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Two Definitions of Error

The true error of hypothesis h with respect to target
function f and distribution D is the probability that A
will misclassify an instance drawn at random accord-
ing to D.

errorp(h) = Pr [f(x) # h(z)]
x€D

The sample error of A with respect to target function
f and data sample S (|.S| = n) is the proportion of
examples h misclassifies

errorg(h) = % > 0(f(x) # h(x)),

xeS

where 6(f(x) #= h(x)) is1if f(x) = h(x), and O

otherwise.

How well does errorg(h) estimate errorp(h)?



Problems Estimating Error

e Bias: If S is training set, errorg(h) is optimistically
biased

bias = Elerrorg(h)] — errorp(h)

For unbiased estimate (bias = 0), h and S must be
chosen independently = Don’t test on training set!

Don’t confuse with inductive bias!

e Variance: Even with unbiased S, errorg(h) may still
vary from errorp(h)




Estimators

Experiment:

1. Choose sample S of size n according to distribution
D

2. Measure errorg(h)

errorg(h) is a random variable (i.e., result of an experi-
ment)

errorg(h) is an unbiased estimator for errorp(h)

Given observed errorg(h), what can we conclude about
errorp(h)?



Confidence Intervals

If
e S contains n examples, drawn independently of A~ and
each other
o n > 30
Then
e With approximately 95% probability, errorp(h) lies in
interval

errorg(h)(1 — errorg(h))

errorg(h) £ 1.96\/

E.g. hypothesis h misclassifies 12 of the 40 examples in

test set S

12
errorg(h) = 0= 0.30

Then with approx. 95% confidence,
errorp(h) € [0.158, 0.442]



Confidence Intervals
(cont’d)

If

e S contains n examples, drawn independently of ~ and
each other

o n > 30

Then

e With approximately N% probability, errorp(h) lies in
interval

errorg(h)(1 — errorg(h))

n

errorg(h) £ zN\/

where

N%:|50% 68% 80% 90% 95% 98% 99%
zy: | 0.67 100 128 164 196 233 2.58

Why?




errorg(h) is a Random Variable

Repeatedly run the experiment, each with different ran-
domly drawn S (each of size n)

Probability of observing » misclassified examples:

0.14 Binomial distribution for n =40, p =0.3
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P(r) = (") errorp(h)" (1 = errorp(n))"™"

l.e. let errorp(h) be probability of heads in biased coin,
the P(r) = prob. of getting r heads out of n flips

What kind of distribution is this?



Binomial Probability Distribution

Binomial distribution for n =40, p =0.3
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Probability P(r) of r heads in n coinflips, if p = Pr(heads)

e EXxpected, or mean value of X, F[X] (= # heads on n
flips = # mistakes on n test exs), is

F[X] = 2”3 iP(1) = np=mn-errorp(h)
1=0

e Variance of X Is

Var(X) = E[(X — E[X])?] = np(1 — p)

e Standard deviation of X, oy, IS

ox = VE(X — E[X])?] = /np(1 — p)




Approximate Binomial Dist. with Normal

errorg(h) = r/n is binomially distributed, with

® MeaN figyyopo(h) = errorp(h) (i.e. unbiased est.)

e standard deviation o,,.,.,,..(p)

_ Jerrorp(h)(1 — errorp(h))
Oerrorg(h) —

n

(i.e. increasing n decreases variance)

Want to compute confidence interval = interval centered
at errorp(h) containing N% of the weight under the dis-
tribution (difficult for binomial)

Approximate binomial by normal (Gaussian) dist:
e mean L,,orq(h) = errorp(h)

e standard deviationo,..... s(h)

i N \/errors(h)(l —errorg(h))

errorg(h) = n
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Normal Probability Distribution

Normal distribution with mean 0, standard deviation 1
T T T T
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1
V2ro?

