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Outline

• k-Nearest Neighbor

• Locally weighted regression

• Radial basis functions

• Case-based reasoning

• Lazy and eager learning
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Nearest Neighbor

Key idea: just store all training examples 〈xi, f(xi)〉

Need some distance measure between instances (e.g. Eu-
clidean distance, Hamming distance)

Nearest neighbor:

• Given query instance xq, first locate nearest training
example xn, then estimate
f̂(xq) = f(xn)

k-Nearest neighbor:

• Given xq, take vote among its k nearest neighbors (if
discrete-valued target function)

– Let k not be divisible by number of possible labels

• Take mean of f values of k nearest neighbors if f

real-valued

f̂(xq) =

∑k
i=1 f(xi)

k
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Voronoi Diagram

Decision surface for 1-NN
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When To Consider Nearest Neighbor

• Instances map to points in �n (or, at least, one can
define some distance measure between instances)

• Less than 20 attributes per instance

– To avoid curse of dimensionality, where many ir-
relevant attributes causes distance to be large, but
distance is small if only relevant attributes used

– Also, large number of attributes increases classifi-
cation complexity

• Lots of training data

Advantages:

• Robust to noise

• Stable

• Training is very fast

• Learn complex target functions

• Don’t lose information

Disadvantages:

• Slow at query time (active research area: fast index-
ing and accessing algorithms)

• Easily fooled by irrelevant attributes
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Nearest Neighbor’s
Behavior in the Limit

Consider p(x) defines probability that instance x will be
labeled 1 (positive) versus 0 (negative).

Nearest neighbor (k = 1):

• As number of training examples → ∞, approaches
Gibbs Algorithm

Recall Gibbs has at most twice the expected error of
Bayes optimal

k-Nearest neighbor:

• As number of training examples → ∞ and k gets
large, approaches Bayes optimal (best possible with
given hyp. space and prior information)

Bayes optimal: if p(x) > .5 then predict 1, else 0
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Distance-Weighted k-NN

Might want weight nearer neighbors more heavily:

f̂(xq)← argmax
v∈V

k∑
i=1

wiδ(v, f(xi))

for discrete-valued (δ(v, f(xi)) = 1 if v = f(xi) and 0
otherwise), and

f̂(xq)←

∑k
i=1 wif(xi)∑k

i=1 wi

for continuous

where

wi ≡
1

d(xq, xi)
2

and d(xq, xi) is distance between xq and xi

Note now it makes sense to use all training examples in-
stead of just k (Shepard’s method), but then get increased
time to classify instances
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Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2
are relevant to target function

Curse of dimensionality: nearest neighbor is easily misled
by high-dimensional X

One approach:

• Stretch jth axis by weight zj, where z1, . . . , zn chosen
to minimize prediction error

• Use cross-validation to automatically choose weights
z1, . . . , zn

• Note setting zj to zero eliminates this dimension alto-
gether

see [Moore and Lee, 1994]
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Locally Weighted Regression

Note k-NN forms local approximation to f for each query
point xq

Why not form an explicit approximation f̂(x) for region
surrounding xq?

• Fit linear, quadratic, etc. function to k nearest neigh-
bors

• Produces “piecewise approximation” to f

• Do this for each new query point xq

Several choices of error to minimize:

• Squared error over k nearest neighbors

E1(xq) ≡
1

2

∑
x∈ k nearest nbrs of xq

(
f(x)− f̂(x)

)2

• Distance-weighted squared error over all nbrs

E2(xq) ≡
1

2

∑
x∈D

(
f(x)− f̂(x)

)2
K(d(xq, x))

(K is decreasing in its argument)

• Combine E1 and E2
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Radial Basis Function (RBF) Networks

• Global approximation to target function, in terms of
linear combination of local approximations

• Used, e.g., for image classification

• A different kind of neural network

• Closely related to distance-weighted regression, but
“eager” instead of “lazy”
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RBF Networks
(cont’d)

...

...

f(x)

w1w0 wk

1

1a  (x)
2

a  (x)
n

a  (x)

where ai(x) are the attributes describing instance x, and

f̂(x) = w0 +
k∑

u=1

wuKu(d(xu, x))

(Note no weights from input to hidden layer)

One common choice for Ku(d(xu, x)) is

Ku(d(xu, x)) = exp

(
−

1

2σ2
u

d2(xu, x)

)
,

i.e. Gaussian with mean at xu and variance σ2
u, all features

independent

[note bug on p. 239]
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Training Radial Basis Function Networks

1. Choose number of kernel functions (hidden units)

• If = number training exs, can fit training data ex-
actly by placing one center per ex

• Using fewer⇒more efficient, less chance of over-
fitting

2. Choose center (= mean for Gaussian) xu of kernel
function Ku(d(xu, x))

• Use all training instances if enough kernels avail.

• Use subset of training instances

• Scatter uniformly throughout instance space

• Can cluster data and assign one per cluster (helps
answer step 1 also)

• Can use EM to find means of mixture of Gaussians

• Can also use e.g. EM to find σu’s
(for Gaussian)

3. Hold kernels fixed and train weights to fit linear func-
tion (output layer), e.g. GD or EG
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Case-Based Reasoning and CADET

Can apply instance-based learning even when X much
more complex

Need different “distance” metric

Case-Based Reasoning is instance-based learning where
instances have symbolic logic descriptions

((user-complaint error53-on-shutdown)
(cpu-model PowerPC) (operating-system Windows)
(memory 48meg)
(installed-apps Excel Netscape VirusScan)
(disk 1gig)
(likely-cause ???))

CADET: 75 stored examples of mechanical devices, e.g.
water faucets

• Training ex: 〈qualitative function, mech. structure〉

• New query: desired function

• Target value: mechanical structure for this function

Distance metric: match qualitative function descriptions
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Case-Based Reasoning in CADET
Example

A stored case: 
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E.g. distance measure = size of largest isomorphic sub-
graph
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Case-Based Reasoning in CADET
(cont’d)

• Instances represented by rich structural (symbolic) de-
scriptions, vs. e.g. points in �n for k-NN

• Multiple cases retrieved (and combined) to form so-
lution to new problem: Similar to k-NN, except com-
bination procedure can rely on knowledge-based rea-
soning (e.g. can two components be fit together?)

• Tight coupling between case retrieval, knowledge-based
reasoning, and problem solving, e.g. application of
rewrite rules in function graphs and backtracking in
search space

Bottom line:

• Simple matching of cases useful for tasks such as an-
swering help-desk queries

• Area of ongoing research, including improving index-
ing and search methods
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Lazy and Eager Learning

Lazy: Wait for query before generalizing

• k-NN, locally weighted regression, Case based rea-
soning

Eager: Generalize before seeing query

• Radial basis function networks, ID3, Backpropaga-
tion, Naive Bayes

Does it matter?

• Computation time for training and generalization

• Eager learner must create global approximation, lazy
learner can create many local approximations

• If they use same H, lazy can represent more complex
functions (e.g. consider H = linear functions) since it
considers the query instance xq before generalizing,
i.e. lazy produces a new hypothesis for each new xq
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