CSCE 478/878 Lecture 10: Reinforcement Learning

Stephen D. Scott (Adapted from Tom Mitchell's slides)

December 1, 2004

Outline

- Control learning
- Control policies that choose optimal actions
- Q learning
- Convergence
- Temporal difference learning

Control Learning

Consider learning to choose actions, e.g.

- Robot learning to dock on battery charger
- Learning to choose actions to optimize factory output
- Learning to play Backgammon

Note several problem characteristics:

- Delayed reward (thus have problem of <u>temporal</u> credit assignment)
- Opportunity for active exploration (versus exploitation of known good actions)
- Possibility that state only partially observable

Example: TD-Gammon

[Tesauro, 1995]

Learn to play Backgammon

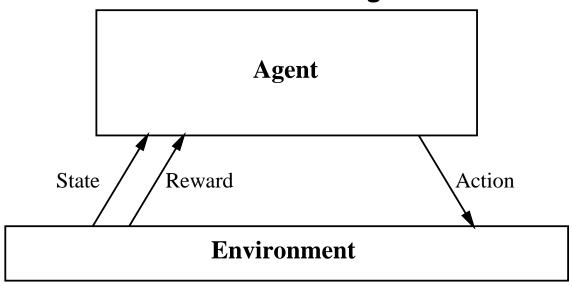
Immediate Reward:

- +100 if win
- \bullet -100 if lose
- 0 for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

Reinforcement Learning Problem



$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

Goal: Learn to choose actions that maximize

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma < 1$

Markov Decision Processes

Assume

- Finite set of states S
- Set of actions A
- ullet At each discrete time agent observes state $s_t \in S$ and chooses action $a_t \in A$
- ullet Then receives immediate reward r_t , and state changes to s_{t+1}
- Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - I.e. r_t and s_{t+1} depend only on <u>current</u> state and action
 - Functions δ and r may be nondeterministic
 - Functions δ and r not necessarily known to agent

Agent's Learning Task

Execute actions in environment, observe results, and

• learn action policy $\pi:S\to A$ that maximizes

$$\mathsf{E}\left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \ldots\right]$$

from any starting state in S

 \bullet Here 0 $\leq \gamma <$ 1 is the discount factor for future rewards

Note something new:

- Target function is $\pi:S\to A$
- ullet But we have no training examples of form $\langle s,a \rangle$
- Training examples are of form $\langle \langle s, a \rangle, r \rangle$
- I.e. not told what best action is (e.g. checkers in Chapt. 1),
 instead told reward for executing action a in state s

Value Function

First consider deterministic worlds

For each possible policy π the agent might adopt, we can define an evaluation function over states

$$V^{\pi}(s) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$
$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

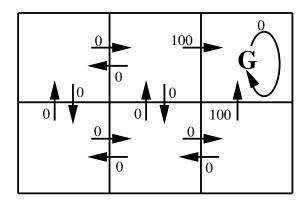
where r_t, r_{t+1}, \ldots are generated by following policy π , starting at state s

Restated, the task is to learn the optimal policy π^*

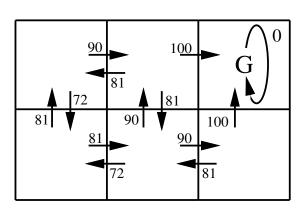
$$\pi^* \equiv \underset{\pi}{\operatorname{argmax}} V^{\pi}(s), \quad (\forall s)$$

Value Function

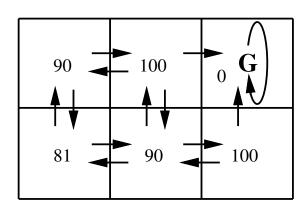
(cont'd)



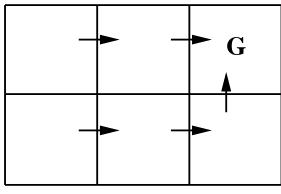
r(s,a) (immediate reward) values



Q(s,a) values



 $V^*(s)$ values



One optimal policy

What to Learn

We might try to have agent learn the evaluation function V^{π^*} (which we write as V^*), i.e. what checkers player tried

