !x

• Update !w+ and !w− independently as above, using
∆w+

i = α(t−o)xi and ∆w−i = 1/∆w+
i

Can also guarantee convergence

8

Perceptron vs. Winnow

Winnow works well when most attributes irrelevant, i.e.
when optimal weight vector !w∗ is sparse (many 0 entries)

E.g. let examples !x ∈ {0,1}n be labeled by a
k-disjunction over n attributes, k ' n

• Remaining n− k are irrelevant

• E.g. c(x1, . . . , x150) = x5 ∨ x9 ∨ ¬x12, n = 150,
k = 3

• For disjunctions, number of prediction mistakes (in on-
line model) is O (k logn) for Winnow and (in worst
case) Ω (kn) for Perceptron

• So in worst case, need exponentially fewer updates
for learning with Winnow than Perceptron

Bound is only for disjunctions, but improvement for learn-
ing with irrelevant attributes is often true

When !w∗ not sparse, sometimes Perceptron better

Also, have proofs for agnostic error bounds for both algo-
rithms

9

Gradient Descent and Exponentiated Gradient

• Useful when linear separability impossible but still want
to minimize training error

• Consider simpler linear unit, where

o = w0 + w1x1 + · · · + wnxn

(i.e. no threshold)

• For moment, assume that we update weights after
seeing each example !xd

• For each example, want to compromise between
correctiveness and conservativeness

– Correctiveness: Tendency to improve on !xd (re-
duce error)

– Conservativeness: Tendency to keep
!wd+1 close to !wd (minimize distance)

• Use cost function that measures both:

U(!w) = dist
(
!wd+1, !wd

)
+ η error



td,
curr ex, new wts︷ ︸︸ ︷
!wd+1 · !xd





10

Gradient Descent and Exponentiated Gradient
(cont’d)

-1

0

1

2

-2
-1

0
1

2
3

0

5

10

15

20

25

w0 w1

E
[w
]

∂U

∂ !w
=

[
∂U

∂w0
,

∂U

∂w1
, · · · ,

∂U

∂wn

]

11

Gradient Descent

U(!w) =

conserv.︷ ︸︸ ︷
‖!wd+1 − !wd‖22 +

coef.︷︸︸︷
η

corrective︷ ︸︸ ︷
(td − !wd+1 · !xd)

2

=
n∑

i=1

(
wi,d+1 − wi,d

)2
+ η



td −
n∑

i=1
wi,d+1 xi,d




2

Take gradient w.r.t. !wd+1 and set to !0:

0 = 2
(
wi,d+1 − wi,d

)
− 2η



td −
n∑

i=1
wi,d+1 xi,d



 xi,d

Approximate with

0 = 2
(
wi,d+1 − wi,d

)
− 2η



td −
n∑

i=1
wi,d xi,d



 xi,d ,

which yields

wi,d+1 = wi,d +

∆wadd
i,d︷ ︸︸ ︷

η (td − od)xi,d

12

Exponentiated Gradient

Conserv. portion uses unnormalized relative entropy:

U(!w) =

conserv.︷ ︸︸ ︷
n∑

i=1

(
wi,d − wi,d+1 + wi,d+1 ln

wi,d+1

wi,d

)
+

coef.︷︸︸︷
η

corrective︷ ︸︸ ︷
(td − !wd+1 · !xd)

2

Take gradient w.r.t. !wd+1 and set to !0:

0 = ln
wi,d+1

wi,d
− 2η



td −
n∑

i=1
wi,d+1 xi,d



 xi,d

Approximate with

0 = ln
wi,d+1

wi,d
− 2η



td −
n∑

i=1
wi,d xi,d



 xi,d ,

which yields (for η = lnα/2)

wi,d+1 = wi,d exp
(
2η (td − od)xi,d

)
= wi,d

∆wmult
i,d︷ ︸︸ ︷

α(td−od)xi,d

13

Implementation Approaches

• Can use rules on previous slides on an example-by-
example basis, sometimes called incremental, stochastic,
or on-line GD/EG

– Has a tendency to “jump around” more in search-
ing, which helps avoid getting trapped in local min-
ima

• Alternatively, can use standard or batch GD/EG, in
which the classifier is evaluated over all training exam-
ples, summing the error, and then updates are made

