CSCE 478/878 Lecture 11: Genetic Algorithms

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)

December 3, 2001

Outline

Evolutionary computation

Prototypical GA

An example: GABIL

Genetic Programming

Individual learning and population evolution

Evolutionary Computation

1. Computational procedures patterned after biological
evolution

2. Search procedure that probabilistically applies search
operators to set of points in the search space

e Remember, learning is a search for a good hypothe-
sis, so EC can certainly be applied

Biological Evolution

Lamarck and others:

e Species “transmute” over time

Darwin and Wallace:

e Consistent, heritable variation among individuals In
population

e Natural selection of the fittest

Mendel and genetics:

e A mechanism for inheriting traits

e genotype — phenotype mapping

A Basic GA

GA(F'itness, Fitness_threshold, p, r, m)
e Initialize: P +— p random hypotheses
e Evaluate: for each h in P, compute F'itness(h)
e While [maxy, Fitness(h)] < Fitness_threshold

1.

4.

5.

Select: Probabilistically select (1 — r)p members
of P to add to Pg.

Fitness(h;)
Z§=1 Fitness(h;)

Pr(h;) =

Crossover: Probabilistically select % pairs of hy-
potheses from P. For each pair, (h1, hp), produce
two offspring by applying the Crossover operator.
Add all offspring to Ps.

Mutate: Invert a randomly selected bit in m - p ran-
dom members of P;

Update: P «— Pk

Evaluate: for each h in P, compute Fitness(h)

e Return the hypothesis from P that has the highest fit-
ness

Representing Hypotheses

Represent
(Outlook = Owercast V Rain) N (Wind = Strong)

by

Outlook Waind
011 10

Represent
IF Wind = Strong THEN PlayTennis = yes
by

Outlook Wind PlayTennis
111 10 10

Operators for Genetic Algorithms

Sngle-point crossover:

Two-point crossover:

Uniform crossover:

Point mutation:

Initial strings Crossover Mask

11101001000

\\\\ 11111000000

00001010101 ////

11101001000
\\\\ 00111110000

7
N

00001010101 pd

11101001000
== ——'\\\\\ 10011010011

a

00001010101 pd

11101001000

a

Offspring

11101010101

00001001000

11001011000

00101000101

10001000100

01101011001

11101011000

Selecting Most Fit Hypotheses

Fitness proportionate selection:

Fitness(h;)
Z§:1 Fitness(h;)

Pr(h;) =

... can lead to crowding

Tournament selection:

e Pick hq, ho at random with uniform prob.

e With probability p, select the more fit

Rank selection:

e Sort all hypotheses by fithess

e Prob of selection is proportional to rank

GABIL [DeJdong et al. 1993]

Learn disjunctive set of propositional rules, competitive
with C4.5

Fitness:

Fitness(h) = (fraction correct(h))2

Representation:

IFai =TAao = FTHENc¢=T: IFab =T THENc= F

represented by

aiy a» ¢ aiy a» ¢

10 01 1 11 10 O

Genetic operators: ???
e want variable length rule sets

e want only well-formed bitstring hypotheses

Crossover with Variable-Length Bitstrings

Start with

ay a» c aiy a» cC

hi: 1/0 01 1 11 10 O

h,: 01 11 0 10 01 O

1. Choose crossover points for h1, e.g., after bits 1, 8

2. Now restrict points in ho to those that produce bit-
strings with well-defined semantics, e.g. (1, 3), (1, 8),
(6,8).

If we choose (1, 3), result is

aiy ao ¢
hz3: 11 10 O

ay ao> ¢ aiy a»> ¢ ai a»> ¢

hga: 00 01 1 11 11 O 10 01 O

10

GABIL Extensions

Add new genetic operators, also applied probabilistically:

1. AddAlternative: generalize constraint on a; by chang-
ingaOtol

2. DropCondition: generalize constraint on a; by chang-
ingeveryOto 1

And, add new field to bitstring to determine whether to
allow these

al ap c ai an c AA DC
01 11 O 10 01 O 1 0

So now the learning strategy also evolves!

11

GABIL Results

Performance of GABIL comparable to symbolic rule/tree
learning methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic problems:

e GABIL without AA and DC' operators: 92.1% accu-
racy

e GABIL with AA and DC' operators: 95.2% accuracy

e symbolic learning methods ranged from 91.2 to 96.6

12

Schemas

How to characterize evolution of population in GA?

Schema = string containing O, 1, * (*don’t care”)

e Typical schema: 10**0*

e Instances of above schema: 101101, 100000, ...

