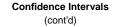
	Outline	Two Definitions of Error
	Sample error vs. true error	• The true error of hypothesis h with respect to target
CSCE 478/878 Lecture 5: Evaluating Hypotheses	Confidence intervals for observed hypothesis error	function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .
	Estimators	$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$
Stephen D. Scott (Adapted from Tom Mitchell's slides)	 Binomial distribution, Normal distribution, Central Limit Theorem 	• The <u>sample error</u> of <i>h</i> with respect to target function f and data sample S ($ S = n$) is the proportion of examples <i>h</i> misclassifies
	• Paired <i>t</i> tests	$error_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x)),$
October 5, 2006	Comparing learning methods	where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.
	ROC analysis	• How well does $error_{S}(h)$ estimate $error_{\mathcal{D}}(h)$?
1	2	3
		Confidence Intervals
	Estimators	lf
Problems Estimating Error	Experiment:	• <i>S</i> contains <i>n</i> examples, drawn independently of <i>h</i> and each other
• <u>Bias</u> : If <i>S</i> is training set, $error_S(h)$ is optimistically biased	1. Choose sample S of size n according to distribution \mathcal{D}	 n ≥ 30
		Then
$bias \equiv E[error_{S}(h)] - error_{\mathcal{D}}(h)$	2. Measure $error_S(h)$	• With approximately 95% probability, $error_{\mathcal{D}}(h)$ lies in interval
For unbiased estimate ($bias = 0$), h and S must be chosen independently \Rightarrow Don't test on training set! Don't confuse with inductive bias!	$error_{S}(h)$ is a random variable (i.e., result of an experiment)	$error_{S}(h) \pm 1.96 \sqrt{rac{error_{S}(h)(1 - error_{S}(h))}{n}}$
	1	
• <u>Variance</u> : Even with unbiased S , $error_S(h)$ may still	$error_S(h)$ is an <u>unbiased estimator</u> for $error_{\mathcal{D}}(h)$	E.g. hypothesis h misclassifies 12 of the 40 examples in test set S :
	$error_{S}(h)$ is an <u>unbiased estimator</u> for $error_{D}(h)$ Given observed $error_{S}(h)$, what can we conclude about $error_{D}(h)$?	E.g. hypothesis h misclassifies 12 of the 40 examples in test set S : $error_{S}(h) = \frac{12}{40} = 0.30$ Then with approx. 95% confidence, $error_{\mathcal{D}}(h) \in [0.158, 0.442]$



lf

- S contains n examples, drawn independently of h and each other
- n ≥ 30

Then

• With approximately *N*% probability, *error*_D(*h*) lies in interval

$$error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

		0070	3070	3070	98%	3370
0.67	1.00	1.28	1.64	1.96	2.33	2.58
	0.67	0.67 1.00	0.67 1.00 1.28	0.67 1.00 1.28 1.64	0.67 1.00 1.28 1.64 1.96	0.67 1.00 1.28 1.64 1.96 2.33

Why?

Approximate Binomial Dist. with Normal

7

10

 $error_S(h) = r/n$ is binomially distributed, with

• mean
$$\mu_{error_S(h)} = error_{\mathcal{D}}(h)$$
 (i.e. unbiased est.)

• standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_{\mathcal{D}}(h)} = \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

(i.e. increasing n decreases variance)

Want to compute confidence interval = interval centered at $error_{\mathcal{D}}(h)$ containing *N*% of the weight under the distribution (difficult for binomial)

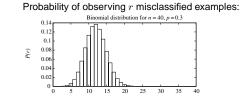
Approximate binomial by normal (Gaussian) dist:

- mean $\mu_{error_S(h)} = error_D(h)$
- standard deviation $\sigma_{error_S(h)}$

$$\sigma_{error_S(h)} \approx \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

$error_{S}(h)$ is a Random Variable

Repeatedly run the experiment, each with different randomly drawn S (each of size n)



$$P(r) = {\binom{n}{r}} error_{\mathcal{D}}(h)^{r} (1 - error_{\mathcal{D}}(h))^{n-r}$$

I.e. let $error_{\mathcal{D}}(h)$ be probability of heads in biased coin, the P(r) = prob. of getting *r* heads out of *n* flips

What kind of distribution is this?

