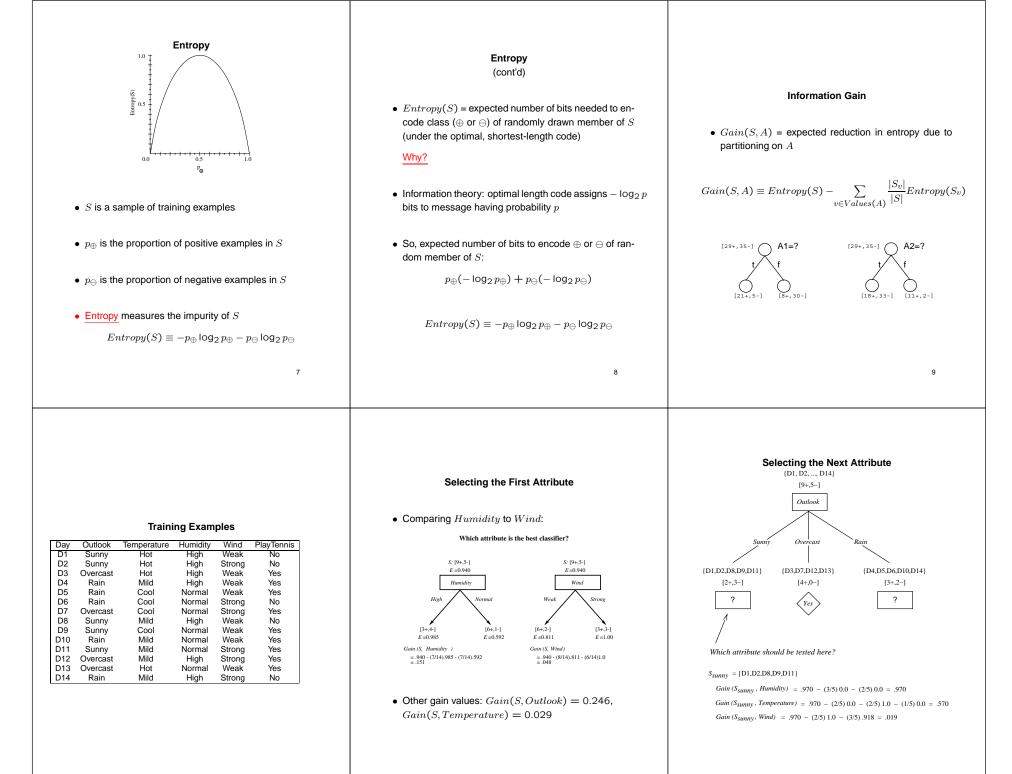
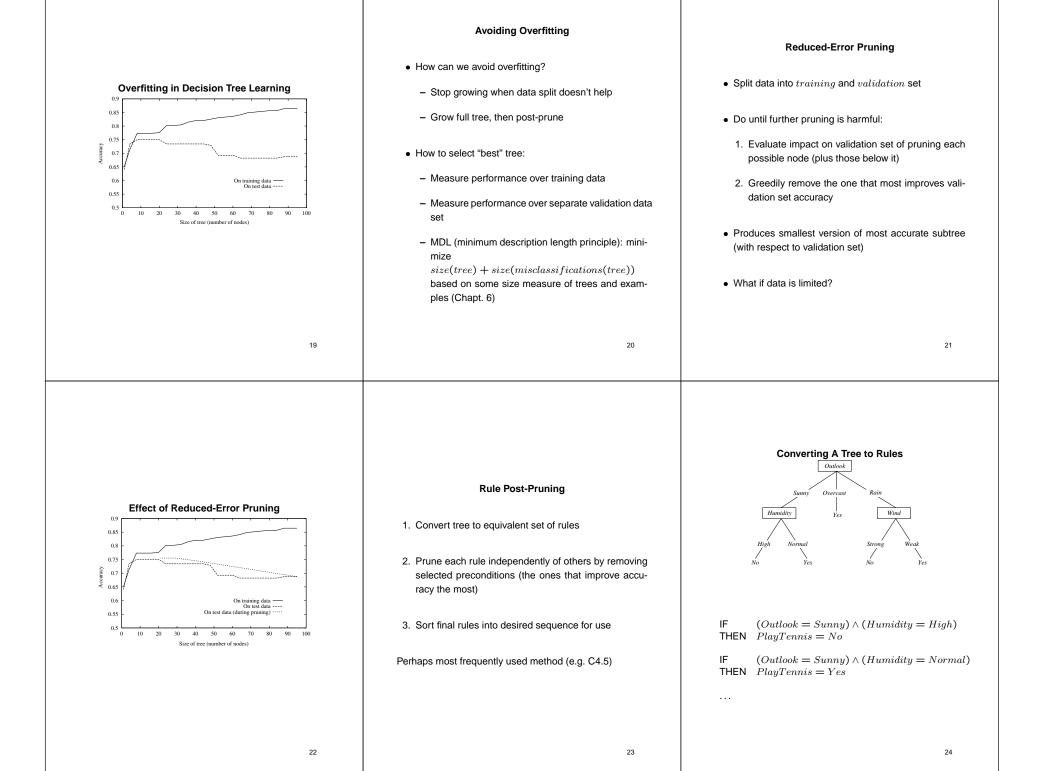
CSCE 478/878 Lecture 3: Learning Decision Trees Stephen D. Scott (Adapted from Tom Mitchell's slides) August 31, 2006	Outline • Decision tree representation • ID3 learning algorithm • Entropy, Information gain • Overfitting and pruning • Continuous, many-valued, unknown, and cost-associated attributes	Decision Tree for PlayTennis
1	2 When to Consider Decision Trees	3 Top-Down Induction of Decision Trees
Decision Tree Representation	 Instances describable by attribute–value pairs 	(ID3 Algorithm, Table 3.1) Main loop:
Each internal node tests an attribute	Target function is discrete-valuedDisjunctive hypothesis may be required	 A ← the "best" decision attribute for next node Assign A as decision attribute for node
Each branch corresponds to attribute value		
	Possibly noisy training data	 For each value of A, create new descendant of node Sort (partition) training examples over children based
 Each leaf node assigns a classification How would we represent: 	Possibly noisy training dataHuman readability of result is important	 For each value of <i>A</i>, create new descendant of <i>node</i> Sort (<u>partition</u>) training examples over children based on <i>A</i>'s value If training examples perfectly classified, Then STOP,
	Human readability of result is important Examples:	 Sort (partition) training examples over children based on <i>A</i>'s value
How would we represent:	 Human readability of result is important 	 Sort (partition) training examples over children based on <i>A</i>'s value If training examples perfectly classified, Then STOP,



