Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 07 — Maximum Flow (Chapter 26)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Spring 2010

Introduction

Can use a directed graph as a flow network to model:

- Data through communication networks, water/oil/gas through pipes, assembly lines, etc.
- A flow network is a directed graph with two special vertices: source \(s \) that produces flow and sink \(t \) that takes in flow
- Each directed edge is a conduit with a certain capacity (e.g., 200 gallons/hour)
- Vertices are conduit junctions
- Except for \(s \) and \(t \), flow must be conserved: The flow into a vertex must match the flow out
- Maximum flow problem: Given a flow network, determine the maximum amount of flow that can get from \(s \) to \(t \)
- Other application: Bipartite matching

Flow Networks

- A flow network \(G = (V, E) \) is a directed graph in which each edge \((u, v) \in E \) has a nonnegative capacity \(c(u, v) \geq 0 \)
- If \((u, v) \notin E \), \(c(u, v) = 0 \)
- Assume that every vertex in \(V \) lies on some path from the source vertex \(s \in V \) to the sink vertex \(t \in V \)

Maximum flow problem: given graph and capacities, find a flow of maximum value

Flows

- A flow in graph \(G \) is a function \(f : V \times V \to \mathbb{R} \) that satisfies:
 - Capacity constraint: For all \(u, v \in V \), \(f(u, v) \leq c(u, v) \) (flow should not exceed capacity)
 - Skew symmetry: For all \(u, v \in V \), \(f(u, v) = -f(v, u) \) (for convenience; flow defined for all pairs of vertices)
 - Flow conservation: For all \(u \in V \setminus \{s, t\} \),
 \[\sum_{v \in V} f(u, v) = 0 \]
 (flow entering a vertex = flow leaving)
 - The value of a flow is the flow out of \(s \) (= flow into \(t \)):
 \[|f| = \sum_{x \in V} f(x, v) = \sum_{x \in V} f(v, x) \]
 - Maximum flow problem: given graph and capacities, find a flow of maximum value

More Notation

- For convenience, we will also use set notation in \(f \): For \(X, Y \subseteq V \),
 \[f(X, Y) = \sum_{x \in X, y \in Y} f(x, y) \]
- Lemma: If \(G = (V, E) \) is a flow network and \(f \) is a flow in \(G \), then
 - For all \(X \subseteq V \), \(f(X, X) = 0 \)
 - For all \(X, Y \subseteq V \), \(f(X, Y) = -f(Y, X) \)
 - For all \(X, Y, Z \subseteq V \) with \(X \cap Y = \emptyset \),
 \[f(X \cup Y, Z) = f(X, Z) + f(Y, Z) \]
 and
 \[f(Z, X \cup Y) = f(Z, X) + f(Z, Y) \]
Multiple Sources and Sinks

- Might have cases where there are multiple sources and/or sinks; e.g. if there are multiple factories producing products and/or multiple warehouses to ship to
- Can easily accommodate graphs with multiple sources s_1, \ldots, s_k and multiple sinks t_1, \ldots, t_ℓ
- Add to G a supersource s with an edge (s, s_i) for $i \in \{1, \ldots, k\}$ and a supersink t with an edge (t_j, t) for $j \in \{1, \ldots, \ell\}$
- Each new edge has a capacity of ∞

Ford-Fulkerson Method

- A method (rather than specific algorithm) for solving max flow
- Multiple ways of implementing, with varying running times
- Core concepts:
 - Residual network: A network G_f, which is G with capacities reduced based on the amount of flow f already going through it
 - Augmenting path: A simple path from s to t in residual network G_f
 - Cut: A partition of V into S and T where $s \in S$ and $t \in T$; can measure net flow and capacity crossing a cut
- Method repeatedly finds an augmenting path in residual network, adds in flow along the path, then updates residual network

Residual Networks

- Given flow network G with capacities c and flow f, residual network G_f consists of edges with capacities showing how one can change flow in G
- Define residual capacity of an edge as
 $$r_f(u, v) = \begin{cases}
 c(u, v) - f(u, v) & \text{if } (u, v) \in E \\
 f(v, u) & \text{if } (v, u) \in E \\
 0 & \text{otherwise}
 \end{cases}$$
- E.g., if $c(u, v) = 16$ and $f(u, v) = 11$, then $c_f(u, v) = 5$ and $c_f(v, u) = 11$
- Then can define $G_f = (V, E_f)$ as
 $$E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$$
- So G_f will have some edges not in G, and vice-versa
Evidence augmentation

