
CSCE 478/878 Lecture 11: Genetic Algorithms

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)

December 3, 2001

1

Outline

• Evolutionary computation

• Prototypical GA

• An example: GABIL

• Genetic Programming

• Individual learning and population evolution

2

Evolutionary Computation

1. Computational procedures patterned after biological
evolution

2. Search procedure that probabilistically applies search
operators to set of points in the search space

• Remember, learning is a search for a good hypothe-
sis, so EC can certainly be applied

3

Biological Evolution

Lamarck and others:

• Species “transmute” over time

Darwin and Wallace:

• Consistent, heritable variation among individuals in
population

• Natural selection of the fittest

Mendel and genetics:

• A mechanism for inheriting traits

• genotype→ phenotype mapping

4

A Basic GA

GA(Fitness, F itness threshold, p, r, m)
• Initialize: P ← p random hypotheses
• Evaluate: for each h in P , compute Fitness(h)

• While [maxh Fitness(h)] < Fitness threshold

1. Select: Probabilistically select (1 − r)p members
of P to add to PS.

Pr(hi) =
Fitness(hi)

∑p
j=1 Fitness(hj)

2. Crossover: Probabilistically select r·p
2 pairs of hy-

potheses from P . For each pair, 〈h1, h2〉, produce
two offspring by applying the Crossover operator.
Add all offspring to Ps.

3. Mutate: Invert a randomly selected bit in m ·p ran-
dom members of Ps

4. Update: P ← Ps

5. Evaluate: for each h in P , compute Fitness(h)

• Return the hypothesis from P that has the highest fit-
ness

5

Representing Hypotheses

Represent

(Outlook = Overcast ∨Rain) ∧ (Wind = Strong)

by

Outlook Wind

011 10

Represent

IF Wind = Strong THEN PlayTennis = yes

by

Outlook Wind P layTennis

111 10 10

6

Operators for Genetic Algorithms

Single-point crossover:

11101001000

00001010101

11111000000
11101010101

Initial strings Crossover Mask Offspring

Two-point crossover:

11101001000

00001010101

00111110000
11001011000

10011010011

Uniform crossover:

Point mutation:

11101001000

00001010101

10001000100

11101001000 11101011000

00101000101

00001001000

01101011001

7

Selecting Most Fit Hypotheses

Fitness proportionate selection:

Pr(hi) =
Fitness(hi)

∑p
j=1 Fitness(hj)

... can lead to crowding

Tournament selection:

• Pick h1, h2 at random with uniform prob.

• With probability p, select the more fit

Rank selection:

• Sort all hypotheses by fitness

• Prob of selection is proportional to rank

8

GABIL [DeJong et al. 1993]

Learn disjunctive set of propositional rules, competitive
with C4.5

Fitness:

Fitness(h) = (fraction correct(h))2

Representation:

IF a1 = T∧a2 = F THEN c = T ; IF a2 = T THEN c = F

represented by

a1 a2 c a1 a2 c

10 01 1 11 10 0

Genetic operators: ???

• want variable length rule sets

• want only well-formed bitstring hypotheses

9

Crossover with Variable-Length Bitstrings

Start with

a1 a2 c a1 a2 c

h1 : 1| 0 01 1 11 1|0 0

h2 : 01 11 0 10 01 0

1. Choose crossover points for h1, e.g., after bits 1, 8

2. Now restrict points in h2 to those that produce bit-
strings with well-defined semantics, e.g. 〈1,3〉, 〈1,8〉,
〈6,8〉.

if we choose 〈1,3〉, result is

a1 a2 c

h3 : 11 10 0
a1 a2 c a1 a2 c a1 a2 c

h4 : 00 01 1 11 11 0 10 01 0

10

GABIL Extensions

Add new genetic operators, also applied probabilistically:

1. AddAlternative: generalize constraint on ai by chang-
ing a 0 to 1

2. DropCondition: generalize constraint on ai by chang-
ing every 0 to 1

And, add new field to bitstring to determine whether to
allow these

a1 a2 c a1 a2 c AA DC

01 11 0 10 01 0 1 0

So now the learning strategy also evolves!

11

GABIL Results

Performance of GABIL comparable to symbolic rule/tree
learning methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic problems:

• GABIL without AA and DC operators: 92.1% accu-
racy

• GABIL with AA and DC operators: 95.2% accuracy

• symbolic learning methods ranged from 91.2 to 96.6

12

Schemas

How to characterize evolution of population in GA?

Schema = string containing 0, 1, * (“don’t care”)

• Typical schema: 10**0*

• Instances of above schema: 101101, 100000, ...