Normal Probability Distribution

8

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

- Defined completely by μ and σ
- The probability that X will fall into the interval $\left(a,b\right)$ is given by

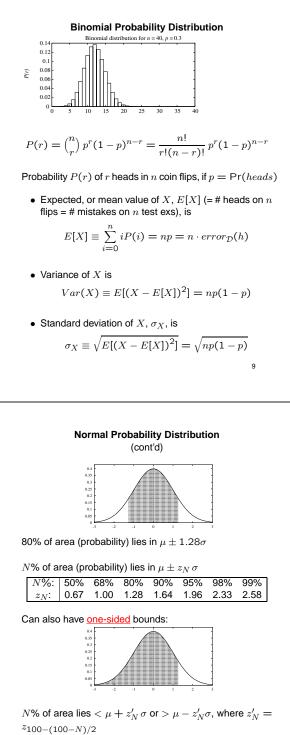
 $\int_a^b p(x) dx$

• Expected, or mean value of X, E[X], is

$$E[X] = \mu$$

- Variance of X is $Var(X) = \sigma^2$
- Standard deviation of X, σ_X, is

 $\sigma_X = \sigma$



<i>N</i> %:	50%	68%	80%	90%	95%	98%	99%
N%: z'_N :	0.0	0.47	0.84	1.28	1.64	2.05	2.33

11

12

Confidence Intervals Revisited

- lf
 - S contains n examples, drawn independently of h and each other
- n ≥ 30

Then

• With approximately 95% probability, $error_S(h)$ lies in interval

$$error_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

Equivalently, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{n}}$$

which is approximately

 $error_{S}(h) \pm 1.96 \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$

(One-sided bounds yield upper or lower error bounds)

Difference Between Hypotheses

Test h_1 on sample S_1 , test h_2 on S_2 , $S_1 \cap S_2 = \emptyset$

1. Pick parameter to estimate

 $d \equiv error_{\mathcal{D}}(h_1) - error_{\mathcal{D}}(h_2)$

2. Choose an estimator

 $\label{eq:def} \hat{d} \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$ (unbiased)

 Determine probability distribution that governs estimator (difference between two normals is also normal, variances add)

 $\sigma_{\vec{d}} \approx \sqrt{\frac{error_{S_i}(h_1)(1 - error_{S_i}(h_1))}{n_1}} + \frac{error_{S_i}(h_2)(1 - error_{S_i}(h_2))}{n_2}$

4. Find interval (L,U) such that N% of prob. mass falls in the interval: $\hat{d}\pm z_n\,\sigma_{\hat{J}}$

(Can also use $S = S_1 \cup S_2$ to test h_1 and h_2 , but not as accurate; interval overly conservative)

16

13

Central Limit Theorem

How can we justify approximation?

Consider a set of independent, identically distributed random variables $Y_1 \dots Y_n$, all governed by an <u>arbitrary</u> probability distribution with mean μ and finite variance σ^2 . Define the sample mean

$$\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Note that \bar{Y} is itself a random variable, i.e. the result of an experiment (e.g. $error_S(h) = r/n$)

<u>Central Limit Theorem</u>: As $n \to \infty$, the distribution governing \bar{Y} approaches a Normal distribution, with mean μ and variance σ^2/n

Thus the distribution of $error_S(h)$ is approximately normal for large n, and its expected value is $error_D(h)$

(Rule of thumb: $n \geq$ 30 when estimator's distribution is binomial, might need to be larger for other distributions)

Paired t test to compare h_A , h_B

- 1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30
- 2. For i from 1 to k, do

 $\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$

3. Return the value $\overline{\delta}$, where

$$\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

N% confidence interval estimate for d:

$$\overline{\delta} \pm t_{N,k-1} \ s_{\overline{\delta}}$$
$$s_{\overline{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} \left(\delta_i - \overline{\delta}\right)^2}$$

t plays role of $z,\,s$ plays role of σ

t test gives more accurate results since std. deviation approximated and test sets for h_A and h_B not independent

Calculating Confidence Intervals

- 1. Pick parameter p to estimate
 - $error_{\mathcal{D}}(h)$
- 2. Choose an estimator
 - $error_S(h)$
- 3. Determine probability distribution that governs estimator
 - $error_S(h)$ governed by binomial distribution, approximated by normal when $n \ge 30$
- 4. Find interval $\left(L,U\right)$ such that N% of probability mass falls in the interval
 - Could have $L = -\infty$ or $U = \infty$
 - Use table of z_N or z'_N values (if distrib. normal)

15

Comparing Learning Algorithms L_A and L_B

What we'd like to estimate:

 $E_{S \subset \mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$

where L(S) is the hypothesis output by learner L using training set S

I.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution \mathcal{D}

But, given limited data D_0 , what is a good estimator?