Defined completely by 1 and o

The probability that X will fall into the interval (a, b) is

given by

/bp(a:)d:c

a

Expected, or mean value of X, E[X], is

E[X]=u

Variance of X is Var(X) = o2

Standard deviation of X, o, IS

ox =0
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Normal Probability Distribution
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(cont'd)

80% of area (probability) lies in £+ 1.28¢

N% of area (probability) liesin u & zx o

N%:
ZN-

50%
0.67

68% 80% 90% 95% 98% 99%
1.00 128 164 196 233 2.58

Can also have one-sided bounds:

04 |
0.35 -
03 |
025
02 |
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01
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0

N% of area lies < p 4 2, 0 or > p — 2o, where 2/, =

£100—(100—N)/2
N%: | 50% 68% 80% 90% 95% 98% 99%
zf\,: 0.0 047 084 128 164 205 2.33
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Confidence Intervals Revisited

If

e S contains n examples, drawn independently of ~ and
each other

o n > 30

Then

e With approximately 95% probability, errorg(h) lies in
interval

errorp(h)(1 — errorp(h))

n

errorp(h) £1 .96\/

Equivalently, errorp(h) lies in interval

errorp(h)(1 — errorp(h))

n

errorg(h) £ 1.96\/

which is approximately

errorg(h)(1 — errorg(h))

n

errorg(h) £ 1.96\/

(One-sided bounds yield upper or lower error bounds)
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Central Limit Theorem
How can we justify approximation?

Consider a set of independent, identically distributed ran-
dom variables Y7 ... Y}, all governed by an arbitrary prob-
ability distribution with mean . and finite variance o2. De-
fine the sample mean

Note that Y is itself a random variable, i.e. the result of an
experiment (e.g. errorg(h) = r/n)

Central Limit Theorem: As n — oo, the distribution gov-
erning Y approaches a Normal distribution, with mean p
and variance o2 /n

Thus the distribution of errorg(h) is approximately nor-
mal for large n, and its expected value is errorp(h)

(Rule of thumb: n > 30 when estimator’s distribution is
binomial, might need to be larger for other distributions)
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Calculating Confidence Intervals

. Pick parameter p to estimate

o crrorp(h)

. Choose an estimator
e crrorg(h)
. Determine probability distribution that governs esti-
mator

e crrorg(h) governed by binomial distribution, ap-

proximated by normal when n > 30

. Findinterval (L, U) such that N% of probability mass
falls in the interval

e Couldhave L = —>c orU = o

e Use table of zy or 2/, values (if distrib. normal)
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Difference Between Hypotheses

Test h1 on sample Sy, test ho on S5, S1 NSy = ()

1. Pick parameter to estimate

d = errorp(hi1) — errorp(hy)

2. Choose an estimator

d= errorg,(h1) — errorg,(h2)
(unbiased)

3. Determine probability distribution that governs esti-
mator (difference between two normals is also nor-
mal, variances add)

errors,(h2)(1 — errorg,(hz))

\/errorsl(hl)(l —errors, (h1))
og~ T

ni 2

4. Find interval (L, U) such that N% of prob. mass falls
in the interval: d + z,, o3

(Can also use S = S1 U S> to test h1 and ho, but not as
accurate; interval overly conservative)
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Paired t test to compare h4,hp

1. Partition data into £ disjoint test sets 77, 1o, ..., T} of
equal size, where this size is at least 30

2. Forifrom1to k, do
6; — errory,(ha) — errorp,(hp)

3. Return the value §, where

1k:
=L 2

N% confidence interval estimate for d:

6+ IN k-1 55

W
>
||

1 k 2
k(k —1) z; (9= 9)

\

t plays role of z, s plays role of o

t test gives more accurate results since std. deviation ap-
proximated and test sets for h 4 and h g not independent
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Comparing Learning Algorithms L 4 and Lpg

What we'd like to estimate:

Egcplerrorp(La(S)) — errorp(Lp(5))]

where L(S) is the hypothesis output by learner L using
training set S

l.e., the expected difference in true error between hypothe-
ses output by learners L 4, and Lpg, when trained using
randomly selected training sets S drawn according to dis-
tribution D

But, given limited data Dg, what is a good estimator?

e Could partition Dg into training set Sp and testing set
To, and measure

errorr, (L A(So)) — errory, (Lg(So))

e Even better, repeat this many times and average the
results (next slide)
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Comparing learning algorithms L4 and Lpg
(cont'd)

k-fold Cross Validation

1. Partition data Dg into k disjointtest sets 17,15, ..., T}
of equal size, where this size is at least 30

2. Forifrom1to k, do

(use T; for the test set, and the remaining data for
training set S;)

o S;— Dg—T,
o hy «— La(S;)
e hp «— Lg(S;)
e §; — errory,(hy) — error.(hp)

