Nebraska Lincoln	
CSCE423/823	Computer Science & Engineering 423/823
Introduction Rod Cutting	Design and Analysis of Algorithms
Matrix-Chain Multiplication	Lecture 09 — Dynamic Programming (Chapter 15)
Longest Common Subsequence	
Optimal Binary Search Trees	Stephen Scott (Adapted from Vinodchandran N. Variyam)
1/41	Spring 2010

Intro	oduction
•	Dynamic programming is a technique for problems
۰	Key element: Decompose a problem into recursively, and then combine the solution solution
•	Important component: There are typically subproblems to solve, but many of them
\Rightarrow	Can re-use the solutions rather than re-so
٠	Number of distinct subproblems is polyno

Nebraska Rod Cutting

I Cutting

Rod Cutting

- A company has a rod of length n and wants to cut it into smaller rods to maximize profit
- Have a table telling how much they get for rods of various lengths: A rod of length i has price p_i
- The cuts themselves are free, so profit is based solely on the prices charged for of the rods
- $\bullet\,$ If cuts only occur at integral boundaries $1,2,\ldots,n-1,$ then can make or not make a cut at each of n-1 positions, so total number of possible solutions is 2^{n-1}

Nebiaska Example: Rod Cutting (3)

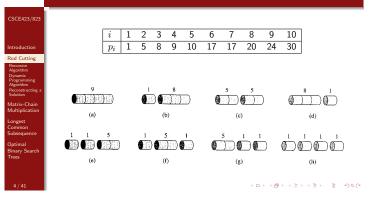
- Given a rod of length n, want to find a set of cuts into lengths i_1,\ldots,i_k (where $i_1+\cdots+i_k=n$) and $r_n=p_{i_1}+\cdots+p_{i_k}$ is maximized
- For a specific value of n, can either make no cuts (revenue $= p_n$) or make a cut at some position $\boldsymbol{i},$ then optimally solve the problem for lengths i and n - i:
 - $r_n = \max\left(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_i + r_{n-i}, \dots, r_{n-1} + r_1\right)$
- Notice that this problem has the optimal substructure property, in that an optimal solution is made up of optimal solutions to subproblems
- Can find optimal solution if we consider all possible subproblems • Alternative formulation: Don't further cut the first segment:

 $r_n = \max_{1 \le i \le n} \left(p_i + r_{n-i} \right)$

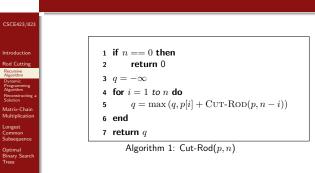
Nebraska

- solving optimization subproblems, solve them
- ons into a final (optimal)
- ly an exponential number of overlap
- olving them
- omial

Nebraska Example: Rod Cutting (2)



Nebraska Recursive Algorithm



What is the time complexity?

(日)(使)(注)(注)(注)(注)(注)の(()

Nebiaska Time Complexity

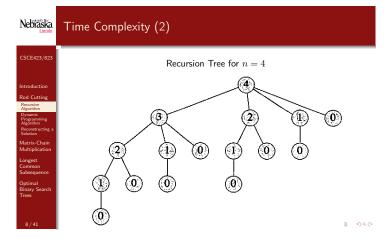
od Cutting Recursive

- Let T(n) be number of calls to CUT-ROD
- Thus T(0) = 1 and, based on the **for** loop,

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n$$

- Why exponential? CUT-ROD exploits the optimal substructure property, but repeats work on these subproblems
 - E.g. if the first call is for n = 4, then there will be:
 - 1 call to CUT-ROD(4)
 - 1 call to CUT-ROD(3)
 - 2 calls to CUT-ROD(2) • 4 calls to CUT-ROD(1)
 - 8 calls to CUT-ROD(0)

