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Introduction

e Combines machine learning with:
— Algorithm design and analysis

— Computational complexity

e Examines the worst-case minimum and maximum data
and time requirements for learning

— Number of examples needed, number of mistakes
made before convergence

e Tries to relate:
— Probability of successful learning
— Number of training examples
— Complexity of hypothesis space
— Accuracy to which target concept is approximated

— Manner in which training examples presented

e Some average case analyses done as well



Qutline

Probably approximately correct (PAC) learning

Sample complexity

Agnostic learning

Vapnik-Chervonenkis (VC) dimension

Mistake bound model

Note: as with previous lecture, we assume no noise,
though most of the results can be made to hold in a
noisy setting



PAC Learning: The Problem Setting

Given;

e Set of instances X

e set of hypotheses H

e set of possible target concepts C (typically, C' C H)

e training instances independently generated by a fixed,
unknown, arbitrary probability distribution D over X

Learner observes a sequence D of training examples of
form (x, c(x)), for some target concept c € C

e Instances x are drawn from distribution D

e teacher provides target value c¢(x) for each



PAC Learning: The Problem Setting
(cont’d)

Learner must output a hypothesis h € H approximating
ceC

e h Is evaluated by its performance on subsequent in-
stances drawn according to D

Note: probabilistic instances, noise-free classifications



True Error of a Hypothesis

Instance space X

Where ¢
and h disagree

cA\h = symmetric difference between c and h

Definition: The true error (denoted errorp(h))
of hypothesis h with respect to target concept c
and distribution D is the probability that A will mis-
classify an instance drawn at random according
to D.

errorp(h) = Pr [e(z) # h(x)]
x€D

(example x € X drawn randomly according to D)



Two Notions of Error

Training error of hypothesis A with respect to target con-
cept c

e How often h(x) #= c(x) over training instances

True error of hypothesis h with respect to c

e How often h(x) #= c(x) over future random instances

Our concern:

e Can we bound the true error of h given the training
error of h?

e First consider when training error of h is zero (i.e.,
h € VSH,D)



PAC Learning

Consider a class C of possible target concepts defined
over a set of instances X of size n, and a learner L using
hypothesis space H.

Definition: C' is PAC-learnable by L using H if for
all c € C, distributions D over X, e such that 0 <
e < 1/2,and § suchthat 0 < § < 1/2, learner
L will, with probability at least (1 — §), output a
hypothesis h € H such that errorp(h) < ¢, in
time that is polynomial in 1 /¢, 1/, n and size(c).




Exhausting the Version Space

Hypothesis space H

(r = training error, error = true error)

Definition: The version space V .Sy p Is said to
be e-exhausted with respect to c and D, if every
hypothesis h € V.S p has error less than e with
respectto c and D.

(Vh € VSy p) errorp(h) < e



How many examples m will e-exhaust the VS?

Let h1,...,h € H be all hyps. with true error > ¢
w.r.t. cand D (i.e. the e-bad hyps.)

VS is not e-exhausted iff at least one of these hyps. is
consistent with all m examples

Prob. that an e-bad hyp consistent with one random
example is < (1 — ¢)

Since random draws are independent, the prob. that
a particular e-bad hyp is consistent with m exs. is <
(1-e™

So the prob. any e-bad hyp is in VS is

<k(l-e)" <[H[(1—-¢)™

Given (1 —e¢) < 1/effore € [0, 1]:
[H[(1 —e)™ < [H[e™™"
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How many examples m will e-exhaust the VS?
(cont’d)

Theorem: [Haussler, 1988]

If the hypothesis space H is finite, and D is a se-
guence of m > 1 independent random examples
of some target concept ¢, thenforany 0 < e < 1,
the probabllity that the version space with respect
to H and D is not e-exhausted (with respect to c¢)
IS

S ‘H‘e—me

This bounds the probability that any consistent learner will
output a hypothesis h with error(h) > €

If we want this probability to be < § (for PAC):
|H|e " <6
then

m > ~(In |H| + 1n(1/5))

suffices
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Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with proba-
bility at least (1 — §) that

every h in V. Sy p satisfies errorp(h) < e

Use the theorem:
1
m > =(In|H| + In(1/6))
€

Suppose H contains conjunctions of constraints on up to
n boolean attributes (i.e., n boolean literals). Then |H| =
3" (why?), and

m > ~(In3" +1n(1/6)),
or
1
m > —(nIn3 +In(1/5))

Still need to find a hyp. from VS!
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How About EnjoySport?

m > ~(In |H| +1n(1/5))

If H is as given in EnjoySport, then |H| = 973 and

m > =(In 973 + In(1/5))

... If want to assure that with probability 95%, V'S contains
only hypotheses with errorp(h) < .1, then it is sufficient
to have m examples, where

m > %(In 973 + In(1/.05))
m > 10(In 973 + In 20)
m > 10(6.88 + 3.00)

m > 98.8

Again, how to find a consistent hypothesis?

13



Unbiased Learners

Recall the unbiased concept class C = 2%, i.e. set
of all subsets of X

If each instance x € X is described by n boolean
features, | X| = 27, so |C| = 22"

Also, to ensure ¢ € H, need H = C, so the theorem
gives

m > %(zn N2+ In(1/8)),

l.e. exponentially large sample complexity

Note the above is only sufficient, the theorem does
not give necessary sample complexity

(Necessary sample complexity is still exponential)

Further evidence for the need of bias (as if we need
more)
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Agnostic Learning

So far, assumed c € H

Agnostic learning setting: don’'t assume ¢ € H

e \What do we want then?

