CSCE 478/878 Lecture 7: Combining Classifiers: Weighted Majority, Boosting, and Bagging

Stephen D. Scott (Adapted from Tom Mitchell slides and Rob Schapire)

October 29, 2001

Outline

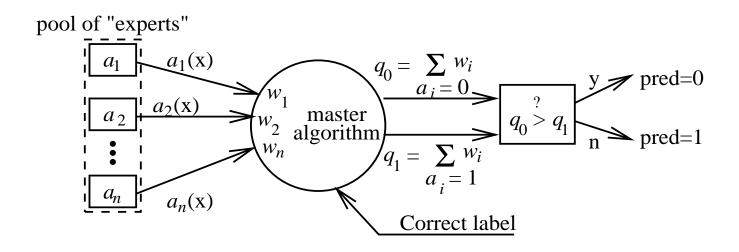
- Combining classifiers to improve performance
- Combining arbitrary classifiers: Weighted Majority algorithm
- Combining while learning:
 - Boosting
 - Bagging

Combining Classifiers

- Sometimes a single classifier (e.g. neural network, decision tree) won't perform well, but a <u>weighted</u> <u>combination</u> of them will
- Each classifier (or expert) in the pool has its own weight
- When asked to predict the label for a new example, each expert makes its own prediction, and then the <u>master algorithm</u> combines them using the weights for its own prediction (i.e. the "official" one)
- If the classifiers themselves cannot learn (e.g. heuristics) then the best we can do is to learn a good set of weights
- If we are using a learning algorithm (e.g. NN, dec. tree), then we can rerun the algorithm on different subsamples of the training set and set the classifiers' weights during training

Weighted Majority Algorithm (WM) [Sec. 7.5.4]

A = pool of <u>fixed</u> "experts"



Weighted Majority Algorithm (WM) (cont'd)

 a_i is *i*th pred. algorithm in pool A of algs; each alg is arbitrary function from X to $\{0, 1\}$

 w_i is weight the master alg associates with a_i

 $eta \in [0, 1)$ is parameter

- $\forall i \text{ set } w_i \leftarrow 1$
- For each training example (or trial) $\langle x, c(x) \rangle$

- Set $q_0 \leftarrow q_1 \leftarrow 0$

– For each algorithm a_i

- * If $a_i(x) = 0$ then $q_0 \leftarrow q_0 + w_i$ else $q_1 \leftarrow q_1 + w_i$
- If $q_1 > q_0$ then predict 1 for c(x), else predict 0 (case for $q_1 = q_0$ is arbitrary)
- For each $a_i \in A$

* If $a_i(x) \neq c(x)$ then $w_i \leftarrow \beta w_i$

Setting $\beta = 0$ yields Halving algorithm over A

Weighted Majority Mistake Bound (On-Line Model)

- Let $a_{opt} \in A$ be expert that makes fewest mistakes on arb. sequence S of exs; let k = number of mistakes
- Let $\beta = 1/2$ and $W_t = \sum_{i=1}^n w_{i,t} = \text{sum of wts}$ before trial $t (W_1 = n)$
- On trial *t* such that WM makes a mistake, the total weight reduced is

$$W_t^{mis} = \sum_{a_i(x_t) \neq c(x_t)} w_i \ge W_t/2$$

SO

$$W_{t+1} = (W_t - W_t^{mis}) + W_t^{mis}/2 = W_t - W_t^{mis}/2 \le 3W_t/4$$

• After seeing all of S, $w_{opt,|S|+1}=(1/2)^k$ and $W_{|S|+1}\leq n(3/4)^M$ where M= total number of mistakes, yielding

$$\left(\frac{1}{2}\right)^k \le n\left(\frac{3}{4}\right)^M,$$

SO

$$M \le \frac{k + \log_2 n}{-\log_2(3/4)} \le 2.4 \, (k + \log_2 n)$$

Weighted Majority

Mistake Bound (cont'd)

- Thus for <u>any</u> arbitrary sequence of examples, WM guaranteed to not perform much worse than best expert in pool plus log of number of experts
 - Implicitly agnostic
- Other results:
 - Bounds hold for general values of $\beta \in [0, 1)$
 - Better bounds hold for more sophisticated algorithms, but only better by a constant factor (worstcase lower bound: $\Omega (k + \log n)$)
 - Get bounds for real-valued labels and predictions
 - Can track shifting concept, i.e. where best expert can suddenly change in S; key: don't let any weight get too low relative to other weights, i.e. don't overcommit

