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Outline

• Sample error vs. true error

• Confidence intervals for observed hypothesis error

• Estimators

• Binomial distribution, Normal distribution, Central Limit
Theorem

• Paired t tests

• Comparing learning methods

• ROC analysis
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Two Definitions of Error

• The true error of hypothesis h with respect to target
function f and distribution D is the probability that h

will misclassify an instance drawn at random accord-
ing to D.

errorD(h) ≡ Pr
x∈D[f(x) �= h(x)]

• The sample error of h with respect to target function
f and data sample S (|S| = n) is the proportion of
examples h misclassifies

errorS(h) ≡ 1

n

∑
x∈S

δ(f(x) �= h(x)),

where δ(f(x) �= h(x)) is 1 if f(x) �= h(x), and 0
otherwise.

• How well does errorS(h) estimate errorD(h)?
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Problems Estimating Error

• Bias: If S is training set, errorS(h) is optimistically
biased

bias ≡ E[errorS(h)]− errorD(h)

For unbiased estimate (bias = 0), h and S must be
chosen independently⇒ Don’t test on training set!

Don’t confuse with inductive bias!

• Variance: Even with unbiased S, errorS(h) may still
vary from errorD(h)
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Estimators

Experiment:

1. Choose sample S of size n according to distribution
D

2. Measure errorS(h)

errorS(h) is a random variable (i.e., result of an experi-
ment)

errorS(h) is an unbiased estimator for errorD(h)

Given observed errorS(h), what can we conclude about
errorD(h)?
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Confidence Intervals

If

• S contains n examples, drawn independently of h and
each other

• n ≥ 30

Then

• With approximately 95% probability, errorD(h) lies in
interval

errorS(h)± 1.96

√
errorS(h)(1− errorS(h))

n

E.g. hypothesis h misclassifies 12 of the 40 examples in
test set S:

errorS(h) =
12

40
= 0.30

Then with approx. 95% confidence,
errorD(h) ∈ [0.158,0.442]
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Confidence Intervals
(cont’d)

If

• S contains n examples, drawn independently of h and
each other

• n ≥ 30

Then

• With approximately N% probability, errorD(h) lies in
interval

errorS(h)± zN

√
errorS(h)(1− errorS(h))

n

where

N%: 50% 68% 80% 90% 95% 98% 99%
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Why?
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errorS(h) is a Random Variable

Repeatedly run the experiment, each with different ran-
domly drawn S (each of size n)

Probability of observing r misclassified examples:
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Binomial distribution for n = 40, p = 0.3

P(r) =
(n
r

)
errorD(h)r(1− errorD(h))n−r

I.e. let errorD(h) be probability of heads in biased coin,
the P(r) = prob. of getting r heads out of n flips

What kind of distribution is this?
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Binomial Probability Distribution
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Binomial distribution for n = 40, p = 0.3

P(r) =
(n
r

)
pr(1− p)n−r =

n!

r!(n− r)!
pr(1− p)n−r

Probability P(r) of r heads in n coin flips, if p = Pr(heads)

• Expected, or mean value of X, E[X] (= # heads on n
flips = # mistakes on n test exs), is

E[X] ≡
n∑

i=0

iP(i) = np = n · errorD(h)

• Variance of X is

V ar(X) ≡ E[(X −E[X])2] = np(1− p)

• Standard deviation of X, σX , is

σX ≡
√

E[(X − E[X])2] =
√

np(1− p)

9

Approximate Binomial Dist. with Normal

errorS(h) = r/n is binomially distributed, with

• mean µerrorS(h) = errorD(h) (i.e. unbiased est.)

• standard deviation σerrorS(h)

σerrorS(h) =

√
errorD(h)(1− errorD(h))

n

(i.e. increasing n decreases variance)

Want to compute confidence interval = interval centered
at errorD(h) containing N% of the weight under the dis-
tribution (difficult for binomial)

Approximate binomial by normal (Gaussian) dist:

• mean µerrorS(h) = errorD(h)

• standard deviation σerrorS(h)

σerrorS(h) ≈
√

errorS(h)(1− errorS(h))

n
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Normal Probability Distribution
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Normal distribution with mean 0, standard deviation 1

p(x) =
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2πσ2
exp
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)