Characterize population by number of instances represent-
ing each possible schema

• m(s, t) = number of instances of schema s in pop at
time t

13

Consider Just Selection

• f̄(t) = average fitness of pop. at time t

• m(s, t) = # of instances of schema s in pop at time t

• û(s, t) = avg fitness of instances of s at time t

Probability of selecting h in one selection step

Pr(h) =
f(h)

∑n
i=1 f(hi)

=
f(h)

nf̄(t)

Probabilty of selecting an instance of s in one step

Pr(h ∈ s) =
∑

h∈s∩pt

f(h)

nf̄(t)

=
û(s, t)

nf̄(t)
m(s, t)

Expected number of instances of s after n selections

E[m(s, t + 1)] =
û(s, t)

f̄(t)
m(s, t)

14

Schema Theorem

E[m(s, t+1)] ≥
û(s, t)

f̄(t)
m(s, t)

(

1− pc
d(s)

`− 1

)

(1−pm)o(s)

• m(s, t) = # of instances of schema s in pop at time t

• f̄(t) = average fitness of pop. at time t

• û(s, t) = avg fitness of instances of s at time t

• pc = probability of single point crossover operator

• pm = probability of mutation operator

• ` = length of bit strings

• o(s) number of defined (non “*”) bits in s

• d(s) = distance between leftmost, rightmost defined
bits in s

15

Genetic Programming

Population of programs represented by trees

sin(x) +

√

x2 + y

^

sin

x

y

2

+

x

+

16

Crossover

^sin

x

y

2 +

x

+

^

sin

x

y

2

+

x

+

sin

x

y

+

x

+

^sin

x

y

2

+x

+

^

2

17

Block Problem

u iv a

n
e

r
s

l

Goal: spell UNIVERSAL in one stack

Terminals:

• CS (“current stack”) = name of the top block on stack,
or F .

• TB (“top correct block”) = name of topmost correct
block on stack

• NN (“next necessary”) = name of the next block needed
above TB in the stack

18

Block Problem
(cont’d)

Primitive functions:

• (MS x): (“move to stack”), if block x is on the table,
moves x to the top of the stack and returns the value
T . Otherwise, does nothing and returns the value F

• (MT x): (“move to table”), if block x is somewhere in
the stack, moves the block at the top of the stack to
the table and returns the value T . Otherwise, returns
F

• (EQ x y): (“equal”), returns T if x equals y, and re-
turns F otherwise

• (NOT x): returns T if x = F , else returns F

• (DU x y): (“do until”) executes the expression x re-
peatedly until expression y returns the value T

19

Learned Program

Trained to fit 166 test problems

Using population of 300 programs, found this after 10 gen-
erations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

20

Genetic Programming

More interesting example: design electronic filter circuits

• Individuals are programs that transform begining cir-
cuit to final circuit, by adding/subtracting components
and connections

• Use population of 640,000, run on 64-node parallel
processor

• Discovers circuits competitive with best human de-
signs

21

GP for Classifying Images
[Teller and Veloso, 1997]

Fitness: based on coverage and accuracy

Representation:

• Primitives include Add, Sub, Mult, Div, Not, Max, Min,
Read, Write, If-Then-Else, Either, Pixel, Least, Most,
Avg, Variance, Difference, Mini, Library

• Mini refers to a local subroutine that is separately co-
evolved

• Library refers to a global library subroutine (evolved
by selecting the most useful minis)

Genetic operators:

• Crossover, mutation

• Create “mating pools” and use rank proportionate re-
production

22

Biological Evolution Revisited

Lamark (19th century)

• Believed individual genetic makeup was altered by life-
time experience

• Though current evidence contradicts this view, has
been employed in some artificial systems

23

Baldwin Effect

Assume

• Individual learning has no direct influence on individ-
ual DNA

• But ability to learn reduces need to “hard wire” traits
in DNA

Then

• Ability of individuals to learn will support more diverse
gene pool

– Because learning allows individuals with various
“hard wired” traits to be successful

• More diverse gene pool will support faster evolution of
gene pool

→ individual learning (indirectly) increases rate of evolu-
tion

24

Baldwin Effect

Plausible example:

1. New predator appears in environment

2. Individuals who can learn to avoid it will be selected

3. Increase in learning individuals will support more di-
verse gene pool ...

4. ... resulting in faster evolution ...

5. ... possibly resulting in new non-learned traits such as
instintive fear of predator

25

Computer Experiments on Baldwin Effect
[Hinton and Nowlan, 1987]

Evolve simple neural networks:

• Some network weights fixed during lifetime, others
trainable

• Genetic makeup determines which are fixed, and their
weight values

Results:

• With no individual learning, population failed to im-
prove over time

• When individual learning allowed

– Early generations: population contained many in-
dividuals with many trainable weights

– Later generations: higher fitness, while number of
trainable weights decreased

26

Summary: Evolutionary Algorithms

• Conduct randomized, parallel, hill-climbing search through
H

– Use of population allows fast, robust search of H

– H can be space of hypotheses (e.g. sets of rules)
or programs

• Approach learning as optimization problem (optimize
fitness)

27