– I.e. sum up ∆wi for all examples, but don’t update
wi until summation complete (p. 93, Table 4.1)

– This is an inherent averaging process and tends to
give better estimate of the gradient

14

Remarks

• Perceptron and Winnow update weights based on thresh-
olded output, while GD and EG use unthresholded
outputs

• P/W converge in finite number of steps to perfect hyp
if data linearly separable; GD/EG work on non-linearly
separable data, but only converge asymptotically (to
wts with minimum squared error)

• As with P vs. W, EG tends to work better than GD
when many attributes are irrelevant

– Allows the addition of attributes that are nonlinear
combinations of original ones, to work around lin-
ear sep. problem (perhaps get linear separability
in new, higher-dimensional space)

– E.g. if two attributes are x1 and x2, use as EG
inputs

!x =
[
x1, x2, x1x2, x2

1, x2
2

]

• Also, both have provable agnostic results

15

Handling Nonlinearly Separable Data
The XOR Problem

x

x

1

2

g (x)
1

g (x)
2

> 0

< 0

> 0
< 0

A: (0,0)

D: (1,1)

B: (0,1)

C: (1,0)

neg

pos

neg

• Can’t represent with a single linear separator, but can
with intersection of two:

g1(!x) = 1 · x1 + 1 · x2 − 1/2

g2(!x) = 1 · x1 + 1 · x2 − 3/2

pos =
{
!x ∈ *% : g1(!x) > 0 AND g2(!x) < 0

}

neg =
{
!x ∈ *% : g1(!x), g2(!x) < 0 OR g1(!x), g2(!x) > 0

}

16

The XOR Problem
(cont’d)

• Let yi =





0 if gi(!x) < 0

1 otherwise

Class (x1, x2) g1(!x) y1 g2(!x) y2
pos B: (0,1) 1/2 1 −1/2 0
pos C: (1,0) 1/2 1 −1/2 0
neg A: (0,0) −1/2 0 −3/2 0
neg D: (1,1) 3/2 1 1/2 1

• Now feed y1, y2 into:

g(!y) = 1 · y1 − 2 · y2 − 1/2

1

2

A: (0,0)

D: (1,1)

y

y

B, C: (1,0)

g(y)

> 0

< 0

pos
neg

17

The XOR Problem
(cont’d)

• In other words, we remapped all vectors !x to !y such
that the classes are linearly separable in the new vec-
tor space

!
i

!
i i

x

!
i

w = 1

w = 1

w = 1

w = 1

w = -1/2

w = -3/2

w

w xi

i
yw

w = 1

w = -2

w = -1/2

y
1

y2

x
1

2x

Hidden Layer

Input Layer

Output

Layer

31

32

41

30

40

53

54

50

3i

42 4i

5i

• This is a two-layer perceptron or two-layer
feedforward neural network

• Each neuron outputs 1 if its weighted sum exceeds its
threshold, 0 otherwise

18

Generally Handling Nonlinearly Separable Data

• By adding up to 2 hidden layers of perceptrons, can
represent any union of intersection of halfspaces

pos

pos
pos

neg

neg

neg

pos

• Problem: The above is still defined linearly

19

Sigmoid Unit
w1

w2

wn

w0

x1

x2

xn

x0 = 1

.

.

.

!
net = ! wi xii=0

n

1

1 + e
-net

o = "(net) =

σ(net) is the logistic function

1

1 + e−net

(a type of sigmoid function)

Squashes net into [0,1] range

Nice property:

dσ(x)

dx
= σ(x)(1− σ(x))

We can derive GD/EG rules to train

• One sigmoid unit

• Multilayer networks of sigmoid units ⇒
Backpropagation

20

GD/EG for Sigmoid Unit

• First note that conservativeness and correctiveness
are only additively related ⇒ derivatives always inde-
pendent

• Thus in general get

wi,d+1 = wi,d −
η

2

∂ correc

∂wi,d
for GD

wi,d+1 = wi,d exp

(

−η
∂ correc

∂wi,d

)

for EG

• So all we have to do is define an error function, take
its gradient, and substitute into the equations

21

GD/EG for Sigmoid Unit
(cont’d)

Return to book notation, where correctiveness is:

E(!wd) =
1

2
(td − od)

