Graphs

- A (simple) graph \(G = (V, E) \) consists of
 - \(V \), a nonempty set of vertices and
 - \(E \), a set of unordered pairs of distinct vertices called edges.

Examples

\[
V = \{A, B, C, D, E\}
\]
\[
E = \{ (A, D), (A, E), (B, D), (B, E), (C, D), (C, E) \}
\]
Directed Graphs

- A directed graph (or digraph) $G = (V, E)$ consists of
 - V, a nonempty set of vertices and
 - E, a set of ordered pairs of distinct vertices called edges.

- Examples
Multigraphs

- A multigraph (directed multigraph) $G = (V, E)$ consists of
 - V, a set of vertices,
 - E, a set of edges, and
 - a function f from E to $\{\{u, v\} : u \neq v \in V\}$

- Two edges e_1 and e_2 with $f(e_1) = f(e_2)$ are called multiple edges.

- Put simply, a multigraph $G = (V, E)$ is a graph in which multiple edges are allowed.

- Examples
Weighted Graphs

- A **weighted graph** is a graph (or digraph) with the additional property that each edge \(e \) has associated with it a real number \(w(e) \) called its **weight**.

- A weighted digraph is often called a **network**.

- **Examples**
Psuedographs

- A psuedograph $G = (V, E)$ consists of
 - V, a set of vertices,
 - E a set of edges, and
 - a function f from E to $\{\{u, v\} : u, v \in V\}$.

- Psuedo-multigraphs are defined similarly.

- Put another way, a psuedograph is a graph in which we allow loops, that is, edges from a vertex to itself.

Examples
Graph Definitions Summary

- There are several ways to categorize graphs:
 - Directed or undirected edges.
 - Weighted or unweighted edges.
 - Allow multiple edges or not.
 - Allow loops or not.

- Unless specified, you can usually assume a graph does not allow multiple edges and loops. These aren’t that common.

- For clarity, if a graph is not specified as weighted or directed, assume it isn’t.

- The most common graphs we’ll use are graphs, digraphs, weighted graphs, and networks.

- When writing graph algorithms, it is important to know what characteristics the graphs have. For instance, if a graph might have loops, the algorithm should be able to handle it.

What will determine the type of graph we'll see?
Graph Terminology

Let u and v be vertices, and let $e = \{u, v\}$ be an edge in an undirected graph G.

- The vertices u and v are said to be **adjacent**
- The edge e is said to be **incident** to u and v.
- The edge e is said to **connect** u and v.
- The vertices u and v are called the **endpoints** of the edge e.
- The **degree** of a vertex, denoted $deg(v)$, in an undirected graph is the number of edges incident to it (where loops are counted twice).

G_1, G_2, G_3
Examples

G_1

G_2

G_3

<table>
<thead>
<tr>
<th>G_1</th>
<th>G_2</th>
<th>G_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg(u)=3</td>
<td>deg(u)=2</td>
<td>deg(u)=2</td>
</tr>
<tr>
<td>deg(v)=5</td>
<td>deg(v)=3</td>
<td>deg(v)=4</td>
</tr>
<tr>
<td>deg(w)=3</td>
<td>deg(w)=2</td>
<td>deg(w)=3</td>
</tr>
<tr>
<td>deg(x)=2</td>
<td>deg(x)=4</td>
<td>deg(x)=2</td>
</tr>
<tr>
<td>deg(y)=2</td>
<td>deg(y)=3</td>
<td>deg(y)=3</td>
</tr>
<tr>
<td>deg(z)=3</td>
<td></td>
<td>deg(z)=2</td>
</tr>
</tbody>
</table>
More Graph Terminology

- A **subgraph** of a graph $G = (V, E)$ is a graph $G' = (V', E')$ such that $V' \subseteq V$ and $E' \subseteq E$.

- A **path** is a sequence of vertices v_1, v_2, \ldots, v_k such that consecutive vertices v_i and v_{i+1} are adjacent.
More Graph Terminology

- A **simple path** is a path with no repeated vertices.