Characterize population by number of instances represent-
Ing each possible schema

e m(s,t) = number of instances of schema s in pop at
time ¢

13

Consider Just Selection
e f(t) = average fitness of pop. at time ¢
e m(s,t) = # of instances of schema s in pop at time ¢
e u(s,t) = avg fitness of instances of s at time ¢

Probability of selecting A in one selection step

Pr(h) (1)
_ S
nf(t)
Probabilty of selecting an instance of s in one step
Pr(h c S) = Z fgh)
hesNpy nf(t)
TGS N
nf(t)
Expected number of instances of s after n selections
Elm(s.t+1)] = 288

F(¢)

14

Schema Theorem

d(s)

E[m(s,t4+1)] > ——m(s,t) .pcg__ .

F(#)

) (1—ppm)°t®)

e m(s,t) = # of instances of schema s in pop at time ¢
e f(t) = average fitness of pop. at time ¢

e u(s,t) = avg fitness of instances of s at time ¢

e p. = probability of single point crossover operator

e p,, = probability of mutation operator

e ¢/ = length of bit strings

e o(s) number of defined (non “*”) bits in s

e d(s) = distance between leftmost, rightmost defined

bits in s

15

Genetic Programming

Population of programs represented by trees

sin(z) + /2% +y
(+)

16

Crossover

T
i

17

Block Problem

aGIEE]

] Ll (L fa] L]
R N

Goal: spell UNIVERSAL in one stack

Terminals:

e CS (“current stack™) = name of the top block on stack,
or F.

e TB (“top correct block”) = name of topmost correct
block on stack

e NN (“next necessary”) = name of the next block needed
above TB in the stack

18

Block Problem
(cont’d)

Primitive functions:

e (MS x): (“move to stack”), if block x is on the table,
moves x to the top of the stack and returns the value
T'. Otherwise, does nothing and returns the value F

e (MT x): (“move to table”), if block = is somewhere In
the stack, moves the block at the top of the stack to
the table and returns the value 7. Otherwise, returns
F

e (EQ z y): (“equal”), returns T' if x equals y, and re-
turns F' otherwise

e (NOT x): returns T if x = F, else returns F
e (DU x y): (“do until”) executes the expression x re-

peatedly until expression y returns the value T°

19

Learned Program

Trained to fit 166 test problems

Using population of 300 programs, found this after 10 gen-
erations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

20

Genetic Programming

More interesting example: design electronic filter circuits

e Individuals are programs that transform begining cir-
cuit to final circuit, by adding/subtracting components
and connections

e Use population of 640,000, run on 64-node parallel
processor

e Discovers circuits competitive with best human de-
signs

21

GP for Classifying Images
[Teller and Veloso, 1997]

Fitness: based on coverage and accuracy

Representation:

e Primitives include Add, Sub, Mult, Div, Not, Max, Min,
Read, Write, If-Then-Else, Either, Pixel, Least, Most,
Avg, Variance, Difference, Mini, Library

e Mini refers to a local subroutine that is separately co-
evolved

e Library refers to a global library subroutine (evolved
by selecting the most useful minis)

Genetic operators:

e Crossover, mutation

e Create “mating pools” and use rank proportionate re-
production

22

Biological Evolution Revisited

Lamark (19th century)

e Believed individual genetic makeup was altered by life-
time experience

e Though current evidence contradicts this view, has
been employed in some artificial systems

23

Baldwin Effect

Assume

e Individual learning has no direct influence on individ-
ual DNA

e But ability to learn reduces need to “hard wire” traits
in DNA

Then

e Ability of individuals to learn will support more diverse
gene pool

— Because learning allows individuals with various
“hard wired” traits to be successful

e More diverse gene pool will support faster evolution of
gene pool

— individual learning (indirectly) increases rate of evolu-
tion
24

Baldwin Effect

Plausible example:

1. New predator appears in environment

2. Individuals who can learn to avoid it will be selected

3. Increase Iin learning individuals will support more di-
verse gene pool ...

4. ... resulting in faster evolution ...

5. ... possibly resulting in new non-learned traits such as
Instintive fear of predator

25

Computer Experiments on Baldwin Effect
[Hinton and Nowlan, 1987]

Evolve simple neural networks:

e Some network weights fixed during lifetime, others
trainable

e Genetic makeup determines which are fixed, and their
weight values

Results:

e With no individual learning, population failed to im-
prove over time

e When individual learning allowed

— Early generations: population contained many in-
dividuals with many trainable weights

— Later generations: higher fitness, while number of
trainable weights decreased

26

Summary: Evolutionary Algorithms

e Conduct randomized, parallel, hill-climbing search through
H
— Use of population allows fast, robust search of H
— H can be space of hypotheses (e.g. sets of rules)

or programs

e Approach learning as optimization problem (optimize
fithness)

27

