
CSCE 478/878 Lecture 3: Learning Decision
Trees

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)

August 31, 2006

1

Outline

• Decision tree representation

• ID3 learning algorithm

• Entropy, Information gain

• Overfitting and pruning

• Continuous, many-valued, unknown, and
cost-associated attributes

2

Decision Tree for PlayTennis

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

3

Decision Tree Representation

• Each internal node tests an attribute

• Each branch corresponds to attribute value

• Each leaf node assigns a classification

How would we represent:

• ∧,∨, XOR

• (A ∧B) ∨ (C ∧ ¬D ∧ E)

4

When to Consider Decision Trees

• Instances describable by attribute–value pairs

• Target function is discrete-valued

• Disjunctive hypothesis may be required

• Possibly noisy training data

• Human readability of result is important

Examples:

• Equipment or medical diagnosis

• Credit risk analysis

• Modeling calendar scheduling preferences

5

Top-Down Induction of Decision Trees
(ID3 Algorithm, Table 3.1)

Main loop:

1. A← the “best” decision attribute for next node

2. Assign A as decision attribute for node

3. For each value of A, create new descendant of node

4. Sort (partition) training examples over children based
on A’s value

5. If training examples perfectly classified, Then STOP,
Else iterate over new leaf nodes

Which attribute is best?

A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

6



Entropy

E
n

tr
o

p
y

(S
)

1.0

0.5

0.0 0.5 1.0

p
+

• S is a sample of training examples

• p⊕ is the proportion of positive examples in S

• p� is the proportion of negative examples in S

• Entropy measures the impurity of S

Entropy(S) ≡ −p⊕ log2 p⊕ − p� log2 p�

7

Entropy
(cont’d)

• Entropy(S) = expected number of bits needed to en-
code class (⊕ or �) of randomly drawn member of S

(under the optimal, shortest-length code)

Why?

• Information theory: optimal length code assigns− log2 p

bits to message having probability p

• So, expected number of bits to encode ⊕ or � of ran-
dom member of S:

p⊕(− log2 p⊕) + p�(− log2 p�)

Entropy(S) ≡ −p⊕ log2 p⊕ − p� log2 p�

8

Information Gain

• Gain(S, A) = expected reduction in entropy due to
partitioning on A

Gain(S, A) ≡ Entropy(S)−
∑

v∈V alues(A)

|Sv|

|S|
Entropy(Sv)

A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

9

Training Examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

10

Selecting the First Attribute

• Comparing Humidity to Wind:

Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

  = .940 - (7/14).985 - (7/14).592
  = .151

  = .940 - (8/14).811 - (6/14)1.0
  = .048

Gain (S, Humidity ) Gain (S,          )Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:

• Other gain values: Gain(S, Outlook) = 0.246,
Gain(S, Temperature) = 0.029

11

Selecting the Next Attribute

Outlook

Sunny Overcast Rain

[9+,5−]

{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}

[2+,3−] [4+,0−] [3+,2−]

Yes

{D1, D2, ..., D14}

? ?

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}

Gain (Ssunny , Humidity)

sunnyGain (S , Temperature) =  .970  −  (2/5) 0.0  −  (2/5) 1.0  −  (1/5) 0.0  =  .570

Gain (S sunny , Wind) =  .970  −  (2/5) 1.0  −  (3/5) .918  =  .019

=  .970  −  (3/5) 0.0  −  (2/5) 0.0  =  .970

12



Hypothesis Space Search by ID3

...

+ + +

A1

+ – + –

A2

A3

+

...

+ – + –

A2

A4

–

+ – + –

A2

+ – +

... ...

–

13

Hypothesis Space Search by ID3
(cont’d)

• Hypothesis space is complete!

– Target function surely in there...

• Maintains a single hypothesis versus a representation
of the version space

– Can’t use queries in this algorithm to reduce the
VS

• No back tracking, pure hill climbing (maximizing inf.
gain)

– Problems with local optima

• Statisically-based search choices

– Robust to noisy data (can terminate before per-
fectly fitting training data)

• Inductive bias ≈ “prefer shortest tree”

14

Inductive Bias in ID3

• Note H is the power set of instances X

⇒ Unbiased?

• Not really:

– Preference for short trees, and for those with high
information gain attributes near the root

– Bias is a preference for some hypotheses, rather
than a restriction of hypothesis space H (like with
candidate elim.)