It could then do a lookahead search to choose best action from any state s because

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} [r(s, a) + \gamma V^*(\delta(s, a))]$$

i.e. choose action that maximized immediate reward + discounted reward if optimal strategy followed from then on

E.g.
$$V^*(bot. ctr.) = 0 + \gamma 100 + \gamma^2 0 + \gamma^3 0 + \dots = 90$$

A problem:

- This works well if agent knows $\delta: S \times A \to S$, and $r: S \times A \to \Re$
- But when it doesn't, it can't choose actions this way

Q Function

Define new function very similar to V^* :

$$Q(s,a) \equiv r(s,a) + \gamma V^*(\delta(s,a))$$

i.e. Q(s, a) = total discounted reward if action a taken in state s and optimal choices made from then on

If agent learns Q, it can choose optimal action even without knowing δ !

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} [r(s, a) + \gamma V^*(\delta(s, a))]$$

= $\underset{a}{\operatorname{argmax}} Q(s, a)$

Q is the evaluation function the agent will learn

Training Rule to Learn Q

Note Q and V^* closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t)))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

Nice! Let \widehat{Q} denote learner's current approximation to Q. Consider training rule

$$\widehat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \widehat{Q}(s',a')$$

where s' is the state resulting from applying action a in state s

${\cal Q}$ Learning for Deterministic Worlds

For each s, a initialize table entry $\widehat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

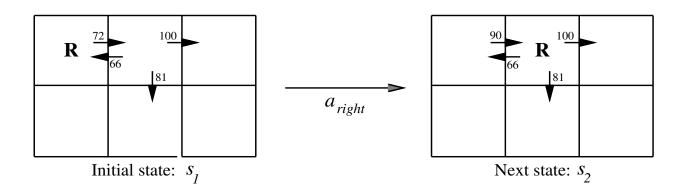
- ullet Select an action a (greedily or probabilistically) and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ as follows:

$$\widehat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \widehat{Q}(s',a')$$

 \bullet $s \leftarrow s'$

Note that actions not taken and states not seen don't get explicit updates (might need to generalize)

Updating \widehat{Q}



$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$

$$= 0 + 0.9 \max\{66, 81, 100\}$$

$$= 90$$

Notice if rewards non-negative and \hat{Q} 's initially 0, then

$$(\forall s, a, n) \ \widehat{Q}_{n+1}(s, a) \ge \widehat{Q}_n(s, a)$$

and

$$(\forall s, a, n) \ 0 \le \widehat{Q}_n(s, a) \le Q(s, a)$$

(can show via induction on n, using slides 11 and 12)

Updating \hat{Q} Convergence

 \widehat{Q} converges to Q. Consider case of deterministic world where each $\langle s,a \rangle$ is visited infinitely often.

<u>Proof</u>: Define a <u>full interval</u> to be an interval during which each $\langle s,a\rangle$ is visited. Will show that during each full interval the largest error in \widehat{Q} table is reduced by factor of γ

Let \widehat{Q}_n be table after n updates, and Δ_n be the maximum error in \widehat{Q}_n ; i.e.

$$\Delta_n = \max_{s,a} |\widehat{Q}_n(s,a) - Q(s,a)|$$

Let
$$s' = \delta(s, a)$$

Updating \widehat{Q}

Convergence (cont'd)