- < ロ > < 使 > < 注 > < 注 > 」 注 - の < で



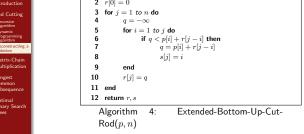
Nebraska Nebiaska Dynamic Programming Algorithm Top-Down with Memoization $\text{if } r[n] \geq 0 \text{ then}$ 1 $//\ r$ initialized to all $-\infty$ return r[n]• Can save time dramatically by remembering results from prior calls d Cutting == 0 then 3 4 if n • Two general approaches: q = 0O Top-down with memoization: Run the recursive algorithm as 5 6 else $q = -\infty$ defined earlier, but before recursive call, check to see if the calculation for i = 1 to n do 7 has already been done and memoized $q = \max \left(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, \eta)\right)$ 8 Bottom-up: Fill in results for "small" subproblems first, then use these to fill in table for "larger" ones 9 end • Typically have the same asymptotic running time 10 r[n] = q11 return qAlgorithm 2: Memoized-Cut-Rod-Aux(p, n, r)

Nebraska	Bottom-Up
CSCE423/823	
Introduction Rod Cutting Recursive Algorithm Programming Algorithm Reconstructing a Solution Matrix-Chain Multiplication	$ \begin{array}{ c c c c c } \hline 1 & \text{Allocate } r[0 \dots n] \\ 2 & r[0] = 0 \\ \hline 3 & \text{for } j = 1 \ to \ n \ \text{do} \\ 4 & q = -\infty \\ \hline 5 & \text{for } i = 1 \ to \ j \ \text{do} \\ 6 & q = \max(q, p[i] + r[j - i]) \\ \hline 7 & \text{end} \\ 8 & r[j] = q \\ \hline 9 & \text{end} \\ \end{array} $
Longest Common Subsequence	10 return <i>r</i> [<i>n</i>]
Optimal Binary Search Trees	Algorithm 3: Bottom-Up-Cut-Rod (p, n)
11 / 41	First solves for $n = 0$, then for $n = 1$ in terms of $r[0]$, then for $n = 2$ in terms of $r[0]$ and $r[1]$, etc.

Nebraska Time Complexity Subproblem graph for $n=4\,$ Both algorithms take linear time to solve for each value of n, so total time complexity is $\Theta(n^2)$ 1011000 E (E) (E) (E) (O)

Nebiaska Reconstructing a Solution d Cuttin • If interested in the set of cuts for an optimal solution as well as the revenue it generates, just keep track of the choice made to optimize each subproblem • Will add a second array s, which keeps track of the optimal size of the first piece cut in each subproblem

Nebraska Reconstructing a Solution (2) $\textbf{1} \quad \mathsf{Allocate} \ r[0 \dots n] \ \mathsf{and} \ s[0 \dots n]$ 2 r[0] = 0



^{1011 (}B) (E) (E) (E) (E) (O)

Nebraska Lincoln	Reconstr	uctir	ng a	a So	olut	tior	(3)							
CSCE423/823														
Introduction Rod Cutting Recursive Algorithm Programming Algorithm Reconstructing a Solution Matrix-Chain Multiplication		2 v 3 4 5 d	while end	n > print n =	0 do s[n] n	s[n]			$\operatorname{Rod}(p)$					
Longest Common Subsequence Optimal Binary Search Trees	Example: If $n = 10$, segments					3 8 3 is no	4 10 2 o cut	5 13 2 ; if <i>n</i>	7 18 1 then	8 22 2 cut	9 25 3 once	10 30 10 to get		
15 / 41	Ŭ								< □	► < #	× ₹	< 3 × 3	а.	୶ୡୡ

Nebiaska Matrix-Chain Multiplication (2)

od Cutting

Matrix-Chain Multiplication

- The matrix-chain multiplication problem is to take a chain $\langle A_1, \ldots, A_n \rangle$ of *n* matrices, where matrix *i* has dimension $p_{i-1} \times p_i$, and fully parenthesize the product $A_1 \cdots A_n$ so that the number of scalar multiplications is minimized
- Brute force solution is infeasible, since its time complexity is $\Omega(4^n/n^{3/2})$
- Will follow 4-step procedure for dynamic programming:
 - O Characterize the structure of an optimal solution
 - Recursively define the value of an optimal solution
 - Occupies the value of an optimal solution
 - Onstruct an optimal solution from computed information

