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Evolutionary Computation

1. Computational procedures patterned after biological
evolution

2. Search procedure that probabilistically applies search
operators to set of points in the search space

e Remember, learning is a search for a good hypothe-
sis, so EC can certainly be applied



Biological Evolution

Lamarck and others:

e Species “transmute” over time

Darwin and Wallace:

e Consistent, heritable variation among individuals In
population

e Natural selection of the fittest

Mendel and genetics:

e A mechanism for inheriting traits

e genotype — phenotype mapping



A Basic GA

GA(F'itness, Fitness_threshold, p, r, m)
e Initialize: P +— p random hypotheses
e Evaluate: for each h in P, compute F'itness(h)
e While [maxy, Fitness(h)] < Fitness_threshold

1.

4.

5.

Select: Probabilistically select (1 — r)p members
of P to add to Pg.

Fitness(h;)
Z§=1 Fitness(h;)

Pr(h;) =

Crossover: Probabilistically select % pairs of hy-
potheses from P. For each pair, (h1, hp), produce
two offspring by applying the Crossover operator.
Add all offspring to Ps.

Mutate: Invert a randomly selected bit in m - p ran-
dom members of P;

Update: P «— Pk

Evaluate: for each h in P, compute Fitness(h)

e Return the hypothesis from P that has the highest fit-
ness



Representing Hypotheses

Represent
(Outlook = Owercast V Rain) N (Wind = Strong)

by

Outlook Waind
011 10

Represent
IF Wind = Strong THEN PlayTennis = yes
by

Outlook Wind PlayTennis
111 10 10



Operators for Genetic Algorithms

Sngle-point crossover:

Two-point crossover:

Uniform crossover:

Point mutation:

Initial strings Crossover Mask

11101001000

\\\\ 11111000000

00001010101 ////

11101001000
\\\\ 00111110000

7
N

00001010101 pd

11101001000
== ——'\\\\\ 10011010011

a

00001010101 pd

11101001000

a

Offspring

11101010101

00001001000

11001011000

00101000101

10001000100

01101011001

11101011000



Selecting Most Fit Hypotheses

Fitness proportionate selection:

Fitness(h;)
Z§:1 Fitness(h;)

Pr(h;) =

... can lead to crowding

Tournament selection:

e Pick hq, ho at random with uniform prob.

e With probability p, select the more fit

Rank selection:

e Sort all hypotheses by fithess

e Prob of selection is proportional to rank



GABIL [DeJdong et al. 1993]

Learn disjunctive set of propositional rules, competitive
with C4.5

Fitness:

Fitness(h) = (fraction correct(h))2

Representation:

IFai =TAao = FTHENc¢=T: IFab =T THENc= F

represented by

aiy a» ¢ aiy a» ¢

10 01 1 11 10 O

Genetic operators: ???
e want variable length rule sets

e want only well-formed bitstring hypotheses



Crossover with Variable-Length Bitstrings

Start with

ay a» c aiy a» cC

hi: 1/0 01 1 11 10 O

h,: 01 11 0 10 01 O

1. Choose crossover points for h1, e.g., after bits 1, 8

2. Now restrict points in ho to those that produce bit-
strings with well-defined semantics, e.g. (1, 3), (1, 8),
(6,8).

If we choose (1, 3), result is

aiy ao ¢
hz3: 11 10 O

ay ao> ¢ aiy a»> ¢ ai a»> ¢

hga: 00 01 1 11 11 O 10 01 O
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GABIL Extensions

Add new genetic operators, also applied probabilistically:

1. AddAlternative: generalize constraint on a; by chang-
ingaOtol

2. DropCondition: generalize constraint on a; by chang-
ingeveryOto 1

And, add new field to bitstring to determine whether to
allow these

al ap c ai an c AA DC
01 11 O 10 01 O 1 0

So now the learning strategy also evolves!
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GABIL Results

Performance of GABIL comparable to symbolic rule/tree
learning methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic problems:

e GABIL without AA and DC' operators: 92.1% accu-
racy

e GABIL with AA and DC' operators: 95.2% accuracy

e symbolic learning methods ranged from 91.2 to 96.6
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Schemas

How to characterize evolution of population in GA?

Schema = string containing O, 1, * (*don’t care”)

e Typical schema: 10**0*

e Instances of above schema: 101101, 100000, ...