- A **cycle** is a simple path whose last vertex is the same as the first vertex.
More Graph Terminology

• A graph is called **connected** if there is a path between every pair of distinct vertices.

![Diagram showing connected and not connected graphs]

• A **connected component** of a graph is a maximal connected subgraph. e.g. the graph below has 3 connected components.

![Diagram showing three connected components]
Trees

- A tree (or unrooted tree, or free tree) is a connected acyclic graph. That is, a graph with no cycles.
- A forest is a collection of trees.

- These trees are not to be confused with rooted trees.
Spanning Tree

- A **spanning tree** of G is a subgraph which is a tree and contains all of the vertices of G.

![Graph G and its spanning tree](image)
Some Special Graphs

- K_n: The complete graph on n vertices.

- C_n: The cycle of length n.
- Q_n: The n-cube.

\[Q_1 \quad Q_2 \quad Q_3 \quad Q_4 \]
• **Bipartite Graphs:** A simple graph G is called bipartite if the vertex set V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge connects a vertex in V_1 to a vertex in V_2.

Put another way, no edges in V_1 are connected to each other, and no edges in V_2 are connected to each other.
Some Theorems

- **Theorem 1**: Let $G = (V, E)$ be an undirected graph with $|E|$ edges. Then

$$2 |E| = \sum_{v \in V} \deg(v).$$

- **Proof**: Let $X = \{(e, v) : e \in E, v \in V, e \text{ and } v \text{ are incident}\}$. We will compute $|X|$ in two ways. Each edge $e \in E$, is incident with exactly 2 vertices. Thus,

$$|X| = 2 |E|$$

Also, each vertex $v \in V$ is incident with $\deg(v)$ edges. Thus, we have that

$$|X| = \sum_{v \in V} \deg(v).$$

Setting these equal, we have the result.

- **Corollary 2**: An undirected graph has an even number of vertices of odd degree.
Examples

<table>
<thead>
<tr>
<th>Graph</th>
<th>G_1</th>
<th>G_2</th>
<th>G_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>E</td>
<td>$</td>
<td>9</td>
</tr>
<tr>
<td>$\sum_{v \in V} deg(v)$</td>
<td>18</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>
Directed Graph Terminology

Let \(u \) and \(v \) be vertices in a directed graph \(G \), and let \(e = (u, v) \) be an edge in \(G \).

- \(u \) is said to be adjacent to \(v \).
- \(v \) is said to be adjacent from \(u \).
- \(u \) is called the initial vertex of \((u, v)\).
- \(v \) is called the terminal or end vertex of \((u, v)\).
- The in-degree of \(u \), denoted by \(\text{deg}^- (u) \), is the number of edges in \(G \) which have \(u \) as their terminal vertex.
- The out-degree of \(u \), denoted by \(\text{deg}^+ (u) \), is the number of edges in \(G \) which have \(u \) as their initial vertex.

- **Theorem 3**: Let \(G = (V, E) \) be a directed graph. Then
 \[
 \sum_{v \in V} \text{deg}^- (v) = \sum_{v \in V} \text{deg}^+ (v) = |E|.
 \]
Examples

\[G_4 \]

\[G_5 \]

\[G_6 \]

<table>
<thead>
<tr>
<th></th>
<th>(G_4)</th>
<th>(G_5)</th>
<th>(G_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\deg^{-}(u) = 2)</td>
<td>(\deg^{+}(u) = 4)</td>
<td>(\deg^{-}(u) = 1)</td>
<td>(\deg^{+}(u) = 1)</td>
</tr>
<tr>
<td>(\deg^{-}(v) = 2)</td>
<td>(\deg^{+}(v) = 2)</td>
<td>(\deg^{-}(v) = 1)</td>
<td>(\deg^{+}(v) = 2)</td>
</tr>
<tr>
<td>(\deg^{-}(w) = 1)</td>
<td>(\deg^{+}(w) = 1)</td>
<td>(\deg^{-}(w) = 1)</td>
<td>(\deg^{+}(w) = 2)</td>
</tr>
<tr>
<td>(\deg^{-}(x) = 2)</td>
<td>(\deg^{+}(x) = 3)</td>
<td>(\deg^{-}(x) = 1)</td>
<td>(\deg^{+}(x) = 1)</td>
</tr>
<tr>
<td>(\deg^{-}(y) = 3)</td>
<td>(\deg^{+}(y) = 0)</td>
<td>(\deg^{-}(y) = 2)</td>
<td>(\deg^{+}(y) = 2)</td>
</tr>
<tr>
<td>(\deg^{-}(z) = 1)</td>
<td>(\deg^{+}(z) = 1)</td>
<td>(\deg^{-}(z) = 2)</td>
<td>(\deg^{+}(z) = 2)</td>
</tr>
</tbody>
</table>
Graph Representation

