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Introduction

• Combines machine learning with:

– Algorithm design and analysis

– Computational complexity

• Examines the worst-case minimum and maximum data
and time requirements for learning

– Number of examples needed, number of mistakes
made before convergence

• Tries to relate:

– Probability of successful learning

– Number of training examples

– Complexity of hypothesis space

– Accuracy to which target concept is approximated

– Manner in which training examples presented

• Some average case analyses done as well
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Outline

• Probably approximately correct (PAC) learning

• Sample complexity

• Agnostic learning

• Vapnik-Chervonenkis (VC) dimension

• Mistake bound model

• Note: as with previous lecture, we assume no noise,
though most of the results can be made to hold in a
noisy setting
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PAC Learning: The Problem Setting

Given:

• set of instances X

• set of hypotheses H

• set of possible target concepts C (typically, C ⊆ H)

• training instances independently generated by a fixed,
unknown, arbitrary probability distribution D over X

Learner observes a sequence D of training examples of
form 〈x, c(x)〉, for some target concept c ∈ C

• instances x are drawn from distribution D

• teacher provides target value c(x) for each
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PAC Learning: The Problem Setting
(cont’d)

Learner must output a hypothesis h ∈ H approximating
c ∈ C

• h is evaluated by its performance on subsequent in-
stances drawn according to D

Note: probabilistic instances, noise-free classifications
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True Error of a Hypothesis
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Where c
and h disagree

c4h = symmetric difference between c and h

Definition: The true error (denoted errorD(h))
of hypothesis h with respect to target concept c

and distributionD is the probability that h will mis-
classify an instance drawn at random according
to D.

errorD(h) ≡ Pr
x∈D

[c(x) 6= h(x)]

(example x ∈ X drawn randomly according to D)
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Two Notions of Error

Training error of hypothesis h with respect to target con-
cept c

• How often h(x) 6= c(x) over training instances

True error of hypothesis h with respect to c

• How often h(x) 6= c(x) over future random instances

Our concern:

• Can we bound the true error of h given the training
error of h?

• First consider when training error of h is zero (i.e.,
h ∈ V SH,D)
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PAC Learning

Consider a class C of possible target concepts defined
over a set of instances X of size n, and a learner L using
hypothesis space H.

Definition: C is PAC-learnable by L using H if for
all c ∈ C, distributions D over X, ε such that 0 <

ε < 1/2, and δ such that 0 < δ < 1/2, learner
L will, with probability at least (1 − δ), output a
hypothesis h ∈ H such that errorD(h) ≤ ε, in
time that is polynomial in 1/ε, 1/δ, n and size(c).
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Exhausting the Version Space

VS
H,D

error =.1
=.2r

error =.2
=0r

error =.1
=0r

error =.3
=.1r

error =.2
=.3r

error =.3
r =.4

Hypothesis space H

(r = training error, error = true error)

Definition: The version space V SH,D is said to
be ε-exhausted with respect to c and D, if every
hypothesis h ∈ V SH,D has error less than ε with
respect to c and D.

(∀h ∈ V SH,D) errorD(h) < ε
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How many examples m will ε-exhaust the VS?

• Let h1, . . . , hk ∈ H be all hyps. with true error > ε

w.r.t. c and D (i.e. the ε-bad hyps.)

• VS is not ε-exhausted iff at least one of these hyps. is
consistent with all m examples

• Prob. that an ε-bad hyp consistent with one random
example is ≤ (1− ε)

• Since random draws are independent, the prob. that
a particular ε-bad hyp is consistent with m exs. is ≤
(1− ε)m

• So the prob. any ε-bad hyp is in VS is

≤ k(1− ε)m ≤ |H|(1− ε)m

• Given (1− ε) ≤ 1/eε for ε ∈ [0,1]:

|H|(1− ε)m ≤ |H|e−mε
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How many examples m will ε-exhaust the VS?
(cont’d)

Theorem: [Haussler, 1988]

If the hypothesis space H is finite, and D is a se-
quence of m ≥ 1 independent random examples
of some target concept c, then for any 0 ≤ ε ≤ 1,
the probability that the version space with respect
to H and D is not ε-exhausted (with respect to c)
is

≤ |H|e−mε

This bounds the probability that any consistent learner will
output a hypothesis h with error(h) ≥ ε

If we want this probability to be ≤ δ (for PAC):

|H|e−mε ≤ δ

then

m ≥
1

ε
(ln |H|+ ln(1/δ))

suffices
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Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with proba-
bility at least (1− δ) that

every h in V SH,D satisfies errorD(h) ≤ ε

Use the theorem:

m ≥
1

ε
(ln |H|+ ln(1/δ))

Suppose H contains conjunctions of constraints on up to
n boolean attributes (i.e., n boolean literals). Then |H| =

3n (why?), and

m ≥
1

ε
(ln 3n + ln(1/δ)),

or

m ≥
1

ε
(n ln 3 + ln(1/δ))

Still need to find a hyp. from VS!
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How About EnjoySport?

m ≥
1

ε
(ln |H|+ ln(1/δ))

If H is as given in EnjoySport, then |H| = 973 and

m ≥
1

ε
(ln 973 + ln(1/δ))

... if want to assure that with probability 95%, V S contains
only hypotheses with errorD(h) ≤ .1, then it is sufficient
to have m examples, where

m ≥
1

.1
(ln 973 + ln(1/.05))

m ≥ 10(ln 973 + ln 20)

m ≥ 10(6.88 + 3.00)

m ≥ 98.8

Again, how to find a consistent hypothesis?
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Unbiased Learners

• Recall the unbiased concept class C = 2X , i.e. set
of all subsets of X

• If each instance x ∈ X is described by n boolean
features, |X| = 2n, so |C| = 22n

• Also, to ensure c ∈ H, need H = C, so the theorem
gives

m ≥
1

ε
(2n ln 2 + ln(1/δ)) ,

i.e. exponentially large sample complexity

• Note the above is only sufficient, the theorem does
not give necessary sample complexity

• (Necessary sample complexity is still exponential)

⇒ Further evidence for the need of bias (as if we need
more)
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Agnostic Learning

So far, assumed c ∈ H

Agnostic learning setting: don’t assume c ∈ H

• What do we want then?