2

(folding 1/2 of correctiveness into error func)

Thus
∂E

∂wi,d
=

∂

∂wi,d

1

2
(td − od)

2

=
1

2
2 (td − od)

∂

∂wi,d
(td − od) = (td − od)

(

−
∂od

∂wi,d

)

Since od is a function of netd = !wd · !xd,

∂E

∂wi,d
= − (td − od)

∂od

∂netd

∂netd
∂wi,d

= − (td − od)
∂σ (netd)

∂netd

∂netd
∂wi,d

= − (td − od) od (1− od)xi,d

wi,d+1 = wi,d + η od (1− od) (td − od)xi,d for GD

wi,d+1 = wi,d exp
(
2η od (1− od) (td − od)xi,d

)
for EG

22

Multilayer Networks

x
0

x2

xn

!

=1

!
1

"

"

!

!

"

"

w

w

w

w

w

w

net n+1

net n+2

net n+3

net n+4

n+3,n+1
w

w

w

w

n+3,n+2

n+4,n+1

n+4,n+2

x
1 x n+3,n+1

o n+3

o n+4

n+1,1

n+1,n

n+2,1

n+2,n

n+2,0

n+1,0

x
ji = input from i to j

= wt from i to jw
ji

Hidden layer Output Layer

In
p

u
t

la
y

er

Use sigmoid units since continuous and differentiable

Error:

Ed = E(!wd) =
1

2

∑

k∈outputs

(
tk,d − ok,d

)2

23

Training
Output Units

• Adjust wt wji,d according to Ed as before

• For output units, this is easy since contribution of wji,d

to Ed when j is an output unit is the same as for single
neuron case∗, i.e.

∂Ed

∂wji,d
= −

(
tj,d − oj,d

)
oj,d

(
1− oj,d

)
xji,d = −δjxji,d

where δj = − ∂Ed
∂netj

= error term of unit j

∗This is because all other outputs are constants w.r.t. wji,d

24

Training
Hidden Units

• How can we compute the error term for hidden layers
when there is no target output !t for these layers?

• Instead propagate back error values from output layer
toward input layers, scaling with the weights

• Scaling with the weights characterizes how much of
the error term each hidden unit is “responsible for”

25

Training
Hidden Units (cont’d)

The impact that wji,d has on Ed is only through netj and
units immediately “downstream” of j:

∂Ed

∂wji,d
=

∂Ed

∂netj

∂netj
∂wji,d

= xji
∑

k∈down(j)

∂Ed

∂netk

∂netk
∂netj

= xji
∑

k∈down(j)

−δk
∂netk
∂netj

= xji
∑

k∈down(j)

−δk
∂netk
∂oj

∂oj

∂netj

= xji
∑

k∈down(j)

−δkwkj
∂oj

∂netj
= xji

∑

k∈down(j)

−δkwkjoj

(
1− oj

)

Works for arbitrary number of hidden layers

26

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until termination condition satisfied, Do

• For each training example, Do

1. Input the training example to the network and com-
pute the network outputs

2. For each output unit k

δk ← ok(1− ok)(tk − ok)

3. For each hidden unit h

δh ← oh(1− oh)
∑

k∈down(h)

wk,hδk

4. Update each network weight wj,i

wj,i ← wj,i + ∆wj,i

where

∆wj,i = η δjxj,i

27

The Backpropagation Algorithm
Example

c f
sumc

w
dc

yc
d

sum
d f

y
d

w
ca

w
cb

= 1 / (1 + exp(- x))f(x)

ytarget =

wc0
wd0

b

a

trial 2: a = 0, b = 1, y = 0

trial 1: a = 1, b = 0, y = 1

1 1

eta 0.3

trial 1 trial 2

w_ca 0.1 0.1008513 0.1008513

w_cb 0.1 0.1 0.0987985

w_c0 0.1 0.1008513 0.0996498

a 1 0

b 0 1

const 1 1

sum_c 0.2 0.2008513

y_c 0.5498340 0.5500447

w_dc 0.1 0.1189104 0.0964548

w_d0 0.1 0.1343929 0.0935679

sum_d 0.1549834 0.1997990

y_d 0.5386685 0.5497842

target 1 0

delta_d 0.1146431 -0.136083

delta_c 0.0028376 -0.004005

delta_d(t) = y_d(t) * (y(t) - y_d(t)) * (1 - y_d(t))

delta_c(t) = y_c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t)

w_dc(t+1) = w_dc(t) + eta * y_c(t) * delta_d(t)

w_ca(t+1) = w_ca(t) + eta * a * delta_c(t)

