class node {
 int key;
 node *left, *right, *parent;
};

- A **Binary Search Tree** is a binary tree with the following properties: Given a node x in the tree
 - if y is a node in the left subtree of x, then
 $y->key \leq x->key$.
 - if y is a node in the right subtree of x, then
 $x->key \leq y->key$.

- We assume that all keys are distinct.
Binary Search Tree Operations

- Given a binary search tree, there are several operations we want to perform.
 - **Insert** an element
 - **Delete** an element
 - **Search** for an element
 - Find the **minimum/maximum** element
 - Find the **successor/predecessor** of a node.

- Once we see how these are done, it will be apparent that the complexity of each of these is $\Theta(h)$, where h is the height of the tree.

- The insert and delete operations are the hardest to implement.

- Finding the minimum/maximum and searching are the easiest, so we will start with these.
BST: Minimum/Maximum

- The minimum element is the left-most node, the maximum element is the right-most.

- The following functions find the min/max element in the BST rooted at x.

```c
node *Find_Min(x) {
    while (x->left!=NULL)
        x=x->left;
    return x;
}
```

```c
node *Find_Max(x) {
    while (x->right!=NULL)
        x=x->right;
    return x;
}
```
BST: Searching

- Searching for an element in a binary search tree is very straightforward:

- The following function searches for the value \(k \) in the tree rooted at \(x \).

```
node *Search(node *x, int k) {
    while(x != NULL && k != x->key) {
        if(k < x->key)
            x = x->left;
        else
            x = x->right;
    }
    return x;
}
```
BST: Successor/Predecessor

- Finding the Successor/Predecessor of a node is a little harder.

- To find the successor y of a node x (if it exists)
 - If x has a nonempty right subtree, then y is the smallest element in the tree rooted at $x->right$. Why?
 - If x has an empty right subtree, then y is the lowest ancestor of x whose left child is also an ancestor\(^a\) of x. (Of course!)

```c
node *Successor(node *x) {
    if(x->right != NULL)
        return Find_Min(x->right);
    y = x->parent;
    while(y != NULL && x == y->right) {
        x = y;
        y = y->parent;
    }
    return y;
}
```

- The predecessor operation is symmetric to successor.

\(^a\)\(x\) is one of its own ancestors
BST: Successor Argument

• So, why is it that if \(x \) has an empty right subtree, then \(y \) is the lowest ancestor of \(x \) whose left child is also an ancestor of \(x \)?

• Let’s look at it the other way.

• Let \(y \) be the lowest ancestor of \(x \) whose left child is also an ancestor of \(x \).

• What is the predecessor of \(y \)?

• Since \(y \) has a left child, it must be the largest element in the tree rooted at \(y\rightarrow \text{left} \)

• If \(x \) is not the largest element in the subtree rooted at \(y\rightarrow \text{left} \), then some ancestor of \(x \) (in the subtree) is the left child of its parent.

• But \(y \), which is not in this subtree, is the lowest such node.

• Thus \(x \) is the predecessor of \(y \), and \(y \) is the successor of \(x \).
BST: Successor Examples

Successor(7) = 8

Successor(10) = 13
BST: Insertion

- To insert a node into a binary tree, we search the tree until we find a node whose appropriate child is NULL. We insert the new node there.

- T is the tree, and z the node we wish to insert.

```c
Insert(T, z) {
    node *y=NULL;
    node *x=T.root;
    while(x != NULL) {
        y = x;
        if(z->key < x->key)
            x = x->left;
        else
            x = x->right;
    }
    z->parent = y;
    if(y == NULL)
        T.root = z;
    else
        if(z->key < y->key)
            y->left = z;
        else
            y->right = z;
}
```
BST: Insertion Example

Insert(T, z)

1. Insertion process:
 - Start with an empty tree.
 - Insert each value in a specific order (e.g., 1, 2, 3, ...).
 - Each insertion involves comparing the new value with the current node.
 - If the value is less, move to the left child; if greater, move to the right.
 - Continue this process until a leaf node is reached.

2. Example:
 - Inserting 6 into the tree.
 - The tree's structure is maintained by ensuring that all left subtrees are less than the root, and all right subtrees are greater.

3. Resulting tree:
 - The final tree shows the insertion of 6, resulting in a balanced binary search tree.

4. Key points:
 - Binary search trees are self-balancing if insertions and deletions are performed.
 - They provide efficient search, insert, and delete operations with an average time complexity of O(log n).

5. Application:
 - BSTs are used in many applications, including databases, file systems, and search engines.
BST: Deletion

- Deleting a node \(z \) is by far the most difficult operation.

- There are 3 cases to consider:
 - If \(z \) has no children, just delete it.
 - If \(z \) has one child, splice out \(z \). That is, link \(z \)'s parent and child.
 - If \(z \) has two children, splice out \(z \)'s successor \(y \), and replace the contents of \(z \) with the contents of \(y \).