There are two common ways of representing G. Let $G = (V, E)$ be a graph with n vertices and m edges.

Adjacency Lists

- For each vertex v in G, we store a list of vertices adjacent to v.
- This is often implemented using linked lists.

![Diagram of graph representation](image)

- For weighted graphs, an additional field can be stored in each node.
- The space required for storage is
 \[\Theta(n + 2m) = \Theta(n + m) \]
 for graphs, and
 \[\Theta(n + m) = \Theta(n + m) \]
 for digraphs.

Why the constant 2 in graphs and not digraphs?
Adjacency Matrix

- Number the vertices 1, 2, \ldots, n in some arbitrary order.
- We use a n by n matrix M defined as

 $M(i, j) = \begin{cases}
 1 & \text{if } (i, j) \text{ is an edge} \\
 0 & \text{if } (i, j) \text{ is not an edge}
 \end{cases}$

- If G is weighted, we store the weights in the matrix. For non-adjacent vertices, we store ∞, or MAX_INT.

- It is clear that this representation requires $\Theta(n^2)$ space.

Has some nice uses via matrix multiplication
Some Basic Graph Problems

- Is there a path from A to B?
- CYCLES: Does the graph contain a cycle?
- CONNECTIVITY (SPANNING TREE): Is there a way to connect the vertices?
- BICONNECTIVITY: Will the graph become disconnected if one vertex is removed?
- PLANARITY: Is there a way to draw the graph without edges crossing?
- SHORTEST PATH: What is the shortest way from A to B (weighted or unweighted)?
- LONGEST PATH: What is the longest way from A to B (weighted or unweighted)?
- MINIMAL SPANNING TREE: What is the best way to connect the vertices?
- TRAVELING SALESMAN: What is the shortest route to connect the vertices without visiting the same vertex twice?
(Rooted) Trees

- A **rooted tree** is a tree which has a specially designated vertex called the *root*.

- In rooted trees, vertices are called *nodes*.

- Each node contains some information and one or more links to other nodes further down the hierarchy. (Similar to nodes in a linked list.)

- For convenience, we can think of trees as acyclic digraphs in which every edge “points away from” the root.
Rooted Trees Terminology

- A node that is adjacent from v is a child of v.
- A node that is adjacent to v is a parent of v.
- Two nodes who have the same parent are siblings.
- A leaf or external node is a node with degree zero. (i.e. a node with no children)
- An internal node is a nonleaf node. (i.e. a node with at least one child)
- An ancestor of a node is any node on the path from the root to the node.
- A descendant of a node v is any node which has v as an ancestor.
Rooted Trees Terminology

- The **degree of a node** is the number of children the node has.
- The **depth** of a node is the length of the path from the root to the node.
- The **height** of a node is the maximum length of a path from the node to a leaf.
- The **height or depth** of a tree is the maximum height of any node in the tree.
- The **subtree rooted at** x is the subtree consisting of x and all of its descendents.
Binary Tree

- A **binary tree** is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the *left subtree* and the *right subtree*

- Put another way, a **binary tree** is a rooted tree such that each node has
 - no children,
 - a *right child*,
 - a *left child*, or
 - both a *right child* and a *left child*.

![Binary Tree Diagram](Image)
Binary Trees: Definitions

- A **full binary tree** is one in which internal nodes completely fill every level, except possibly the last.

