CSCE 478/878 Lecture 8: Instance-Based	Outline
Learning	<i>k</i> -Nearest Neighbor
Stephen D. Scott (Adapted from Tom Mitchell's slides)	Locally weighted regressionRadial basis functions
	 Case-based reasoning
November 14, 2006	 Lazy and eager learning
1	2
Nearest Neighbor	
Key idea: just store all training examples $\langle x_i, f(x_i) angle$	
Need some <u>distance measure</u> between instances (e.g. Eu- clidean distance, Hamming distance)	
Nearest neighbor:	Voronoi Diagram
 Given query instance xq, first locate nearest training example xn, then estimate f(xq) = f(xn) k-Nearest neighbor: 	Decision surface for 1-NN + $\begin{pmatrix} - \\ x_q^{\bullet} \end{pmatrix}$
 Given xq, take vote among its k nearest neighbors (if discrete-valued target function) 	
– Let k not be divisible by number of possible labels	
• Take mean of f values of k nearest neighbors if f	

real-valued $\hat{f}(x_q) = \frac{\sum_{i=1}^k f(x_i)}{1}$

$$=\frac{\sum_{i}\sum_{j}\left(\frac{w_{i}}{k}\right) }{k}$$

When To Consider Nearest Neighbor

- Instances map to points in Rⁿ (or, at least, one can define some distance measure between instances)
- Less than 20 attributes per instance
 - To avoid <u>curse of dimensionality</u>, where many irrelevant attributes causes distance to be large, but distance is small if only relevant attributes used
 - Also, large number of attributes increases classification complexity
- · Lots of training data

Advantages:

- Robust to noise
- Stable
- Training is very fast
- Learn complex target functions
- Don't lose information

Disadvantages:

- Slow at query time (active research area: fast indexing and accessing algorithms)
- · Easily fooled by irrelevant attributes

Nearest Neighbor's Behavior in the Limit

Consider p(x) defines probability that instance x will be labeled 1 (positive) versus 0 (negative).

Nearest neighbor (k = 1):

• As number of training examples $\rightarrow \infty,$ approaches Gibbs Algorithm

Recall Gibbs has at most twice the expected error of Bayes optimal

k-Nearest neighbor:

 As number of training examples → ∞ and k gets large, approaches Bayes optimal (best possible with given hyp. space and prior information)

Bayes optimal: if p(x) > .5 then predict 1, else 0

6

8

Distance-Weighted *k*-NN

Might want weight nearer neighbors more heavily:

$$\hat{f}(x_q) \leftarrow \operatorname*{argmax}_{v \in V} \sum_{i=1}^k w_i \delta(v, f(x_i))$$

for discrete-valued $(\delta(v, f(x_i)) = 1 \text{ if } v = f(x_i) \text{ and } 0$ otherwise), and

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

for continuous

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Note now it makes sense to use *all* training examples instead of just k (Shepard's method), but then get increased time to classify instances

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: nearest neighbor is easily misled by high-dimensional X

One approach:

- Stretch *j*th axis by weight z_j , where z_1, \ldots, z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z_1, \ldots, z_n
- Note setting z_j to zero eliminates this dimension altogether

see [Moore and Lee, 1994]

5

Locally Weighted Regression

Note k-NN forms local approximation to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q ?

- Fit linear, quadratic, etc. function to *k* nearest neighbors
- Produces "piecewise approximation" to f
- Do this for <u>each</u> new query point x_q

Several choices of error to minimize:

• Squared error over k nearest neighbors

$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} \left(f(x) - \hat{f}(x) \right)^2$$

• Distance-weighted squared error over all nbrs

$$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} \left(f(x) - \hat{f}(x) \right)^2 K(d(x_q, x))$$

(K is decreasing in its argument)

• Combine E_1 and E_2

where $a_i(x)$ are the attributes describing instance x, and

$$\hat{f}(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

(Note no weights from input to hidden layer)

One common choice for $K_u(d(x_u, x))$ is

$$K_u(d(x_u, x)) = \exp\left(-\frac{1}{2\sigma_u^2} d^2(x_u, x)\right),$$

i.e. Gaussian with mean at x_u and variance $\sigma_u^2,$ all features independent

[note bug on p. 239]

11

9

Radial Basis Function (RBF) Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

10

Training Radial Basis Function Networks

- 1. Choose number of kernel functions (hidden units)
 - If = number training exs, can fit training data exactly by placing one center per ex
 - Using fewer \Rightarrow more efficient, less chance of overfitting
- 2. Choose center (= mean for Gaussian) x_u of kernel function $K_u(d(x_u, x))$
 - Use all training instances if enough kernels avail.
 - Use subset of training instances
 - Scatter uniformly throughout instance space
 - Can cluster data and assign one per cluster (helps answer step 1 also)
 - Can use EM to find means of mixture of Gaussians
 - Can also use e.g. EM to find σ_u's (for Gaussian)
- 3. Hold kernels fixed and train weights to fit linear function (output layer), e.g. GD or EG

Case-Based Reasoning and CADET

Can apply instance-based learning even when \boldsymbol{X} much more complex

Need different "distance" metric

Case-Based Reasoning is instance-based learning where instances have symbolic logic descriptions

```
((user-complaint error53-on-shutdown)
(cpu-model PowerPC) (operating-system Windows)
(memory 48meg)
(installed-apps Excel Netscape VirusScan)
(disk 1gig)
(likely-cause ???))
```

<u>CADET</u>: 75 stored examples of mechanical devices, e.g. water faucets

- Training ex: \langle qualitative function, mech. structure \rangle
- New query: desired function
- Target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

Case-Based Reasoning in CADET (cont'd)

- Instances represented by rich structural (symbolic) descriptions, vs. e.g. points in \Re^n for k-NN
- Multiple cases retrieved (and combined) to form solution to new problem: Similar to *k*-NN, except combination procedure can rely on knowledge-based reasoning (e.g. can two components be fit together?)
- Tight coupling between case retrieval, knowledge-based reasoning, and problem solving, e.g. application of rewrite rules in function graphs and backtracking in search space

Bottom line:

- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research, including improving indexing and search methods

E.g. distance measure = size of largest isomorphic subgraph

Case-Based Reasoning in CADET

Example

T = temperature

O = waterflow

Function:

A stored case: T-junction pipe

 $Q_{1,7}$

Structure

14

Lazy and Eager Learning

Lazy: Wait for query before generalizing

• *k*-NN, locally weighted regression, Case based reasoning

Eager: Generalize before seeing query

• Radial basis function networks, ID3, Backpropagation, Naive Bayes

Does it matter?

- Computation time for training and generalization
- Eager learner must create global approximation, lazy learner can create many local approximations
- If they use same *H*, lazy can represent more complex functions (e.g. consider *H* = linear functions) since it considers the query instance *x_q* before generalizing, i.e. lazy produces a new hypothesis for each new *x_q*