Bagging Classifiers

[Breiman, ML Journal, '96]

Bagging = \underline{B} ootstrap aggregating

Bootstrap sampling: given a set D containing m training examples:

- Create D_i by drawing m examples uniformly at random with replacement from D
- Expect D_i to omit \approx 37% of examples from D

Bagging:

- Create k bootstrap samples D_1, \ldots, D_k
- Train a classifier on each D_i
- Classify new instance $x \in X$ by majority vote of learned classifiers (equal weights)

Result: An <u>ensemble</u> of classifiers

Bagging Experiment

[Breiman, ML Journal, '96]

Given sample S of labeled data, Breiman did the following 100 times and reported avg:

- 1. Divide S randomly into test set T (10%) and training set D (90%)
- 2. Learn decision tree from D and let e_S be its error rate on T
- 3. Do 50 times: Create bootstrap set D_i and learn decision tree (so ensemble size = 50). Then let e_B be the error of a majority vote of the trees on T

Results

Data Set	$ar{e}_S$	$ar{e}_B$	Decrease
waveform	29.0	19.4	33%
heart	10.0	5.3	47%
breast cancer	6.0	4.2	30%
ionosphere	11.2	8.6	23%
diabetes	23.4	18.8	20%
glass	32.0	24.9	27%
soybean	14.5	10.6	27%

Bagging Experiment (cont'd)

Same experiment, but using a nearest neighbor classifier (Chapt. 8), where prediction of new example x's label is that of x's nearest neighbor in training set, where distance is e.g. Euclidean distance

Results

Data Set	$ar{e}_S$	\overline{e}_B	Decrease
waveform	26.1	26.1	0%
heart	6.3	6.3	0%
breast cancer	4.9	4.9	0%
ionosphere	35.7	35.7	0%
diabetes	16.4	16.4	0%
glass	16.4	16.4	0%

What happened?

When Does Bagging Help?

When learner is <u>unstable</u>, i.e. if small change in training set causes large change in hypothesis produced

- Decision trees, neural networks
- Not nearest neighbor

Experimentally, bagging can help substantially for unstable learners; can somewhat degrade results for stable learners

Boosting Classifiers

[Freund & Schapire, ICML '96; many more]

Similar to bagging, but don't always sample uniformly; instead adjust resampling distribution over D to focus attention on previously misclassified examples

Final classifier weights learned classifiers, but not uniform; instead weight of classifier h_t depends on its performance on data it was trained on

Repeat for $t = 1, \ldots, T$:

- 1. Run learning algorithm on examples randomly drawn from training set D according to distribution \mathcal{D}_t ($\mathcal{D}_1 =$ uniform)
- 2. Output of learner is hypothesis $h_t : X \to \{-1, +1\}$
- 3. Compute $error_{\mathcal{D}}(h_t) = error \text{ of } h_t \text{ on examples drawn}$ according to \mathcal{D}_t (can compute exactly)
- 4. Create \mathcal{D}_{t+1} from \mathcal{D}_t by increasing weight of examples that h_t mispredicts