For any table entry $\hat{Q}_n(s,a)$ updated on iteration n+1, error in the revised estimate $\hat{Q}_{n+1}(s,a)$ is

$$|\hat{Q}_{n+1}(s,a) - Q(s,a)| = |(r + \gamma \max_{a'} \hat{Q}_{n}(s',a'))| - (r + \gamma \max_{a'} Q(s',a'))|$$

$$= \gamma |\max_{a'} \hat{Q}_{n}(s',a') - \max_{a'} Q(s',a')|$$

$$\leq \gamma \max_{a'} |\hat{Q}_{n}(s',a') - Q(s',a')|$$

$$\leq \gamma \max_{a'} |\hat{Q}_{n}(s'',a') - Q(s'',a')|$$

$$\leq \gamma \max_{s'',a'} |\hat{Q}_{n}(s'',a') - Q(s'',a')|$$

$$= \gamma \Delta_{n}$$

(*) works since $|\max_a f_1(a) - \max_a f_2(a)| \le \max_a |f_1(a) - f_2(a)|$ (**) works since max will not decrease

Also, $\widehat{Q}_0(s,a)$ bounded and Q(s,a) bounded $\forall s,a\Rightarrow \Delta_0$ bounded

Thus after k full intervals, error $\leq \gamma^k \Delta_0$

Finally, each $\langle s,a\rangle$ visited infinitely often \Rightarrow number of intervals infinite, so $\Delta_n \to 0$ as $n \to \infty$

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values:

$$V^{\pi}(s) \equiv \mathbb{E}\left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots\right]$$
$$= \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^i r_{t+i}\right]$$

$$Q(s,a) \equiv E[r(s,a) + \gamma V^*(\delta(s,a))]$$

$$= E[r(s,a)] + \gamma E[V^*(\delta(s,a))]$$

$$= E[r(s,a)] + \gamma \sum_{s'} P(s' \mid s,a) V^*(s')$$

$$= E[r(s,a)] + \gamma \sum_{s'} P(s' \mid s,a) \max_{a'} Q(s',a')$$

Nondeterministic Case

(cont'd)

Q learning generalizes to nondeterministic worlds

Alter training rule to

$$\widehat{Q}_n(s,a) \leftarrow (1-\alpha_n)\widehat{Q}_{n-1}(s,a) + \alpha_n[r + \gamma \max_{a'} \widehat{Q}_{n-1}(s',a')]$$

where

$$\alpha_n = \frac{1}{1 + visits_n(s, a)}$$

Can still prove convergence of \hat{Q} to Q, with this and other forms of α_n [Watkins and Dayan, 1992]

Temporal Difference Learning

Q learning: reduce error between successive Q ests.

Q estimate using one-step time difference:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a} \widehat{Q}(s_{t+1}, a)$$

Why not two steps?

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a} \hat{Q}(s_{t+2}, a)$$

<u>Or *n*</u>?

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \dots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_{a} \widehat{Q}(s_{t+n}, a)$$

Blend all of these $(0 \le \lambda \le 1)$:

$$Q^{\lambda}(s_{t}, a_{t}) \equiv (1 - \lambda) \left[Q^{(1)}(s_{t}, a_{t}) + \lambda Q^{(2)}(s_{t}, a_{t}) + \lambda^{2} Q^{(3)}(s_{t}, a_{t}) + \cdots \right]$$
$$= r_{t} + \gamma \left[(1 - \lambda) \max_{a} \widehat{Q}(s_{t+1}, a) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1}) \right]$$

 $\mathsf{TD}(\lambda)$ algorithm uses above training rule

- Sometimes converges faster than Q learning
- converges for learning V^* for any $0 \le \lambda \le 1$ (Dayan, 1992)
- Tesauro's TD-Gammon uses this algorithm

Subtleties and Ongoing Research

- Replace \widehat{Q} table with neural net (GD, EG) or other generalizer (example is $\langle s,a\rangle$, label is $\widehat{Q}(s,a)$); convergence proofs break
- Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- Learn and use $\hat{\delta}: S \times A \to S$
- Relationship to dynamic programming (can solve optimally offline if $\delta(s, a)$ & r(s, a) known)
- Reinf. learning in autonomous multi-agent environments (competitive and cooperative)
 - Now must attribute credit/blame over agents as well as actions
 - Utilizes game-theoretic techniques, based on agents' protocols for interacting with environment and each other
- More info: survey papers & new textbook