• Defined completely by µ and σ

• The probability that X will fall into the interval (a, b) is
given by ∫ b

a
p(x)dx

• Expected, or mean value of X, E[X], is

E[X] = µ

• Variance of X is V ar(X) = σ2

• Standard deviation of X, σX , is

σX = σ
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Normal Probability Distribution
(cont’d)
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80% of area (probability) lies in µ± 1.28σ

N% of area (probability) lies in µ± zN σ

N%: 50% 68% 80% 90% 95% 98% 99%
zN : 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Can also have one-sided bounds:
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N% of area lies < µ + z′N σ or > µ− z′Nσ, where z′N =

z100−(100−N)/2

N%: 50% 68% 80% 90% 95% 98% 99%
z′N : 0.0 0.47 0.84 1.28 1.64 2.05 2.33
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Confidence Intervals Revisited

If

• S contains n examples, drawn independently of h and
each other

• n ≥ 30

Then

• With approximately 95% probability, errorS(h) lies in
interval

errorD(h)± 1.96

√
errorD(h)(1− errorD(h))

n

Equivalently, errorD(h) lies in interval

errorS(h)± 1.96

√
errorD(h)(1− errorD(h))

n

which is approximately

errorS(h)± 1.96

√
errorS(h)(1− errorS(h))

n

(One-sided bounds yield upper or lower error bounds)
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Central Limit Theorem

How can we justify approximation?

Consider a set of independent, identically distributed ran-
dom variables Y1 . . . Yn, all governed by an arbitrary prob-
ability distribution with mean µ and finite variance σ2. De-
fine the sample mean

Ȳ ≡ 1

n

n∑
i=1

Yi

Note that Ȳ is itself a random variable, i.e. the result of an
experiment (e.g. errorS(h) = r/n)

Central Limit Theorem: As n → ∞, the distribution gov-
erning Ȳ approaches a Normal distribution, with mean µ

and variance σ2/n

Thus the distribution of errorS(h) is approximately nor-
mal for large n, and its expected value is errorD(h)

(Rule of thumb: n ≥ 30 when estimator’s distribution is
binomial, might need to be larger for other distributions)
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Calculating Confidence Intervals

1. Pick parameter p to estimate

• errorD(h)

2. Choose an estimator

• errorS(h)

3. Determine probability distribution that governs esti-
mator

• errorS(h) governed by binomial distribution, ap-
proximated by normal when n ≥ 30

4. Find interval (L, U) such that N% of probability mass
falls in the interval

• Could have L = −∞ or U =∞

• Use table of zN or z′N values (if distrib. normal)
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Difference Between Hypotheses

Test h1 on sample S1, test h2 on S2, S1 ∩ S2 = ∅

1. Pick parameter to estimate

d ≡ errorD(h1)− errorD(h2)

2. Choose an estimator

d̂ ≡ errorS1
(h1)− errorS2

(h2)

(unbiased)

3. Determine probability distribution that governs esti-
mator (difference between two normals is also nor-
mal, variances add)

σd̂ ≈
√

errorS1
(h1)(1− errorS1

(h1))

n1

+
errorS2

(h2)(1− errorS2
(h2))

n2

4. Find interval (L, U) such that N% of prob. mass falls
in the interval: d̂± zn σd̂

(Can also use S = S1 ∪ S2 to test h1 and h2, but not as
accurate; interval overly conservative)
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Paired t test to compare hA,hB

1. Partition data into k disjoint test sets T1, T2, . . . , Tk of
equal size, where this size is at least 30

2. For i from 1 to k, do

δi← errorTi
(hA)− errorTi

(hB)

3. Return the value δ̄, where

δ̄ ≡ 1

k

k∑
i=1

δi

N% confidence interval estimate for d:

δ̄ ± tN,k−1 sδ̄

sδ̄ ≡
√√√√√ 1

k(k − 1)

k∑
i=1

(
δi − δ̄

)2

t plays role of z, s plays role of σ

t test gives more accurate results since std. deviation ap-
proximated and test sets for hA and hB not independent
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Comparing Learning Algorithms LA and LB

What we’d like to estimate:

ES⊂D[errorD(LA(S))− errorD(LB(S))]

where L(S) is the hypothesis output by learner L using
training set S

I.e., the expected difference in true error between hypothe-
ses output by learners LA and LB, when trained using
randomly selected training sets S drawn according to dis-
tribution D

But, given limited data D0, what is a good estimator?