1000 C

Matrix-Chain Multiplication

- Given a chain of matrices $\langle A_1, \ldots, A_n \rangle$, goal is to compute their product $A_1 \cdots A_n$
- This operation is associative, so can sequence the multiplications in multiple ways and get the same result
- Can cause dramatic changes in number of operations required
- Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires pqr steps and yields a $p \times r$ matrix for future multiplications
- E.g. Let A_1 be 10×100 , A_2 be 100×5 , and A_3 be 5×50
 - (A_1A_2) (yielding a 10×5), and then $10\cdot5\cdot50=2500$ steps to finish, for a total of 7500
- (A_2A_3) (yielding a $100\times50),$ and then $10\cdot100\cdot50=50000$ steps to finish, for a total of 75000 -----E 990

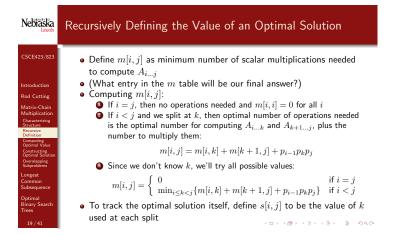
Nebiaska Characterizing the Structure of an Optimal Solution • Let $A_{i,..,i}$ be the matrix from the product $A_i A_{i+1} \cdots A_i$ • To compute $A_{i...j}$, must split the product and compute $A_{i...k}$ and $A_{k+1\dots j}$ for some integer k, then multiply the two together d Cutting · Cost is the cost of computing each subproduct plus cost of multiplying the two results • Say that in an optimal parenthesization, the optimal split for $A_i A_{i+1} \cdots A_j$ is at k• Then in an optimal solution for $A_iA_{i+1}\cdots A_j$, the parenthisization of $A_i \cdots A_k$ is itself optimal for the subchain $A_i \cdots A_k$ (if not, then we could do better for the larger chain) • Similar argument for $A_{k+1} \cdots A_j$ • Thus if we make the right choice for k and then optimally solve the subproblems recursively, we'll end up with an optimal solution

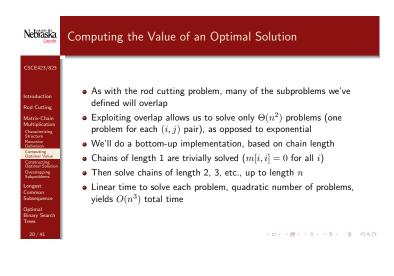
• Since we don't know optimal k, we'll try them all

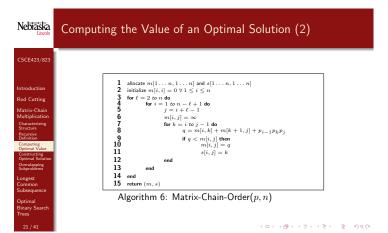
Nebraska

od Cutting

Matrix-Chain







 Constructing an Optimal Solution from Computed Information

 CSCE423/023

 Introduction Red Cutting Multiplication Generative Subsequence Subsequence Subsequence Optimal

 Introduction Reserve Subsequence Subsequence Optimal

 Octost of optimal parenthesization is stored in m[1, n]

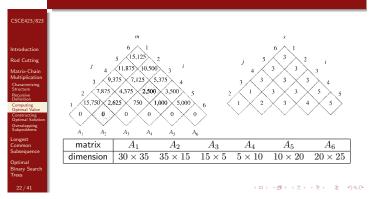
 • Cost of optimal parenthesization is between s[1, n] and s[1, n] + 1

 • Descending recursively, next splits are between s[1, s[1, n]] and s[1, s[1, n]] + 1 for left side and between s[s[1, n] + 1, n] and s[s[1, n] + 1, n] + 1 for right side

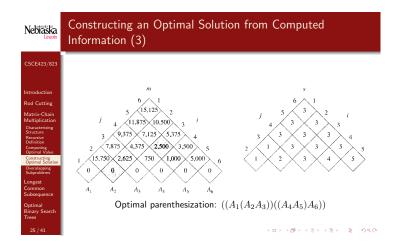
 • and so on...