- The last case works because if \(z \) has 2 children, then its successor has no left child. Why?

- Deletion is made worse by the fact that we have to worry about boundary conditions

- To simplify things, we will first define a function called `SpliceOut`.
BST: Splice Out

- Any node with \(\leq 1 \) child can be “spliced out”.
- Splicing out a node involves linking the parent and child of a node.
- The algorithm:

```c
SpliceOut(tree T, node *y) {
    if(y->left != NULL && y->right != NULL)
        return; //Two children; can’t splice out

    if(y->left != NULL) //Locate child of y
        x = y->left;
    else if (y->right != NULL)
        x = y->right;
    else
        x = NULL;

    if(x != NULL) //If y has child, set parent
        x->parent = y->parent;

    //Set y’s parent’s child to y’s child
    if(y->parent == NULL)
        T.root = x;
    else {
        if(y == y->parent->left)
            y->parent->left = x;
        else
            y->parent->right = x;
    }
}
```
BST: SpliceOut Examples

[Diagram of BSTs showing examples of SpliceOut(T,z) operations]
BST: Deletion Algorithm

• Once we have defined the function SpliceOut, deletion looks simple.

• Here is the algorithm to delete \(z \) from tree \(T \).

```c
Delete(tree T, node *z) {
    if(z->left == NULL || z->right == NULL)
        SpliceOut(T,z);
    else {
        y = Successor(z);
        z->key = y->key;
        SpliceOut(T,y);
    }
}
```
BST: Deletion Examples

```
13
  7
  4 8
  3 5 10
1 9
```

Delete(T, z)

```
13
  7
  4 8
  3 5 10
1 9
```

Delete(T, z)

```
13
  7
  4 8
  3 5 10
1 9
```

Delete(T, z)

```
13
  7
  4 8
  3 5 10
1 9
```

Delete(T, z)

```
13
  7
  4 8
  3 5 10
1 9
```
BST: Time Complexity

- We stated earlier, and have now seen, that all of the BST operations have time complexity $\Theta(h)$, where h is the height of the tree.

- However, in the worst case, the height of a BST is $\Omega(n)$, where n is the number of nodes.

- In this case, the BST has gained us nothing.

- To prevent this worst-case behavior, we need to develop a method which ensures that the height of a BST is kept to a minimum.

- **Red-Black Trees** are binary search trees which have height $\Theta(\log n)$.
Red-Black Trees

• A red-black tree is a binary search tree with the following properties:
 – Each node is colored either red or black.
 – Every leaf (NULL) is black.
 – If a node is red, both its children are black.
 – Every simple path from a node to a descendent leaf has the same number of black nodes.

• The leaf nodes are all empty and black, so we will omit them in the figures.

• When we talk about the nodes in a red-black tree, we will mean the internal nodes.
Red-Black Trees Fact and Terms

- The **black-height** of a node x is the number of black nodes, not including x, on a path to any leaf.
- A red-black tree with n nodes has height at most $2 \log(n + 1)$.
- Since **red-black trees** are binary search trees, all of the operations that can be performed on binary search trees can be performed on them.
- Furthermore, the time complexity will be the same—$O(h)$—where h is the height.
- Unfortunately, insertion and deletion as defined for regular binary search trees will not work for red-black trees. Why not?
- Fortunately, insertion and deletion can both be modified so that they work, and still have time complexity $O(h)$.
Insert and Delete in RB Trees

- Here are a few examples of why inserting a node into a red-black tree is not trivial.

- Similar things happen when we try to delete nodes.
- We will not discuss in depth these operations.
- We will discuss some of the concepts, however.
Red-Black Tree Insertion: Method

- To insert a node x into a red-black tree, we do the following:
 - Insert x with the standard BST Insert.
 - Color x red.
 - If x’s parent is red, fix the tree.
- Notice that x’s children, NULL, are black.
- Since we colored x red, we have not changed the black height.
- The only problem we have is (possibly) having a red node with a red child.
- Fixing the tree involves re-coloring some of the nodes and performing rotations.
Left- and Right-Rotations

- Rotations are best defined by an illustration:

 ![Diagram](image)

- Here, the letters A, B, and C represent arbitrary subtrees. They could even be empty.

- It is not too hard to see that the binary search tree property will still hold after a rotation.
Rotation Example

Right-Rotate(T, x)
Rotation Example

Left-Rotate(T, z)
Insertion Example

Insert(T, 10)

Left-Rotation(T, x)

Recolor
Red Black Tree Summary

- Red-black trees are binary search trees which have height $\Theta(\log n)$ guaranteed.
- The basic operations can all be implemented in time $O(\log n)$.
- Although inserting and deleting nodes only requires time $O(\log n)$, they are nonetheless not trivial to implement.
- A regular binary search tree does not guarantee time complexity of $O(\log n)$, only $O(h)$, where h can be as large as n.
- Thus red-black trees are useful if one wants to guarantee that the basic operations will take $O(\log n)$ time.