– The hypothesis h that makes fewest errors on train-
ing data (i.e. the one that minimizes
disagreements, which can be harder than finding
consistent hyp)

• What is sample complexity in this case?

m ≥
1

2ε2
(ln |H|+ ln(1/δ)),

derived from Hoeffding bounds, bounding prob. of large
deviation from expected value:

Pr[errorD(h) > errorD(h) + ε] ≤ e−2mε2
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Vapnik-Chervonenkis Dimension
Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition of
S into two disjoint subsets, i.e. into a set of + exs.
and a set of − exs.

Definition: a set of instances S is shattered by
hypothesis space H if and only if for every di-
chotomy of S there exists some hypothesis in H

consistent with this dichotomy.
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Example: Three Instances Shattered

Instance space X
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The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension,
V C(H), of hypothesis space H defined over in-
stance space X, is the size of the largest finite
subset of X shattered by H. If arbitrarily large fi-
nite sets of X can be shattered by H, then V C(H) ≡

∞.

• So to show that V C(H) = d, must show there exists
some subset X ′ ⊂ X of size d that H can shatter and
show that there exists no subset of X of size > d that
H can shatter

• Note that V C(H) ≤ log2 |H| (why?)

18



Example: Intervals on <

• Let H be the set of closed intervals on the real line
(each hyp is a single interval), X = <, and a point
x ∈ X is positive iff it lies in the target interval c

n/p

pos/pos

n/n

pos/neg

Can shatter 2 pts, so
VCD >= 2

pos 

neg

pos Can’t shatter any 3 pts, so
VCD < 3

• Thus V C(H) = 2 (also note that |H| is infinite)
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VCD of Linear Decision Surfaces (Halfspaces)

( )( )a b

Can’t shatter (b), so what is lower bound on VCD?

What about upper bound?
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Sample Complexity from VC Dimension

• How many randomly drawn examples suffice to ε-exhaust
V SH,D with probability at least (1− δ)?

m ≥
1

ε
(4 log2(2/δ) + 8V C(H) log2(13/ε))

(compare to finite H case)

• In the worst case, how many are required?

max

{

1

ε
log(1/δ),

V C(C)− 1

32ε

}

,

i.e. ∃D such that if learner sees fewer than this many
examples, with prob. ≥ δ, its hyp will have error > ε

• Can also get results in the agnostic model and with
noisy data (using e.g. statistical queries)
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Mistake Bound (On-Line) Learning

• So far only considered how many examples required
to learn with high probability

• On-line model: how many mistakes will learner make
before convergence (i.e. exactly learning c)?

• Setting:

– Learning proceeds in trials

– At each trial t, learner gets example xt ∈ X and
must predict xt’s label

– Then teacher informs learner of true value of c(xt)

and learner updates hypothesis if necessary

• Goal: Minimize total number of prediction
mistakes (requires exact learning of c)
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On-Line vs. PAC Model

• On-line is adversarial (worst-case) model vs. proba-
bilistic of PAC, so assume that adversary presents ex-
amples in a way to make learner perform as poorly as
possible

• On-line learner that makes ≤ M mistakes can PAC
learn with sample complexity

O

(

1

ε

(

M + log
1

δ

))

if M known

O

(

M

ε

(

M + log
1

δ

))

if M unknown

• But there exist finite concept classes C that can be
efficiently PAC learned but not efficiently learned in
on-line model

• So on-line model is harder to learn in!
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Mistake Bounds: Find-S

Find-S when H = conjuntion of boolean literals:

• Initialize h to the most specific hypothesis
`1 ∧ ¬`1 ∧ `2 ∧ ¬`2 ∧ · · · ∧ `n ∧ ¬`n

• For each positive training instance x, remove from h

any literal that is not satisfied by x

• Output hypothesis h

How many mistakes before converging to c? If c ∈ H,
Find-S will only misclassify pos. exs., and each mistake
results in eliminating literals

• Total number of literals:

• Number of literals eliminated after 1st mistake:

• Number of literals eliminated after each subsequent
mistake:

• Total number of mistakes ≤ mist. bnd M =
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Mistake Bounds: Halving Algorithm

The Halving Algorithm:

• Learn concept using version space Candidate-Elimination
algorithm (eliminate from VS all inconsistent hyps)

• Classify new instances by majority vote of version space
members (classify as + if majority vote +, else clas-
sify −)

How many mistakes before converging to c ∈ H?

• In worst case:

• In best case:
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Optimal Mistake Bounds

Let MA(C) be the max number of mistakes made by algo-
rithm A to learn concepts in C (maximum over all possible
c ∈ C, and all possible training sequences)

MA(C) ≡ max
c∈C

MA(c)

Definition: Let C be an arbitrary non-empty concept class.
The optimal mistake bound for C, denoted Opt(C), is the
minimum over all possible learning algorithms A of MA(C)

Opt(C) ≡ min
A∈all learning algorithms

MA(C)

I.e. Opt(C) is the number of mistakes made by the best
learning algorithm for the hardest target concept in C, us-
ing the hardest sequence of training examples

Can show:

V C(C) ≤ Opt(C) ≤ MHalving(C) ≤ log2(|C|)
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Topic summary due in 1 week!
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