- Could partition $D_{\rm 0}$ into training set $S_{\rm 0}$ and testing set $T_{\rm 0},$ and measure

 $error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$

 Even better, repeat this many times and average the results (next slide)

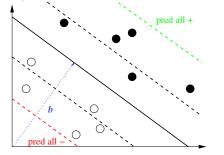
Comparing learning algorithms L_A and L_B (cont'd)

k-fold Cross Validation

- 1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30
- 2. For i from 1 to k, do
 - (use T_i for the test set, and the remaining data for training set S_i)
 - $S_i \leftarrow D_0 T_i$
 - $h_A \leftarrow L_A(S_i)$
 - $h_B \leftarrow L_B(S_i)$
 - $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- 3. Return the value $\overline{\delta}$, where
 - $\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$

ROC Analysis (cont'd)

- Consider an ANN or SVM
- Normally threshold at 0, but what if we changed it?
- Keeping weight vector constant while changing threshold = holding hyperplane's slope fixed while moving along its normal vector



• I.e. get a set of classifiers, one per labeling of test set

Comparing learning algorithms L_A and L_B (cont'd)

- Notice we'd like to use the paired t test on $\overline{\delta}$ to obtain a confidence interval
- Not really correct, because the training sets in this algorithm are not independent (they overlap!)
- More correct to view algorithm as producing an estimate of

 $E_{S \subset D_0}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$

instead of

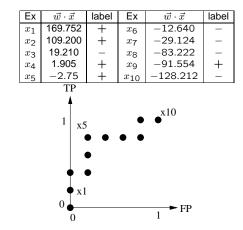
 $E_{S \subset \mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$

• But even this approximation is better than nothing

20

ROC Analysis Plotting TP versus FP error

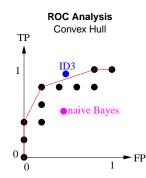
- Consider the "always –" hyp. What is its FP rate? Its TP rate? What about the "always +" hyp?
- In between the extremes, we plot TP versus FP by sorting the test examples by the SVM's weighted sums:



ROC Analysis

- So far, we've looked at a single error rate to compare hypotheses/learning algorithms/etc.
- This may not tell the whole story:
 - 1000 test examples: 20 positive, 980 negative
 - h_A gets 2/20 pos correct, 965/980 neg correct, for accuracy of (2 + 965)/(20 + 980) = 0.967
 - Pretty impressive, except that always predicting negative yields accuracy = 0.980
 - Would we rather have h_B , which gets 19/20 pos correct and 930/980 neg, for accuracy = 0.949?
 - Depends on how important the positives are, i.e. frequency in practice and/or cost (e.g. cancer diagnosis)
- Can separately report false positive (FP) and false negative (FN) error rates, but we can give even more detail than that

21



- The <u>convex hull</u> of the ROC curve yields a collection of classifiers, each optimal under different conditions
 - If FP cost = FN cost, then draw a line with slope |N|/|P| at (0, 1) and drag it towards convex hull until you touch it; that's your <u>operating point</u>
 - Can use as a classifier any part of the hull since can randomly select between two classifiers
- Can also compare curves against "single-point" classifiers when no curves available
 - In plot, ID3 better than our SVM iff negatives scarce; nB never better

19

23

ROC Analysis Miscellany • What is the worst possible ROC curve?	ROC Analysis Miscellany (cont'd)		
 One metric for measuring a curve's goodness: area under curve (AUC): ∑x₊∈P∑x₋∈N I(h(x₊) > h(x₋)) P N i.e. rank all examples by confidence in "+" prediction, count the number of times a positively-labeled exam- ple (from P) is ranked above a negatively-labeled one (from N), then normalize What is the best value? Distribution approximately normal if P , N > 10, so can find confidence intervals Catching on as a better scalar measure of perfor- mance than error rate 	 Can use ROC curve to modify classifiers, e.g. re-label decision trees What does "ROC" stand for? "Receiver Operating Characteristic" from signal detection theory, where binary signals are corrupted by noise Use plots to determine how to set threshold to determine presence of signal Threshold too high: miss true hits (TP rate low), too low: too many false alarms (FP rate high) Alternatives to ROC: <u>cost curves</u> and <u>precision-recall curves</u> 	Topic summary due in 1 week!	
 ROC analysis possible (though tricky) with multi-class problems 	26	27	