- A **complete binary tree** is a full binary tree where the internal nodes on the bottom level all appear to the left of the external nodes on that level.

- **Example:** A full binary tree
Binary Tree Examples

- **Example:** A complete binary tree

```
1
 /   \
2     3
 / \
4   5 / \
8   9 10 11 12
```

- **Example:** A totally complete binary tree

```
1
 /   \
2     3
 / \
4   5 / \
8   9 10 11 12 13 14 15
```
Properties of Binary Trees

• The maximum number of nodes on level i of a binary tree is 2^i, $i \geq 1$.

• The maximum number of nodes in a binary tree of depth k is $2^{k+1} - 1$, $k \geq 1$.

• There is exactly one path connecting any two nodes in a tree.

• A tree with n nodes has $n - 1$ edges.

• The height of a full binary tree with n internal nodes is about $\log_2 n$.
Binary Tree Representation: Arrays

Let \(G \) be a tree of height \(\log_2 n \) with \(m \) nodes, where \(m \leq n \). We can represent \(G \) with an array \(A \) of size \(n \). \(A[1] \) is the root, and given a node with index \(i \), we can find the index of parents and children as follows:

- \(\text{parent}(i) = \begin{cases} \lfloor i/2 \rfloor & \text{if } i \neq 1 \\ \text{undefined} & \text{if } i = 1 \end{cases} \)
- \(\text{left}(i) = \begin{cases} 2i & \text{if } 2i \leq n \\ \text{undefined} & \text{if } 2i > n \end{cases} \)
- \(\text{right}(i) = \begin{cases} 2i + 1 & \text{if } 2i + 1 \leq n \\ \text{undefined} & \text{if } 2i + 1 > n \end{cases} \)
Binary Tree Representation: Linked Lists

- We define a tree node by
  ```
  struct treenode{
    int data;
    treenode *left_child;
    treenode *right_child;
  };
  ```

- We find children by following the pointers.

- Parents are harder to find, unless we use doubly linked lists.
Binary Tree Traversals

• When we visit each node in the tree exactly once, we say we have **Traversed** the tree.

• A full traversal produces a linear order of the information in a tree.

• There are several ways to traverse a tree.
 – **preorder**: visit a node, then traverse its left subtree, and then traverse its right subtree.
 – **inorder**: traverse the left subtree, visit the node and then traverse its right subtree
 – **postorder**: first traverse the left subtree, traverse the right subtree, and then visit the node.

• There is a natural correspondence between these traversals and producing the prefix, infix and postfix form of an expression.
Tree Traversal

- **preorder**: visit a node, then traverse its left subtree, and then traverse its right subtree.

- **inorder**: traverse the left subtree, visit the node and then traverse its right subtree.

- **postorder**: first traverse the left subtree, traverse the right subtree.

Preorder: + * * / A B C D E

Inorder: A / B * C * D + E

Postorder: A B / C * D * E +
Tree Traversal: Implementation

• Assume we have used a linked list to implement a tree.

```
struct tree_node{
    int data;
    tree_node *left_child;
    tree_node *right_child;
};
```

• Assume we have a pointer to the root node.

• From this, we can traverse the tree with any of the methods.
Preorder Traversal

Visit a node, then traverse its left subtree, and then traverse its right subtree.

```cpp
void PreOrderTraversal(treenode *ptr) {
    if (ptr!=0) {
        cout << ptr->data;
        PreOrderTraversal(ptr->left);
        PreOrderTraversal(ptr->right);
    }
}
```
Postorder Traversal

First traverse the left subtree, traverse the right subtree, and finally visit the node.

```c
void PostOrderTraversal(treenode *ptr) {
    if (ptr!=0) {
        PostOrderTraversal(ptr->left);
        PostOrderTraversal(ptr->right);
        cout << ptr->data;
    }
}
```
Inorder Traversal

Traverse the left subtree, visit the node and then traverse its right subtree.

```c
void InOrderTraversal(treenode *ptr) {
    if (ptr!=0) {
        InOrderTraversal(ptr->left);
        cout << ptr->data;
        InOrderTraversal(ptr->right);
    }
}
```