CSCE 478/878 Lecture 10: Reinforcement
Learning

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)

December 1, 2004

Outline

Control learning

Control policies that choose optimal actions

@ learning

Convergence

Temporal difference learning

Control Learning

Consider learning to choose actions, e.g.

e Robot learning to dock on battery charger
e Learning to choose actions to optimize factory output

e Learning to play Backgammon

Note several problem characteristics:

e Delayed reward (thus have problem of temporal
credit assignment)

e Opportunity for active exploration (versus exploitation
of known good actions)

e Possibility that state only partially observable

Example: TD-Gammon
[Tesauro, 1995]

Learn to play Backgammon

Immediate Reward:

e +100 if win
e —100 Iif lose
e O for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

Reinforcement Learning Problem

Agent

State Reward Action

Environment

Godl: Learn to choose actions that maximize

ro+ yr1+y2r2+ .. ,Where 0<y<1

Markov Decision Processes

Assume

e Finite set of states S
e Set of actions A

e At each discrete time agent observes state s; € S
and chooses action a; € A

e Thenreceives immediate reward r;, and state changes
to St—I—].
e Markov assumption: s,y = d(s¢, a¢) and

re = r(st, at)

— lL.e. r; and s;4 1 depend only on current state and
action

— Functions 6 and » may be nondeterministic

— Functions ¢ and r not necessarily known to agent

Agent’s Learning Task

Execute actions in environment, observe results, and

e learn action policy 7 : S — A that maximizes

Elre+yri41 + ’}/27"t_|_2 + ...

from any starting state in S

e Here O < v < 1 is the discount factor for future re-
wards

Note something new:

e Target functionisw: S — A
e But we have no training examples of form (s, a)
e Training examples are of form ((s, a), r)

e |.e. nottold what best action is (e.g. checkers in Chapt. 1),
Instead told reward for executing action a In state s

Value Function
First consider deterministic worlds

For each possible policy « the agent might adopt, we can
define an evaluation function over states

VT(s) =r+arg1+y e+
©.@)
= D VTt
i=0
where r¢,7m,41,... are generated by following policy ,

starting at state s

Restated, the task is to learn the optimal policy 7*

7 = argmax V7(s), (Vs)
T

Value Function
(cont'd)

0
9&.» 10_-» — —1
- GQ 90 g — 100 0 (é)
A | A |31 A A | A | A
si| Y ol ¥ |00l [y Ly !
8l g 20 —t —
< < 81 o 90 g 100
Q (s, a) values V*(s) values
—1 —1 G
A
I
— —

One optimal policy

What to Learn

We might try to have agent learn the evaluation function
V7™ (which we write as V*), i.e. what checkers player tried

It could then do a lookahead search to choose best action
from any state s because

m(s) = argmax [r(s,a) +yV7(8(s,a))]

l.e. choose action that maximized immediate reward -+
discounted reward if optimal strategy followed from then
on

E.g. V*(bot. ctr.) = 04~1004~204+~304--- = 90

A problem:

e This works well if agent knows § : S x A — S, and
r.SxA—-=R

e But when it doesn't, it can’t choose actions this way

10

(2 Function

Define new function very similar to V'*:

Q(s,a) =7r(s,a) +yV*(5(s,a))

l.e. Q(s,a) = total discounted reward if action a taken in
state s and optimal choices made from then on

If agent learns @, it can choose optimal action even with-
out knowing ¢!

7 (s) = arganax [r(s,a) +~vV*(6(s,a))]

argmax Q(s, a)
a

(Is the evaluation function the agent will learn

11

Training Rule to Learn @

Note ¢ and V* closely related:

V*(s) = max Q(s,d)

Which allows us to write (Q recursively as

Q(st, at) r(st,at) + YV (6(st,at)))
r(s¢, at) + max Q(st41,a")

Nice! Let Q) denote learner’s current approximation to Q.
Consider training rule

Q(s,a) — 1+ ymax Q(s,d')

a

where s’ is the state resulting from applying action a in
state s

12

(Q Learning for Deterministic Worlds
For each s, a initialize table entry Q(s,a) «— 0
Observe current state s

Do forever:

e Select an action a (greedily or probabilistically) and
execute it

e Receive immediate reward r
e Observe the new state s’

e Update the table entry for Q(s, a) as follows:

Q(s,a) — r+ymax Q(s',a’)

Note that actions not taken and states not seen don'’t get
explicit updates (might need to generalize)