— The hypothesis h that makes fewest errors on train-
Ing data (i.e. the one that minimizes
disagreements, which can be harder than finding
consistent hyp)

e What is sample complexity in this case?

m > 2—t2(ln|H| + In(1/4)),

derived from Hoeffding bounds, bounding prob. of large
deviation from expected value:

Prlerrorp(h) > errorp(h) + €] < g—2me?
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Vapnik-Chervonenkis Dimension
Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition of
S into two disjoint subsets, i.e. into a set of + exs.
and a set of — exs.

Definition: a set of instances S is shattered by
hypothesis space H if and only if for every di-
chotomy of S there exists some hypothesis in H
consistent with this dichotomy.
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Example: Three Instances Shattered

Instance space X

N0

/
;




The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension,
VC(H), of hypothesis space H defined over in-
stance space X, is the size of the largest finite
subset of X shattered by H. If arbitrarily large fi-
nite sets of X can be shattered by H,then VC(H) =

Q.

e So to show that VC(H) = d, must show there exists
some subset X’ C X of size d that H can shatter and
show that there exists no subset of X of size > d that
H can shatter

e Note that VC(H) < logs |H| (why?)
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Example: Intervals on R

e Let H be the set of closed intervals on the real line
(each hyp is a single interval), X = R, and a point
x € X is positive iff it lies in the target interval ¢

S pos/posx
n/n |_ ro n/p Can shatter 2 pts, so
- E]L ] E‘]J> VCD >= 2
pos/n>eg
pos posS Can't shatter any 3 pts, so
- r?eg &—> vCD<3

e Thus VC(H) = 2 (also note that |H| is infinite)
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VCD of Linear Decision Surfaces (Halfspaces)
[

@ ©

Can’t shatter (b), so what is lower bound on VCD?

What about upper bound?
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Sample Complexity from VC Dimension

e How many randomly drawn examples suffice to e-exhaust
V' Sy p with probability at least (1 — §)?

m > ~(41095(2/6) + 8V C(H) 1092 (13/6))

(compare to finite H case)

e In the worst case, how many are required?
ve( o) -1
32¢ 7

l.e. 3D such that if learner sees fewer than this many
examples, with prob. > ¢, its hyp will have error > ¢

max{%log(l/d),

e Can also get results in the agnostic model and with
noisy data (using e.g. statistical queries)
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Mistake Bound (On-Line) Learning

e So far only considered how many examples required
to learn with high probability

e On-line model: how many mistakes will learner make
before convergence (i.e. exactly learning ¢)?

e Setting:
— Learning proceeds in trials

— At each trial ¢, learner gets example z; € X and
must predict x4+'s label

— Then teacher informs learner of true value of c(x;)

and learner updates hypothesis if necessary

e Goal: Minimize total number of prediction
mistakes (requires exact learning of c)
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On-Line vs. PAC Model

e On-line is adversarial (worst-case) model vs. proba-
bilistic of PAC, so assume that adversary presents ex-
amples in a way to make learner perform as poorly as
possible

e On-line learner that makes < M mistakes can PAC
learn with sample complexity

@ <l <M + log %)) If M known

€

@) (% (M + log %)) If M unknown

€

e But there exist finite concept classes C' that can be
efficiently PAC learned but not efficiently learned in
on-line model

e So on-line model is harder to learn in!
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Mistake Bounds: Find-S

Find-S when H = conjuntion of boolean literals:

e Initialize h to the most specific hypothesis
b1 N—UL NNl N--- Nbp N\ —lp

e For each positive training instance x, remove from h
any literal that is not satisfied by =

e Output hypothesis h

How many mistakes before converging to ¢? If ¢ € H,
Find-S will only misclassify pos. exs., and each mistake
results in eliminating literals

e Total number of literals:

e Number of literals eliminated after 1st mistake:

e Number of literals eliminated after each subsequent
mistake:

e Total number of mistakes < mist. bnd M =
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Mistake Bounds: Halving Algorithm

The Halving Algorithm:

e Learn concept using version space Candidate-Elimination
algorithm (eliminate from VS all inconsistent hyps)

e Classify new instances by majority vote of version space
members (classify as + if majority vote 4, else clas-

sify —)

How many mistakes before convergingto c € H?

e In worst case:

e In best case:
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Optimal Mistake Bounds

Let M 4(C') be the max number of mistakes made by algo-
rithm A to learn concepts in C' (maximum over all possible
c € C, and all possible training sequences)

MA(C) = Max MA(C)
ceC

Definition: Let C' be an arbitrary non-empty concept class.
The optimal mistake bound for C, denoted Opt(C), is the
minimum over all possible learning algorithms A of M 4(C)

Opt(C) = min My(C)

A € all learning algorithms

l.e. Opt(C) is the number of mistakes made by the best
learning algorithm for the hardest target concept in C, us-
ing the hardest sequence of training examples

Can show:

VC(C) < Opt(C) < MHalving(C) < |092(|C|)
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Topic summary due in 1 week!
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