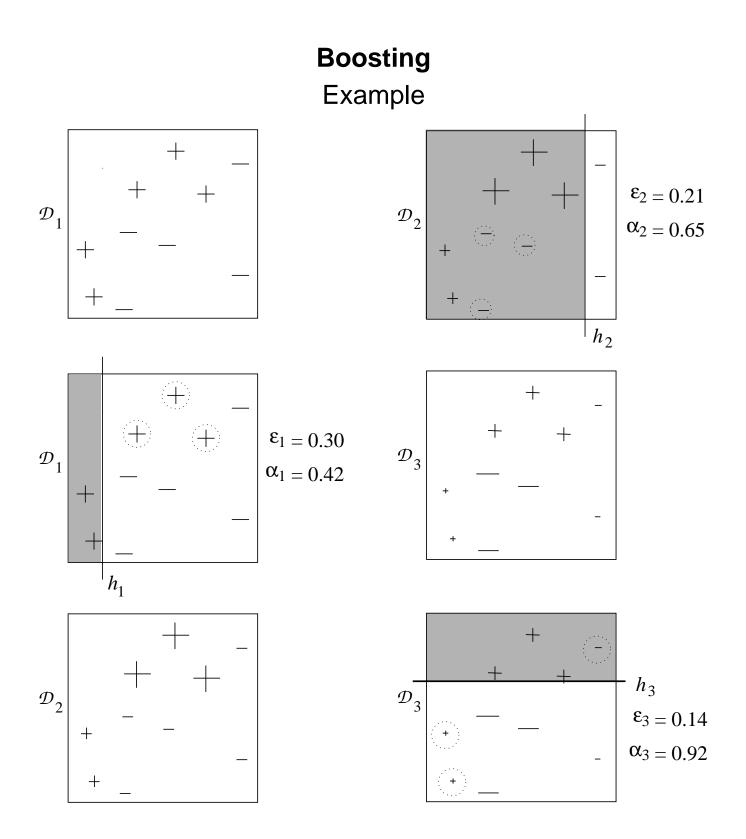
Final classifier is weighted combination of h_1, \ldots, h_T , where h_t 's weight depends on its error w.r.t. \mathcal{D}_t

Boosting (cont'd)

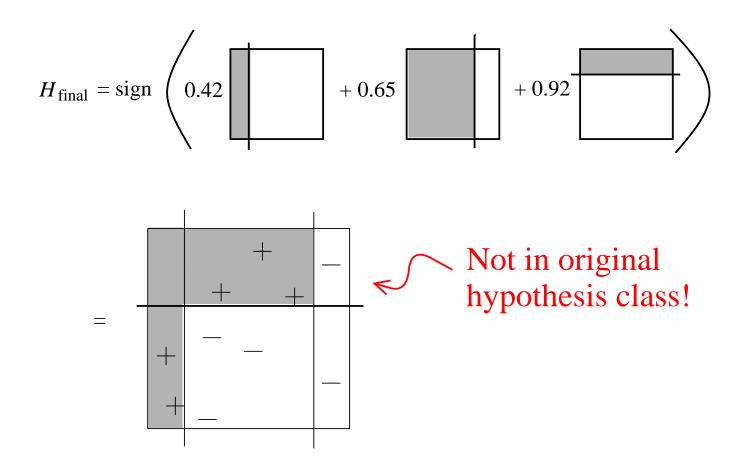
- <u>Preliminaries</u>: $D = \{(\vec{x}_1, y_1), \dots, (\vec{x}_m, y_m)\}, y_i \in \{-1, +1\}, \mathcal{D}_t(i) = \text{weight of } (\vec{x}_i, y_i) \text{ under } \mathcal{D}_t$
- Initialization: $\mathcal{D}_1(i) = 1/m$
- Error Computation: $\epsilon_t = \Pr_{\mathcal{D}_t} [h_t(\vec{x}_i) \neq y_i]$ (easy to do since we know \mathcal{D}_t)
- If $\epsilon_t > 1/2$ then halt; else:
- Weighting Factor: $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ (grows as ϵ_t decreases)
- Update: $\mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_t(i) \exp(-\alpha_t y_i h_t(\vec{x}_i))}{\underbrace{Z_t}}$

(increase wt. of mispredicted exs, decr. wt of correctly pred.)

• Final Hypothesis: $H(\vec{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\vec{x})\right)$



Boosting Example (cont'd)



Other advantages to ensembles (boost/bag):

- Helps with problem of choosing one of several consistent hypotheses
- Compensates for imperfect search algorithms (e.g. it is hard to find smallest decision tree or a consistent ANN)

Boosting Miscellany

- If each $\epsilon_t < 1/2 \gamma_t$, error of $H(\cdot)$ on D drops exponentially in $\sum_{t=1}^T \gamma_t$
- Can also bound generalization error of $H(\cdot)$ independent of T
- Also successful empirically on neural network and decision tree learners
 - Empirically, generalization sometimes improves if training continues after H(·)'s error on D drops to 0 [cf. generalization error's independence of T]
 - Contrary to intuition: would expect overfitting
 - Related to increasing the combined classifier's margin (confidence in prediction)
- Can apply to labels that are multi-valued using e.g. error-correcting output codes

Topic summary due in 1 week!