- G_f is like a flow network (except that it can have an edge and its reversal); so we can find a flow within it
- If f is a flow in G and f' is a flow in G_f, can define the augmentation of f by f' as
 $$(f + f')(u, v) = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$
- Lemma: $f + f'$ is a flow in G with value $|f + f'| = |f| + |f'|$
- Proof: Not difficult to show that $f + f'$ satisfies capacity constraint and and flow conservation; then show that $|f + f'| = |f| + |f'|$
- Result: If we can find a flow f' in G_f, we can increase flow in G

Augmenting path

- By definition of residual network, an edge $(u, v) \in E_f$ with $c_f(u, v) > 0$ can handle additional flow
- Since edges in E_f all have positive residual capacity, it follows that if there is a simple path p from s to t in G_f, then we can increase flow along each edge in p, thus increasing total flow
- We call p an augmenting path
- The amount of flow we can put on p is p's residual capacity:
 $$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

Max-flow min-cut theorem

- Used to prove that once we run out of augmenting paths, we have a maximum flow
- A cut (S, T) of a flow network $G = (V, E)$ is a partition of V into $S \subseteq V$ and $T = V \setminus S$ such that $s \in S$ and $t \in T$
- Net flow across the cut (S, T) is
 $$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{v \in S} \sum_{u \in T} f(v, u)$$
- Capacity of cut (S, T) is
 $$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$$
- A minimum cut is one whose capacity is smallest over all cuts

Example

- When do we stop? Will we have a maximum flow if there is no augmenting path?
Max-Flow Min-Cut Theorem (3)

- **Lemma**: For any flow f, the value of f is the same as the net flow across any cut; i.e., $|f(S,T)| = |f|$ for all cuts (S,T)
- **Corollary**: The value of any flow f in G is upperbounded by the capacity of any cut G
- **Proof**:

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u) \leq \sum_{u \in S} \sum_{v \in T} f(u,v) \leq \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T)$$

Max-Flow Min-Cut Theorem (4)

- **Max-Flow Min-Cut Theorem**: If f is a flow in flow network G, then these statements are equivalent:
 - f is a maximum flow in G
 - G_f has no augmenting paths
 - $|f| = c(S,T)$ for some (i.e., minimum) cut (S,T) of G
- **Proof**: Show (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)

Max-Flow Min-Cut Theorem (5)

- $(2) \Rightarrow (3)$: Assume G_f has no path from s to t and define
 - (S,T) is a cut since it partitions V, $s \in S$ and $t \in T$
 - Consider $u \in S$ and $v \in T$:
 - If $(u,v) \in E$, then $f(u,v) = c(u,v)$ since otherwise $c_f(u,v) > 0 \Rightarrow (u,v) \in E_f \Rightarrow v \in S$
 - If $(v,u) \in E$, then $f(v,u) = 0$ since otherwise we’d have $c_f(u,v) = f(v,u) > 0 \Rightarrow (u,v) \in E_f \Rightarrow v \in S$
 - If $(u,v) \notin E$ and $(v,u) \notin E$, then $f(u,v) = f(v,u) = 0$
 - Thus (by applying the Lemma as well)

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u) = \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in S} 0 = c(S,T)$$

Max-Flow Min-Cut Theorem (6)

- $(3) \Rightarrow (1)$:
 - Corollary says that $|f| \leq c(S',T')$ for all cuts (S', T')
 - We’ve established that $|f| = c(S,T)$
 - $|f|$ can’t be any larger
 - f is a maximum flow

Basic Ford-Fulkerson Algorithm

1. for each edge $(u,v) \in E$ do
2. $f(u,v) = 0$
3. end
4. while there exists path p from s to t in G_f do
5. $c_f(p) = \min \{c_f(u,v) : (u,v) \text{ is in } p\}$
6. for each edge $(u,v) \in p$ do
7. if $(u,v) \in F$ then
8. $f(u,v) = f(u,v) + c_f(p)$
9. end
10. else
11. $f(u,v) = f(u,v) - c_f(p)$
12. end
13. end
14. end

Algorithm 2: Ford-Fulkerson(G,s,t)

Ford-Fulkerson Example
Ford-Fulkerson Example (2)

Example of Large $|f^*|

Arbitrary choice of augmenting path can result in small increase in $|f|$ each step

Takes 2×10^6 augmentations

Analysis of Ford-Fulkerson

- Assume all of G's capacities are integers
 - If not, but values still rational, can scale them
 - If values irrational, might not converge
- If we choose augmenting path arbitrarily, then $|f|$ increases by at least one unit per iteration \Rightarrow number of iterations is $\leq |f^*| = \text{value of max flow}$
- $|E| \leq 2|E|
- Every vertex is on a path from s to t $\Rightarrow |V| = O(|E|)
\Rightarrow Finding augmenting path via BFS or DFS takes time $O(|E|)$, as do initialization and each augmentation step
- Total time complexity: $O(|E||f^*|)
- Not polynomial in size of input! (What is size of input?)