Characterize population by number of instances represent-
Ing each possible schema

e m(s,t) = number of instances of schema s in pop at
time ¢
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Consider Just Selection
e f(t) = average fitness of pop. at time ¢
e m(s,t) = # of instances of schema s in pop at time ¢
e u(s,t) = avg fitness of instances of s at time ¢

Probability of selecting A in one selection step

Pr(h) (1)
_ S
nf(t)
Probabilty of selecting an instance of s in one step
Pr(h c S) = Z fgh)
hesNpy nf(t)
TGS N
nf(t)
Expected number of instances of s after n selections
Elm(s.t+1)] = 288

F(¢)
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Schema Theorem

d(s)

E[m(s,t4+1)] > ——m(s,t) .pcg__ .

F(#)

) (1—ppm)°t®)

e m(s,t) = # of instances of schema s in pop at time ¢
e f(t) = average fitness of pop. at time ¢

e u(s,t) = avg fitness of instances of s at time ¢

e p. = probability of single point crossover operator

e p,, = probability of mutation operator

e ¢/ = length of bit strings

e o(s) number of defined (non “*”) bits in s

e d(s) = distance between leftmost, rightmost defined

bits in s
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Genetic Programming

Population of programs represented by trees

sin(z) + /2% +y
(+)
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Crossover

T
i
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Block Problem

aGIEE]

] Ll (L fa] L]
R N

Goal: spell UNIVERSAL in one stack

Terminals:

e CS (“current stack™) = name of the top block on stack,
or F.

e TB (“top correct block”) = name of topmost correct
block on stack

e NN (“next necessary”) = name of the next block needed
above TB in the stack
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Block Problem
(cont’d)

Primitive functions:

e (MS x): (“move to stack”), if block x is on the table,
moves x to the top of the stack and returns the value
T'. Otherwise, does nothing and returns the value F

e (MT x): (“move to table”), if block = is somewhere In
the stack, moves the block at the top of the stack to
the table and returns the value 7. Otherwise, returns
F

e (EQ z y): (“equal”), returns T' if x equals y, and re-
turns F' otherwise

e (NOT x): returns T if x = F, else returns F
e (DU x y): (“do until”) executes the expression x re-

peatedly until expression y returns the value T°
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Learned Program

Trained to fit 166 test problems

Using population of 300 programs, found this after 10 gen-
erations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))
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Genetic Programming

More interesting example: design electronic filter circuits

e Individuals are programs that transform begining cir-
cuit to final circuit, by adding/subtracting components
and connections

e Use population of 640,000, run on 64-node parallel
processor

e Discovers circuits competitive with best human de-
signs
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GP for Classifying Images
[Teller and Veloso, 1997]

Fitness: based on coverage and accuracy

Representation:

e Primitives include Add, Sub, Mult, Div, Not, Max, Min,
Read, Write, If-Then-Else, Either, Pixel, Least, Most,
Avg, Variance, Difference, Mini, Library

e Mini refers to a local subroutine that is separately co-
evolved

e Library refers to a global library subroutine (evolved
by selecting the most useful minis)

Genetic operators:

e Crossover, mutation

e Create “mating pools” and use rank proportionate re-
production
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Biological Evolution Revisited

Lamark (19th century)

e Believed individual genetic makeup was altered by life-
time experience

e Though current evidence contradicts this view, has
been employed in some artificial systems
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Baldwin Effect

Assume

e Individual learning has no direct influence on individ-
ual DNA

e But ability to learn reduces need to “hard wire” traits
in DNA

Then

e Ability of individuals to learn will support more diverse
gene pool

— Because learning allows individuals with various
“hard wired” traits to be successful

e More diverse gene pool will support faster evolution of
gene pool

— individual learning (indirectly) increases rate of evolu-
tion
24



Baldwin Effect

Plausible example:

1. New predator appears in environment

2. Individuals who can learn to avoid it will be selected

3. Increase Iin learning individuals will support more di-
verse gene pool ...

4. ... resulting in faster evolution ...

5. ... possibly resulting in new non-learned traits such as
Instintive fear of predator
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Computer Experiments on Baldwin Effect
[Hinton and Nowlan, 1987]

Evolve simple neural networks:

e Some network weights fixed during lifetime, others
trainable

e Genetic makeup determines which are fixed, and their
weight values

Results:

e With no individual learning, population failed to im-
prove over time

e When individual learning allowed

— Early generations: population contained many in-
dividuals with many trainable weights

— Later generations: higher fitness, while number of
trainable weights decreased
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Summary: Evolutionary Algorithms

e Conduct randomized, parallel, hill-climbing search through
H
— Use of population allows fast, robust search of H
— H can be space of hypotheses (e.g. sets of rules)

or programs

e Approach learning as optimization problem (optimize
fithness)
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