・日本・1日本・1日本・日本・日本・今日で

Nebiaska Licent Computing the Value of an Optimal Solution (3)



Nebraska	Constructing an Optimal Solution from Computed Information (2)
CSCE423/823	
ntroduction	
Rod Cutting	1 if $i == j$ then
Matrix-Chain Multiplication Characterizing Structure Recursive Definition Computing Optimal Value Constructing Optimal Solution Overalapping Subproblems	2 print "A" i 3 else 4 print "(" 5 PRINT-OPTIMAL-PARENS $(s, i, s[i, j])$ 6 PRINT-OPTIMAL-PARENS $(s, s[i, j] + 1, j)$ 7 print ")"
Longest Common Subsequence Optimal Binary Search Trees	Algorithm 7: Print-Optimal-Parens (s, i, j)



• Sequence $Z = \langle z_1, z_2, \dots, z_k \rangle$ is a **subsequence** of another sequence

 $\langle i_1,\ldots,i_k
angle$ of indices of X such that for all $j=1,\ldots,k$, $x_{i_j}=z_j$

• I.e. as one reads through Z, one can find a match to each symbol of

 $X = \langle A, B, C, B, D, A, B \rangle$ since $z_1 = x_2$, $z_2 = x_3$, $z_3 = x_5$, and

• Z is a common subsequence of X and Y if it is a subsequence of

• The goal of the longest common subsequence problem is to find

a maximum-length common subsequence (LCS) of sequences

 $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$

 $X = \langle x_1, x_2, \dots, x_m \rangle$ if there is a strictly increasing sequence

Z in X, in order (though not necessarily contiguous)

• E.g. $Z = \langle B, C, D, B \rangle$ is a subsequence of

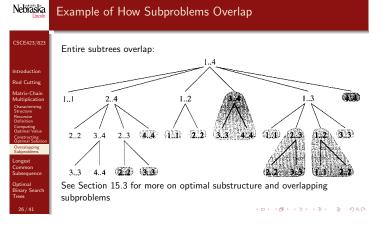
Longest Common Subsequence

 $z_4 = x_7$

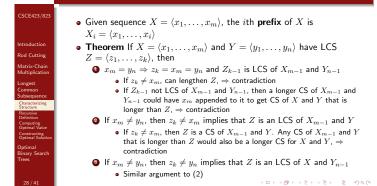
both

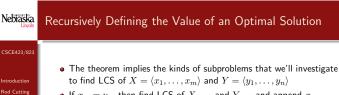
Nebraska

d Cutting



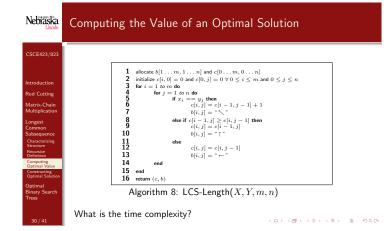
Nebiaska Characterizing the Structure of an Optimal Solution

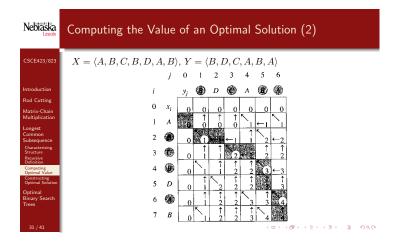




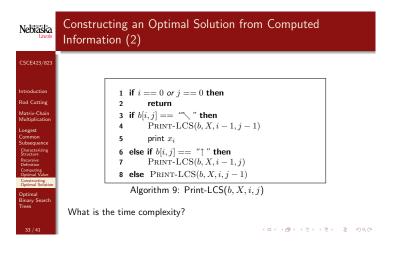
- If $x_m = y_n$, then find LCS of X_{m-1} and Y_{n-1} and append x_m $(= y_n)$ to it
- If $x_m \neq y_n$, then find LCS of X and Y_{n-1} and find LCS of X_{m-1} and Y and identify the longest one
- Let $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$

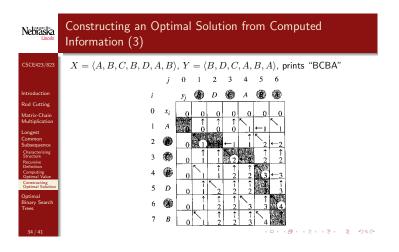
$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i=0 \text{ or } j=0 \\ c[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } x_i=y_j \\ \max\left(c[i,j-1],c[i-1,j]\right) & \text{if } i,j>0 \text{ and } x_i\neq y_j \end{array} \right.$$