3. Return the value §, where
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Comparing learning algorithms L4 and Lp
(cont’d)

e Notice we'd like to use the paired ¢ test on § to obtain
a confidence interval

e Not really correct, because the training sets in this al-
gorithm are not independent (they overlap!)

e More correct to view algorithm as producing an esti-
mate of

Egcpylerrorp(La(S)) — errorp(Lp(S))]

instead of

Egcplerrorp(La(S)) — errorp(Lp(5))]

e But even this approximation is better than nothing
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ROC Analysis

e So far, we've looked at a single error rate to compare
hypotheses/learning algorithms/etc.

e This may not tell the whole story:
— 1000 test examples: 20 positive, 980 negative

— h 4 gets 2/20 pos correct, 965/980 neg correct, for
accuracy of (2 4+ 965) /(20 + 980) = 0.967

— Pretty impressive, except that always predicting
negative yields accuracy = 0.980

— Would we rather have hpg, which gets 19/20 pos
correct and 930/980 neg, for accuracy = 0.949?

— Depends on how important the positives are, I.e.
frequency in practice and/or cost (e.g. cancer di-
agnosis)

e Can separately report false positive (FP) and false
negative (FN) error rates, but we can give even more
detail than that
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ROC Analysis
(cont’d)

e Consider an ANN or SVM
e Normally threshold at O, but what if we changed it?

e Keeping weight vector constant while changing thresh-
old = holding hyperplane’s slope fixed while moving
along its normal vector

e |.e. get a set of classifiers, one per labeling of test set
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ROC Analysis
Plotting TP versus FP error

e Consider the “always —” hyp. What is its FP rate? Its

TP rate? What about the “always +” hyp?

e In between the extremes, we plot TP versus FP by
sorting the test examples by the SVM’s weighted sums:

EXx w- T label | Ex w- T label
xq1 | 169.752 | + re | —12.640 —
xo | 109.200 | + x7 | —29.124 —
x3 | 19.210 — rg | —83.222 —
x4 1.905 -+ g —91.554 -+
rs | —2.75 | + | x10 | —128.212| -—
TP
A
o 'xlo
1 x5
® 6 o ©o
®
® O
® x1
Oe = FP
0 1
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ROC Analysis
Convex Hull

@ haive Bayes
®
o
O -
A 1 FP

e The convex hull of the ROC curve yields a collection
of classifiers, each optimal under different conditions

— If FP cost = FN cost, then draw a line with slope
|IN|/|P| at (0,1) and drag it towards convex hull
until you touch it; that’s your operating point

— Can use as a classifier any part of the hull since
can randomly select between two classifiers

e Can also compare curves against “single-point” clas-
sifiers when no curves available

— In plot, ID3 better than our SVM iff negatives scarce;
nB never better
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ROC Analysis
Miscellany

e What is the worst possible ROC curve?

e One metric for measuring a curve’s goodness:
area under curve (AUC):

Zx_|_€P >z €N I(h($_|_) > h(xz_))
|P||N]
l.e. rank all examples by confidence in “+” prediction,
count the number of times a positively-labeled exam-

ple (from P) is ranked above a negatively-labeled one
(from N), then normalize

— What is the best value?

— Distribution approximately normal if | P|, | N| > 10,
so can find confidence intervals

— Catching on as a better scalar measure of perfor-
mance than error rate

e ROC analysis possible (though tricky) with multi-class
problems
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ROC Analysis
Miscellany (cont'd)

e Can use ROC curve to modify classifiers, e.g. re-label
decision trees

e What does “ROC” stand for?

— “Receiver Operating Characteristic” from signal de-
tection theory, where binary signals are corrupted
by noise

— Use plots to determine how to set threshold to de-
termine presence of signal

— Threshold too high: miss true hits (TP rate low),
too low: too many false alarms (FP rate high)

e Alternatives to ROC: cost curves and
precision-recall curves
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Topic summary due in 1 week!
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