∗ Checkers player had both

– Occam’s razor: prefer the shortest hypothesis that
fits the data

15

Occam’s Razor

Why prefer short hypotheses?

Argument in favor:

• Fewer short hyps. than long hyps.

⇒ a short hyp that fits data unlikely to be coincidence

⇒ a long hyp that fits data might be coincidence

Argument opposed:

• Are many ways to define small sets of hyps

• E.g. all trees with a prime number of nodes that use
attributes beginning with “Z”

• What’s so special about small sets based on size of
hypothesis??

Occam’s razor reappears in MDL (Chapt. 6) and in learn-
ing theory (not discussed)

16

Overfitting in Decision Trees

• Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, P layTennis = No

• What effect on earlier tree?

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

• Expect old tree to generalize better since new one fits
noisy example

17

Overfitting

• Consider error of hypothesis h over

– training data: errortrain(h)

– entire distribution D of data: errorD(h)

• Hypothesis h ∈ H overfits training data if there is an
alternative hypothesis h′ ∈ H such that

errortrain(h) < errortrain(h
′)

and

errorD(h) > errorD(h
′)

18



Overfitting in Decision Tree Learning

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy

Size of tree (number of nodes)

On training data
On test data

19

Avoiding Overfitting

• How can we avoid overfitting?

– Stop growing when data split doesn’t help

– Grow full tree, then post-prune

• How to select “best” tree:

– Measure performance over training data

– Measure performance over separate validation data
set

– MDL (minimum description length principle): mini-
mize
size(tree) + size(misclassifications(tree))

based on some size measure of trees and exam-
ples (Chapt. 6)

20

Reduced-Error Pruning

• Split data into training and validation set

• Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each
possible node (plus those below it)

2. Greedily remove the one that most improves vali-
dation set accuracy

• Produces smallest version of most accurate subtree
(with respect to validation set)

• What if data is limited?

21

Effect of Reduced-Error Pruning

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy

Size of tree (number of nodes)

On training data
On test data

On test data (during pruning)

22

Rule Post-Pruning

1. Convert tree to equivalent set of rules

2. Prune each rule independently of others by removing
selected preconditions (the ones that improve accu-
racy the most)

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g. C4.5)

23

Converting A Tree to Rules
Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

IF (Outlook = Sunny) ∧ (Humidity = High)
THEN PlayTennis = No

IF (Outlook = Sunny) ∧ (Humidity = Normal)
THEN PlayTennis = Y es

. . .

24



Continuous-Valued Attributes

Use threshold to map continuous to boolean, e.g.
(Temperature > 72.3) ∈ {t, f}

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

• Can show that threshold maximizing inf. gain must lie
between two adjacent attribute values in training set
such that label changed, so try all such values, e.g.
(48 + 60)/2 = 54 and (80 + 90)/2 = 85

• Now (dynamically) replace continuous attribute with
boolean attributes Temperature>54 and
Temperature>85 and run algorithm normally

• Other options: Split into multiple intervals rather than
two; use thresholded linear combinations of continu-
ous attributes

25

Attributes with Many Values

Problem:

• If attribute has many values, Gain will select it

• E.g. if Date is attribute, inf. gain will be high because
several very small subsets will be created

One approach: use GainRatio instead:

GainRatio(S, A) ≡
Gain(S, A)

SplitInformation(S, A)

SplitInformation(S, A) ≡ −
c∑

i=1

|Si|

|S|
log2

|Si|

|S|

where Si is subset of S for which A has value vi (mea-
sures how broadly and uniformly A splits data)

26

Attributes with Costs

• Medical diagnosis, BloodTest has cost $150

• Robotics, Width from 1ft has cost 23 sec.

How to learn a consistent tree with low expected cost?

One approach: replace gain by

• Tan and Schlimmer (1990)

Gain2(S, A)

Cost(A)
.

• Nunez (1988)

2Gain(S,A) − 1

(Cost(A) + 1)w

where w ∈ [0,1] determines importance of cost

27

Unknown Attribute Values

What if some examples are missing values of A?

Use them anyway (sift it through tree)

• If node n tests A, assign most common value of A

among other training examples sifted to node n

• Assign most common value of A among other exam-
ples with same target value (either overall or at node
n)

• Assign probability pi to each possible value vi of A

– Assign fraction pi of example to each descendant
in tree

Classify new examples in same fashion

28

Topic summary due in 1 week!

29