Edmonds-Karp Algorithm

- Uses Ford-Fulkerson Method
- Rather than arbitrary choice of augmenting path p from s to t in G_f, choose one that is shortest in terms of number of edges
 - How can we easily do this?
- Will show time complexity of $O(|V||E|^2)$, independent of $|f^*|
- Proof based on $\delta_f(u,v)$, which is length of shortest path from u to v in G_f, in terms of number of edges
- Lemma: When running Edmonds-Karp on G, for all vertices $v \in V \setminus \{s,t\}$, shortest path distance $\delta_f(u,v)$ in G_f increases monotonically with each flow augmentation

Edmonds-Karp Algorithm (2)

- Theorem: When running Edmonds-Karp on G, the total number of flow augmentations is $O(|V||E|)
- Proof: Call an edge (u,v) critical on augmenting path p if $c_f(p) = c_f(u,v)$
- When (u,v) is critical for the first time, $\delta_f(s,v) = \delta_f(s,u) + 1$
- At the same time, (u,v) disappears from residual network and does not reappear until its f decreases, which only happens when (v,u) appears on an augmenting path, at which time
 \[
 \delta_f(s,u) = \delta_f(s,v) + 1 \\
 \geq \delta_f(s,v) + 1 \quad \text{(from Lemma)} \\
 = \delta_f(s,u) + 2
 \]
- Thus, from the time (u,v) becomes critical to the next time it does, u's distance from s increases by at least 2

Edmonds-Karp Algorithm (3)

- Since u's distance from s is at most $|V| - 2$ (because $u \neq t$) and at least 0, edge (u,v) can be critical at most $|V|/2$ times
- There are at most $2|E|$ edges that can be critical in a residual network
- Every augmentation step has at least one critical edge
 - Number of augmentation steps is $O(|V||E|)$, instead of $O(|f^*|)$ in previous algorithm
 - Edmonds-Karp time complexity is $O(|V||E|^2)$
Maximum Bipartite Matching

- In an undirected graph $G = (V, E)$, a matching is a subset of edges $M \subseteq E$ such that for all $v \in V$, at most one edge from M is incident on v.
- If an edge from M is incident on v, v is matched, otherwise unmatched.
- Problem: Find a matching of maximum cardinality.
- Special case: G is bipartite, meaning V partitioned into disjoint sets L and R and all edges of E go between L and R.
- Applications: Matching machines to tasks, arranging marriages between interested parties, etc.

Casting Bipartite Matching as Max Flow

- Can cast bipartite matching problem as max flow.
- Given bipartite graph $G = (V, E)$, define corresponding flow network $G' = (V', E')$:
 \[V' = V \cup \{s, t\} \]
 \[E' = \{(s, u) : u \in L\} \cup \{(u, v) : (u, v) \in E\} \cup \{(v, t) : v \in R\} \]
- $e(u, v) = 1$ for all $(u, v) \in E'$

Lemma: Let $G = (V, E)$ be a bipartite graph with V partitioned into L and R and let $G' = (V', E')$ be its corresponding flow network. If M is a matching in G, then there is an integer-valued flow f in G' with value $|f| = |M|$. Conversely, if there is an integer-valued flow f in G', then there is a matching M in G with cardinality $|M| = |f|$.

Proof:

- Set flow of all other edges to 0
- Flow satisfies capacity constraint and flow conservation
- Flow across cut $(L \cup \{s\}, R \cup \{t\})$ is $|M|

\[M = \{(u, v) : u \in L, v \in R, f(u, v) > 0\} \]

- Any flow into u must be exactly 1 in and exactly 1 out on one edge
- Similar argument for $v \in R$, so M is a matching with $|M| = |f|$

Bipartite Matching Example

- Value of flow across cut $(L \cup \{s\}, R \cup \{t\})$ equals $|M|$.

Casting Bipartite Matching as Max Flow (2)

- Theorem: If all edges in a flow network have integral capacities, then the Ford-Fulkerson method returns a flow with value that is an integer, and for all $(u, v) \in V$, $f(u, v)$ is an integer.
- Since the corresponding flow network for bipartite matching uses all integer capacities, can use Ford-Fulkerson to solve matching problem.
- Any matching has cardinality $O(|V|)$, so the corresponding flow network has a maximum flow with value $|f^*| = O(|V|)$, so time complexity of matching is $O(|V||E|)$.