13

Updating Q

72 100 90 100

R & T < R T

66 66

81 81
Y - v
a

right

Initial state: S] Next state: S2

Q(Slaaright) A ’I“—I—’)/mé?x Q(327a/)
a

0 + 0.9 max{66,81, 100}
90

Notice if rewards non-negative and Q’s initially 0, then

(\V/S,CL,’I’L) Qn—|—1(87 CL) > Q?’L(S7a’>

and

(Vs,a,m) 0 < Qn(s,a) <Q(s,a)

(can show via induction on n, using slides 11 and 12)

14

Updating Q
Convergence

() converges to). Consider case of deterministic world
where each (s, a) is visited infinitely often.

Proof: Define a full interval to be an interval during which
each (s, a) is visited. Will show that during each full in-
terval the largest error in Q) table is reduced by factor of

~

Let Q., be table after n updates, and A,, be the maximum
error in Qn; i.e.

An — ITS]aX |Qn(37 CL) T Q(Sa CL)|

,a

Let " = §(s,a)

15

Updating Q
Convergence (cont’d)

For any table entry Q. (s, a) updated on iteration n + 1,
error in the revised estimate Q,,+1(s,a) is

Quri(s,0) = Q(s, @) = |(r+7ymaxQu(s,a))

—(r +ymaxQ(s’,)|
Y mMaxQn(s',a’) — maxQ(s',d)|
ymax |Qu(s, a') — Q(s',a")
ymax |Qn(s", a') — Q(s",d)
’VAT;

()
(%)

IA A

(%) works since | max, f1(a) —max, f2(a)| < max, |fi(a) — f2(a)|

(*x*) works since max will not decrease

Also, Qq(s,a) bounded and Q(s,a) bounded Vs,a =
A bounded

Thus after k full intervals, error < v¥Aq

Finally, each (s, a) visited infinitely often = number of in-
tervals infinite, so A,, — 0 asn — oo

16

Nondeterministic Case
What if reward and next state are non-deterministic?

We redefine V, Q) by taking expected values:

VT(s) =E ["“t + Vg1 + Vg + -]

o0 .
=E {Z VTt

1=0

Il
m

r(s,a) +vV*(6(s,a))]
r(s,a)] +~E [V*(4(s,a))]
r(s,a)] —I—’yz P(s" | s,a) V*(s')

= E[r(s,a)] —I—’yz P(s' | s,a) max Q(s',a")

Q(s,a)

|
m M

17

Nondeterministic Case
(cont'd)

(@ learning generalizes to nondeterministic worlds

Alter training rule to

@n(s,a) — (1=an)Qn-1(s, a)Fan[r+ymax Qn-1(s',a")]

where
1

1 + visitsp(s, a)

877}

Can still prove convergence of Q) to 0, with this and other
forms of o, [Watkins and Dayan, 1992]

18

Temporal Difference Learning
(@ learning: reduce error between successive () ests.

() estimate using one-step time difference:

Q(l)(St, at) = ¢+ max Q(St—l—la a)
Why not two steps?

QP (st,ar) = e 4+ 41 + 77 Max Q(si42,a)
Or n?
QM (s,) = A yrepr+- A+ e, 14" max Q(si4n, a)

Blend all of these (0 < A < 1):

QA(Sta a) = (1—=X) [Q(l)(st, at) + AQ(Q)(St, at) + AQQ(3)(st, at) + - - }

= 4+~ [(1 —A) max Q(st+1,a) + X Q* (5141, at+1)}

TD(\) algorithm uses above training rule

e Sometimes converges faster than () learning

e converges for learning V* forany 0 < A < 1 (Dayan,
1992)

e Tesauro’s TD-Gammon uses this algorithm

19

Subtleties and Ongoing Research

e Replace @ table with neural net (GD, EG) or other
generalizer (example is (s, a), label is Q(s,a)); con-
vergence proofs break

e Handle case where state only partially observable
e Design optimal exploration strategies

e Extend to continuous action, state

e Learnandused: Sx A — S

e Relationship to dynamic programming (can solve op-
timally offline if (s, a) & r(s, a) known)

e Reinf. learning in autonomous multi-agent environments
(competitive and cooperative)

— Now must attribute credit/blame over agents as
well as actions

— Utilizes game-theoretic techniques, based on agents’
protocols for interacting with environment and each
other

e More info: survey papers & new textbook

20