• Could partition D0 into training set S0 and testing set
T0, and measure

errorT0
(LA(S0))− errorT0

(LB(S0))

• Even better, repeat this many times and average the
results (next slide)
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Comparing learning algorithms LA and LB

(cont’d)

k-fold Cross Validation

1. Partition data D0 into k disjoint test sets T1, T2, . . . , Tk

of equal size, where this size is at least 30

2. For i from 1 to k, do

(use Ti for the test set, and the remaining data for
training set Si)

• Si← D0 − Ti

• hA← LA(Si)

• hB ← LB(Si)

• δi← errorTi
(hA)− errorTi

(hB)

3. Return the value δ̄, where

δ̄ ≡ 1

k

k∑
i=1

δi
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Comparing learning algorithms LA and LB

(cont’d)

• Notice we’d like to use the paired t test on δ̄ to obtain
a confidence interval

• Not really correct, because the training sets in this al-
gorithm are not independent (they overlap!)

• More correct to view algorithm as producing an esti-
mate of

ES⊂D0
[errorD(LA(S))− errorD(LB(S))]

instead of

ES⊂D[errorD(LA(S))− errorD(LB(S))]

• But even this approximation is better than nothing
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ROC Analysis

• So far, we’ve looked at a single error rate to compare
hypotheses/learning algorithms/etc.

• This may not tell the whole story:

– 1000 test examples: 20 positive, 980 negative

– hA gets 2/20 pos correct, 965/980 neg correct, for
accuracy of (2 + 965)/(20 + 980) = 0.967

– Pretty impressive, except that always predicting
negative yields accuracy = 0.980

– Would we rather have hB, which gets 19/20 pos
correct and 930/980 neg, for accuracy = 0.949?

– Depends on how important the positives are, i.e.
frequency in practice and/or cost (e.g. cancer di-
agnosis)

• Can separately report false positive (FP) and false
negative (FN) error rates, but we can give even more
detail than that
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ROC Analysis
(cont’d)

• Consider an ANN or SVM

• Normally threshold at 0, but what if we changed it?

• Keeping weight vector constant while changing thresh-
old = holding hyperplane’s slope fixed while moving
along its normal vector

pred all −

pred all +

b

• I.e. get a set of classifiers, one per labeling of test set
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ROC Analysis
Plotting TP versus FP error

• Consider the “always −” hyp. What is its FP rate? Its
TP rate? What about the “always +” hyp?

• In between the extremes, we plot TP versus FP by
sorting the test examples by the SVM’s weighted sums:

Ex �w · �x label Ex �w · �x label
x1 169.752 + x6 −12.640 −
x2 109.200 + x7 −29.124 −
x3 19.210 − x8 −83.222 −
x4 1.905 + x9 −91.554 +
x5 −2.75 + x10 −128.212 −

x10

0
0

1

1

TP

FP

x1

x5
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ROC Analysis
Convex Hull

naive Bayes

0
0

1

1

TP

FP

ID3

• The convex hull of the ROC curve yields a collection
of classifiers, each optimal under different conditions

– If FP cost = FN cost, then draw a line with slope
|N |/|P | at (0,1) and drag it towards convex hull
until you touch it; that’s your operating point

– Can use as a classifier any part of the hull since
can randomly select between two classifiers

• Can also compare curves against “single-point” clas-
sifiers when no curves available

– In plot, ID3 better than our SVM iff negatives scarce;
nB never better
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ROC Analysis
Miscellany

• What is the worst possible ROC curve?

• One metric for measuring a curve’s goodness:
area under curve (AUC):∑

x+∈P
∑

x−∈N I(h(x+) > h(x−))
|P | |N |

i.e. rank all examples by confidence in “+” prediction,
count the number of times a positively-labeled exam-
ple (from P ) is ranked above a negatively-labeled one
(from N ), then normalize

– What is the best value?

– Distribution approximately normal if |P |, |N | > 10,
so can find confidence intervals

– Catching on as a better scalar measure of perfor-
mance than error rate

• ROC analysis possible (though tricky) with multi-class
problems
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ROC Analysis
Miscellany (cont’d)

• Can use ROC curve to modify classifiers, e.g. re-label
decision trees

• What does “ROC” stand for?

– “Receiver Operating Characteristic” from signal de-
tection theory, where binary signals are corrupted
by noise

– Use plots to determine how to set threshold to de-
termine presence of signal

– Threshold too high: miss true hits (TP rate low),
too low: too many false alarms (FP rate high)

• Alternatives to ROC: cost curves and
precision-recall curves
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Topic summary due in 1 week!
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