Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 05 — Elementary Graph Algorithms (Chapter 22)

Stephen Scott and Vinodchandran N. Variyam

sscott@cse.unl.edu

Introduction

- Graphs are abstract data types that are applicable to numerous problems
 - ► Can capture *entities*, *relationships* between them, the *degree* of the relationship, etc.
- ➤ This chapter covers basics in graph theory, including representation, and algorithms for basic graph-theoretic problems (some content was covered in review lecture)
- We'll build on these later this semester

Breadth-First Search (BFS)

- ▶ Given a graph G = (V, E) (directed or undirected) and a *source* node $s \in V$, BFS systematically visits every vertex that is reachable from s
- Uses a queue data structure to search in a breadth-first manner
- ▶ Creates a structure called a **BFS tree** such that for each vertex $v \in V$, the distance (number of edges) from s to v in tree is a shortest path in G
- ▶ Initialize each node's **color** to WHITE
- ▶ As a node is visited, color it to GRAY (\Rightarrow in queue), then BLACK (\Rightarrow finished)

BFS(G, s)

```
1 for each vertex u \in V \setminus \{s\} do
          color[u] = WHITE
          d[u] = \infty
          \pi[u] = NIL
    end
    color[s] = GRAY
    d[s] = 0
 8 \pi[s] = NIL
    Q = \emptyset
   Enqueue(Q, s)
    while Q \neq \emptyset do
12
          u = \text{Dequeue}(Q)
13
          for each v \in Adi[u] do
14
                 if color[v] == WHITE then
                       color[v] = GRAY
15
16
                       d[v] = d[u] + 1
17
                       \pi[v] = u
18
                       ENQUEUE(Q, v)
19
20
          end
21
          color[u] = BLACK
22 end
```

BFS Example

BFS Example (2)

BFS Properties

- ▶ What is the running time?
 - ▶ Hint: How many times will a node be enqueued?
- ▶ After the end of the algorithm, d[v] = shortest distance from s to v
 - ⇒ Solves unweighted shortest paths
 - ▶ Can print the path from s to v by recursively following $\pi[v]$, $\pi[\pi[v]]$, etc.
- ▶ If $d[v] == \infty$, then v not reachable from s
 - ⇒ Solves reachability

Depth-First Search (DFS)

- Another graph traversal algorithm
- Unlike BFS, this one follows a path as deep as possible before backtracking
- Where BFS is "queue-like," DFS is "stack-like"
- ► Tracks both "discovery time" and "finishing time" of each node, which will come in handy later

DFS(G)

```
1 for each vertex u \in V do
color[u] = WHITE
\pi[u] = \text{NIL}
4 end
5 time = 0
6 for each vertex u \in V do
      if color[u] == WHITE then
         DFS-Visit(u)
10 end
```

$\mathsf{DFS}\text{-Visit}(u)$

```
1 color[u] = GRAY
_2 time = time + 1
d[u] = time
4 for each v \in Adj[u] do
      if color[v] == WHITE then
        \pi[v] = u
         DFS-Visit(v)
 8
9 end
10 color[u] = BLACK
11 f[u] = time = time + 1
```

DFS Example

DFS Example (2)

DFS Properties

- ▶ Time complexity same as BFS: $\Theta(|V| + |E|)$
- ▶ Vertex u is a proper descendant of vertex v in the DF tree iff d[v] < d[u] < f[u] < f[v]
 - \Rightarrow Parenthesis structure: If one prints "(u") when discovering u and "u" when finishing u, then printed text will be a well-formed parenthesized sentence

DFS Properties (2)

- Classification of edges into groups
 - ▶ A **tree edge** is one in the depth-first forest
 - ► A **back edge** (*u*, *v*) connects a vertex *u* to its ancestor *v* in the DF tree (includes self-loops)
 - A forward edge is a nontree edge connecting a node to one of its DF tree descendants
 - A cross edge goes between non-ancestral edges within a DF tree or between DF trees
 - See labels in DFS example
- Example use of this property: A graph has a cycle iff DFS discovers a back edge (application: deadlock detection)
- ▶ When DFS first explores an edge (u, v), look at v's color:
 - ▶ color[v] == WHITE implies tree edge
 - ▶ color[v] == GRAY implies back edge
 - ▶ color[v] == BLACK implies forward or cross edge

Application: Topological Sort

A directed acyclic graph (dag) can represent precedences: an edge (x, y) implies that event/activity x must occur before y

A **topological sort** of a dag G is an linear ordering of its vertices such that if G contains an edge (u, v), then u appears before v in the ordering

Topological Sort Algorithm

- 1. Call DFS algorithm on dag G
- 2. As each vertex is finished, insert it to the front of a linked list
- 3. Return the linked list of vertices
- Thus topological sort is a descending sort of vertices based on DFS finishing times
- What is the time complexity?
- Why does it work?
 - When a node is finished, it has no unexplored outgoing edges; i.e., all its descendant nodes are already finished and inserted at later spot in final sort

Application: Strongly Connected Components

Given a directed graph G = (V, E), a **strongly connected component** (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices $u, v \in C$ u is reachable from v and v is reachable from u

What are the SCCs of the above graph?

Component Graph

Collapsing edges within each component yields acyclic component graph

Transpose Graph

- ► Algorithm for finding SCCs of *G* depends on the **transpose** of *G*, denoted *G*^T
- $ightharpoonup G^{\mathsf{T}}$ is simply G with edges reversed
- ▶ Fact: G^{T} and G have same SCCs. Why?

SCC Algorithm

- 1. Call DFS algorithm on G
- 2. Compute G^{T}
- 3. Call DFS algorithm on G^{T} , looping through vertices in order of decreasing finishing times from first DFS call
- 4. Each DFS tree in second DFS run is an SCC in G

SCC Algorithm Example

Which node is first one to be visited in second DFS?

SCC Algorithm Example (2)

SCC Algorithm Analysis

- What is its time complexity?
- How does it work?
 - 1. Let x be node with highest finishing time in first DFS
 - 2. In G^T , x's component C has no edges to any other component (Lemma 22.14), so the second DFS's tree edges define exactly x's component
 - 3. Now let x' be the next node explored in a new component C'
 - 4. The only edges from C' to another component are to nodes in C, so the DFS tree edges define exactly the component for x'
 - 5. And so on...
- ▶ In other words, DFS on G^T visits components in order of a topological sort of G's component graph
 - \Rightarrow First component node of G^T visited has no outgoing edges (since in G it has only incoming edges), second only has edges into the first, etc.

Intuition

- ▶ For algorithm to work, need to start second DFS in component abe
- ▶ How do we know that some node in *abe* will have largest finish time?
 - ▶ If first DFS in G starts in abe, then it visits all other reachable components and finishes in $abe \Rightarrow$ one of $\{a, b, e\}$ will have largest finish time
 - ▶ If first DFS in G starts in component "downstream" of abe, then that DFS round will not reach $abe \Rightarrow$ to finish in abe, you have to start there at some point \Rightarrow you will finish there last (see above)