28

Remarks on Backprop

• When to stop training? When weights don’t change
much, error rate sufficiently low, etc. (be aware of over-
fitting: use validation set)

• Cannot ensure convergence to global minimum due to
myriad local minima, but tends to work well in practice
(can re-run with new random weights)

• Generally training very slow (thousands of iterations),
use is very fast

• Setting η: Small values slow convergence, large val-
ues might overshoot minimum, can adapt it over time

• Can add momentum term α < 1 that tends to keep
the updates moving in the same direction as previous
trials:

∆wji,d+1 = η δj,d+1 xji,d+1 + α∆wji,d

Can help move through small local minima to better
ones & move along flat surfaces

29

Overfitting

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

E
rr

o
r

Number of weight updates

Error versus weight updates (example 1)

Training set error

Validation set error

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000 4000 5000 6000

E
rr

o
r

Number of weight updates

Error versus weight updates (example 2)

Training set error

Validation set error

Danger of stopping too soon!

30

Remarks on Backprop
(cont’d)

• Alternative error function: cross entropy

Ed =
∑

k∈outputs

(
tk,d ln ok,d +

(
1− tk,d

)
ln

(
1− ok,d

))

“blows up” if tk,d ≈ 1 and ok,d ≈ 0 or vice-versa (vs.
squared error, which is always in [0,1])

• Can penalize large weights to make space more linear
and reduce risk of overfitting:

Ed =
1

2

∑

k∈outputs

(tkd − ook)
2 + γ

∑

i,j

w2
ji,d

• Representational power: Any boolean func. can be
represented with 2 layers, any bounded, continuous
func. can be rep. with arbitrarily small error with 2 lay-
ers, any func. can be rep. with arbitrarily small error
with 3 layers

– Number of required units may be large

– GD/EG may not be able to find the right weights

31

Hypothesis Space

1. Hyp. space is set of all weight vectors (continuous vs.
discrete of decision trees)

2. Search via GD/EG: Possible because error function
and output functions are continuous & differentiable

3. Inductive bias: (Roughly) smooth interpolation between
data points

32

Support Vector Machines
[See refs. on slides page]

• Introduced in 1992

• State-of-the-art technique for classification and regres-
sion

• Techniques can also be applied to e.g. clustering and
principal components analysis

• Similar to ANNs, polynomial classifiers, and RBF net-
works in that it remaps inputs and then finds a hyper-
plane

– Main difference is how it works

• Features of SVMs:

– Maximization of margin

– Duality

– Use of kernels

– Use of problem convexity to find classifier (often
without local minima)

33

Support Vector Machines
Margins

0

!

w =b

Support vectors (with
minimum margin) uniquely
define hyperplane (other
points not needed)

!

!

• A hyperplane’s margin γ is the shortest distance from
it to any training vector

• Intuition: larger margin ⇒ higher confidence in clas-
sifier’s ability to generalize
– Guaranteed generalization error bound in terms of

1/γ2 (under appropriate assumptions)

• Definition assumes linear separability (more general
definitions exist that do not)

34

Support Vector Machines
Perceptron Algorithm Revisited

• !w(0)← !0, b(0)← 0, k ← 0, yi ∈ {−1,+1}∀i

• While mistakes are made on training set

– For i = 1 to N (= # training vectors)

∗ If yi (!wk · !xi + bk) ≤ 0

· !wk+1 ← !wk + η yi !xi

· bk+1 ← bk + η yi

· k ← k + 1

• Final predictor: h(!x) = sgn (!wk · !x + bk)

35

Support Vector Machines
Duality

• Another way of representing predictor:

h(!x) = sgn (!w · !x + b) = sgn



η
N∑

i=1
(αi yi !xi) · !x + b





= sgn



η
N∑

i=1
αi yi (!xi · !x) + b





(αi = # mistakes on !xi)

• So perceptron alg has equivalent dual form:
– !α ← !0, b ← 0,

– While mistakes are made in For loop

∗ For i = 1 to N (= # training vectors)

· If yi

(
η

∑N
j=1 αj yj

(
!xj · !xi

)
+ b

)
≤ 0

αi ← αi + 1

b ← b + η yi

• Now data only in dot products

36

Kernels

• Duality lets us remap to many more features!