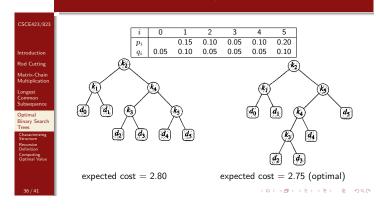


Nebraska	Constructing an Optimal Solution from Computed Information
CSCE423/823	
Introduction Rod Cutting Matrix-Chain Multiplication Common Subsequence Charactering Structure Reparties Charactering Structure Common Subsequence Charactering Community Commun	 Length of LCS is stored in c[m, n] To print LCS, start at b[m, n] and follow arrows until in row or column 0 If in cell (i, j) on this path, when x_i = y_j (i.e. when arrow is "∖"), print x_i as part of the LCS This will print LCS backwards





Nebraska Inom Optimal Binary Search Trees (2)



Nebiaska Optimal Binary Search Trees

- Goal is to construct binary search trees such that most frequently sought values are near the root, thus minimizing expected search time
 Given a sequence K = (k₁,...,k_n) of n distinct keys in sorted order
- Key k_i has probability p_i that it will be sought on a particular search
- To handle searches for values not in K, have n + 1 dummy keys d_0, d_1, \ldots, d_n to serve as the tree's leaves
 - Dummy key d_i will be reached with probability q_i
 - $\bullet~{\rm If~depth}_T(k_i)$ is distance from root of k_i in tree T, then expected search cost of T is

$$1 + \sum_{i=1}^{n} p_i \operatorname{depth}_T(k_i) + \sum_{i=0}^{n} q_i \operatorname{depth}_T(d_i)$$

• An optimal binary search tree is one with minimum expected search cost

35 / 41

troduction od Cutting

Nebraska Characterizing the Structure of an Optimal Solution

- Observation: Since K is sorted and dummy keys interspersed in order, any subtree of a BST must contain keys in a contiguous range k_i,...,k_i and have leaves d_{i-1},...,d_i
 - Thus, if an optimal BST T has a subtree T' over keys k_i,..., k_j, then T' is optimal for the subproblem consisting of only the keys k_i,..., k_j
 If T' weren't optimal, then a lower-cost subtree could replace T' in T,
 - If T' weren't optimal, then a lower-cost subtree could replace T' in T, ⇒ contradiction
 - \bullet Given keys $k_i,\ldots,k_j,$ say that its optimal BST roots at k_r for some $i\leq r\leq j$
 - Thus if we make right choice for k_r and optimally solve the problem for k_i, \ldots, k_{r-1} (with dummy keys d_{i-1}, \ldots, d_{r-1}) and the problem for k_{r+1}, \ldots, k_j (with dummy keys d_r, \ldots, d_j), we'll end up with an optimal solution
 - Since we don't know optimal k_r , we'll try them all \mathcal{O} , \mathcal{O}

Nebiaska Recursively Defining the Value of an Optimal Solution CSCE423/023 • Define e[i, j] as the expected cost of searching an optimal BST built on keys k_i, \dots, k_j

 $\bullet~$ If j=i-1, then there is only the dummy key $d_{i-1},$ so $e[i,i-1]=q_{i-1}$

atrix-Cha ultiplicati

- If $j \ge i$, then choose root k_r from k_i, \ldots, k_j and optimally solve subproblems k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j
- When combining the optimal trees from subproblems and making them children of k_r , we increase their depth by 1, which increases the cost of each by the sum of the probabilities of its nodes
- Define $w(i,j) = \sum_{\ell=i}^{j} p_{\ell} + \sum_{\ell=i-1}^{j} q_{\ell}$ as the sum of probabilities of the nodes in the subtree built on k_i, \ldots, k_j , and get

```
e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))
```

Nebiaska Recursively Defining the Value of an Optimal Solution (2)

Note that

troduction

- $w(i, j) = w(i, r 1) + p_r + w(r + 1, j)$
- Thus we can condense the equation to e[i, j] = e[i, r-1] + e[r+1, j] + w(i, j)
- Finally, since we don't know what k_r should be, we try them all:

$$e[i,j] = \left\{ \begin{array}{ll} q_{i-1} & \text{if } j = i-1 \\ \min_{i \leq r \leq j} \{ e[i,r-1] + e[r+1,j] + w(i,j) \} & \text{if } i \leq j \end{array} \right.$$

 Will also maintain table $root[i,j] = {\rm index}\; r$ for which k_r is root of an optimal BST on keys k_i,\ldots,k_j

900 5 (5) (5) (5) (5) (0)

Nebiaska Computing the Value of an Optimal Solution