	Hypothesis Space Search by ID3 (cont'd)	
	Hypothesis space is complete!	Inductive Bias in ID3
Hypothesis Space Search by ID3	 Target function surely in there 	• Note <i>H</i> is the power set of instances <i>X</i>
	 Maintains a single hypothesis versus a representation of the version space 	\Rightarrow Unbiased?
	 Can't use queries in this algorithm to reduce the VS No back tracking, pure hill climbing (maximizing inf. 	 Not really: Preference for short trees, and for those with high information gain attributes near the root
	gain) – Problems with local optima	 Bias is a preference for some hypotheses, rather than a <u>restriction</u> of hypothesis space <i>H</i> (like with candidate elim.)
	Statisically-based search choices	* Checkers player had both
	 Robust to noisy data (can terminate before per- fectly fitting training data) 	 Occam's razor: prefer the shortest hypothesis that fits the data
	• Inductive bias \approx "prefer shortest tree"	
13	14	15
Occam's Razor	Overfitting in Decision Trees	
Why prefer short hypotheses?	 Consider adding noisy training example #15: 	
Argument in favor:		Overfitting
Fewer short hyps. than long hyps.	Sunny, Hot, Normal, Strong, PlayTennis = No	Overnang
\Rightarrow a short hyp that fits data unlikely to be coincidence	What effect on earlier tree?	 Consider error of hypothesis h over training data: error_{train}(h)
\Rightarrow a long hyp that fits data might be coincidence	Outlook	- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$
Argument opposed:	Sunny Overcast Rain	
 Are many ways to define small sets of hyps 	Humidity Yes Wind	• Hypothesis $h \in H$ <u>overfits</u> training data if there is an alternative hypothesis $h' \in H$ such that
• E.g. all trees with a prime number of nodes that use attributes beginning with "Z"	High Normal Strong Weak No Yes No Yes	$error_{train}(h) < error_{train}(h')$ and
 What's so special about small sets based on <u>size</u> of hypothesis?? 		$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$
Occam's razor reappears in MDL (Chapt. 6) and in learn-	Expect old tree to generalize better since new one fits pairs example	
ing theory (not discussed)	noisy example	



Continuous-Valued Attributes Attributes with Many Values Use threshold to map continuous to boolean, e.g. $(Temperature > 72.3) \in \{t, f\}$ Problem: • If attribute has many values, Gain will select it Temperature: 40 48 60 72 80 90 PlayTennis: No No Yes Yes No • E.g. if Date is attribute, inf. gain will be high because How to learn a consistent tree with low expected cost? several very small subsets will be created • Can show that threshold maximizing inf. gain must lie One approach: replace gain by between two adjacent attribute values in training set such that label changed, so try all such values, e.g. One approach: use GainRatio instead: (48 + 60)/2 = 54 and (80 + 90)/2 = 85 $GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$ • Now (dynamically) replace continuous attribute with boolean attributes Temperature >54 and $SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$ *Temperature*>85 and run algorithm normally where S_i is subset of S for which A has value v_i (mea-• Other options: Split into multiple intervals rather than sures how broadly and uniformly A splits data) two: use thresholded linear combinations of continuous attributes 25 26 Unknown Attribute Values What if some examples are missing values of A? Use them anyway (sift it through tree) • If node n tests A, assign most common value of Aamong other training examples sifted to node n Topic summary due in 1 week! • Assign most common value of A among other examples with same target value (either overall or at node n) • Assign probability p_i to each possible value v_i of A - Assign fraction p_i of example to each descendant in tree

Classify new examples in same fashion

28

Attributes with Costs

• Medical diagnosis, *BloodTest* has cost \$150

• Robotics, Width_from_1 ft has cost 23 sec.

 $\frac{Gain^2(S,A)}{Cost(A)}$

 $\frac{2^{Gain(S,A)} - 1}{(Cost(A) + 1)^w}$

27

where $w \in [0, 1]$ determines importance of cost

• Tan and Schlimmer (1990)

• Nunez (1988)