• Let !φ : *% → F be nonlinear map of f.v.s, so

h(!x) = sgn




N∑

i=1
αi yi

(
!φ (!xi) · !φ (!x)

)
+ b





• Can we compute
(
!φ (!xi) · !φ (!x)

)
without evaluating

!φ (!xi) and !φ (!x)? YES!

• !x = [x1, x2], !z = [z1, z2]:

(!x · !z)2 = (x1 z1 + x2 z2)
2

= x2
1 z2

1 + x2
2 z2

2 + 2x1 x2 z1 z2
=

[
x2
1, x2

2,
√

2x1 x2

]

︸ ︷︷ ︸
!φ(!x)

·
[
z2
1, z2

2,
√

2 z1 z2
]

• LHS requires 2 mults + 1 squaring to compute, RHS
takes 3 mults

• In general, (!x · !z)d takes % mults + 1 expon., vs.
(
%+d−1

d

)
≥

(
%+d−1

d

)d
mults if compute !φ first

37

Kernels
(cont’d)

• In general, a kernel is a function k such that ∀ !x, !z,
k(!x, !z) = !φ(!x) · !φ(!z)

• Typically start with kernel and take the feature map-
ping that it yields

• E.g. Let % = 1, !x = x, !z = z, k(x, z) = sin(x− z)

• By Fourier expansion,

sin(x− z) = a0 +
∞∑

n=1
an sin(n x) sin(n z)

+
∞∑

n=1
an cos(n x) cos(n z)

for Fourier coeficients a0, a1, . . .

• This is the dot product of two infinite sequences of
nonlinear functions:

{φi(x)}∞i=0 = [1, sin(x), cos(x), sin(2x), cos(2x), . . .]

• I.e. there are an infinite number of features in
this remapped space!

38

Kernels
(cont’d)

• Commonly-used kernels:

– Polynomial:

Kpoly(x, x′) = (x · x′+ c)d

– Gaussian Radial Basis Function (RBF):

KRBF (x, x′) = exp

(

−
‖x− x′‖2

2σ2

)

– Hyperbolic tangent (sigmoid):

Ksig(x, x′) = tanh(κ(x · x′) + θ)

• Also have ones for structured data: e.g. graphs, trees,
sequences, and sets of points

39

Support Vector Machines
Finding a Hyperplane

• Can show [Cristianini & Shawe-Taylor] that if data lin-
early separable in remapped space, then get maxi-
mum margin classifier by minimizing !w · !w subject to
yi (!w · !xi + b) ≥ 1

• Can reformulate this in dual form as a convex quadratic
program that can be solved optimally, i.e. won’t encounter
local optima:

maximize
α

m∑

i=1
αi −

1

2

∑

i,j

αi αj yi yj k(!xi, !xj)

s.t. αi ≥ 0, i = 1, . . . , m
m∑

i=1
αi yi = 0

• After optimization, we can label new vectors with the
decision function:

f(!x) = sgn




m∑

i=1
αi yi k(!x, !xi) + b





• Can always find a kernel that will make training set lin-
early separable, but beware of choosing a kernel that
is too powerful (overfitting)

40

Support Vector Machines
Finding a Hyperplane (cont’d)

• If kernel doesn’t separate, can soften the margin with
slack variables ξi:
minimize

!w,b,ξ
‖!w‖2 + C

m∑

i=1
ξi

s.t. yi((!xi · !w) + b) ≥ 1− ξi, i = 1, . . . , m
ξi ≥ 0, i = 1, . . . , m

• The dual is similar to that for hard margin:

maximize
α

m∑

i=1
αi −

∑

i,j

αi αj yi yj k(xi, xj)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , m
m∑

i=1
αi yi = 0

• Can still solve optimally

• If number of training vectors is very large, may opt to
approximately solve these problems to save time and
space

• Use e.g. gradient ascent and sequential minimal opti-
mization (SMO) [Cristianini & Shawe-Taylor]

• When done, can throw out non-SVs

41

