

Nebraska	Administrivia
CSCE150A	
Overview	Roll
Hardware	• Syllabus
Software	 Course Webpage:
Example Program	http://cse.unl.edu/~sscott/teach/Classes/cse150AF09/
Pseudocode	Prerequisite test/placement test:
Flowchart	http://ncite.unl.edu/cs_placement/
Control Structures	• CSE: UNIX, logging in, usage agreement, CodeLab \rightarrow Lab
Hello World Program	
2 / 43	<ロ> (費) (差) (差) 差 の(()

Nebraska	Intro CSCE Courses
CSCE150A	• CSCE 101: Fundamentals of Computing (Alice) gives a breadth-oriented overview of the field of computer science.
Administrivia	• CSCE 150A: Introduction to Problem Solving with Computers
Overview	(C) teaches fundamentals of problem solving via programming.
Hardware	• CSCE 150E: Introduction to Computer Programming for
Software	Scientists and Engineers (Fortran or Matlab) teaches fundamentals
Example Program	of problem solving via programming.
Pseudocode	 CSCE 150M: Multimedia Approach to Computing (Python)
Flowchart	teaches fundamentals of problem solving via programming.
Control Structures	• CSCE 155: Computer Science I (Java) is the first course towards
Hello World Program	the major or minor in CS. For those who pass 150 or score well on the Placement Exam: http://ncite.unl.edu/cs_placement/

• CSCE 156: Computer Science II (C++) is the second course towards the major or minor in CS.

Nebiaska Introduction to Computers

Overview

- Computers receive, store, process, and output information.
- Computers can deal with numbers, text, images, graphics, and sound, to name a few.
- Computers are useless without programming.
- Programming languages allow us to write programs and thus communicate with computers.
- It takes our code and converts it into a format so the computer can understand it.

Netraska Overview of Computers and Programming

DA	
via	
	Computer Hardware
	Computer Software
	 Software Development (Problem Solving)
le	 Pseudocode

Flowchart

43

llo Wc

Nebiaska Different Types of Computers I

CE150A

Overview

iontrol tructures lello Wor rogram

- Embedded Systems: iPod, cell phones, etc.
- Personal Computers: used by everyday people and typically used by just one person at a time
- Mainframes: used for real-time systems, ATMs, and such; very powerful and reliable computers
- Supercomputers: used by research laboratories for computationally intensive applications such as weather forecasting; the largest capacity and fastest mainframes
 - Often configured as a cluster of several smaller computers

・ロト・(型ト・ミン・ミン・ミークへの)

It originally scored an HPL benchmark number of 442.50 GFlops, which was then the 107th most powerful supercomputer in the world, according to the TOP500 supercomputer list. See http://rcf.unl.edu/prairiefire/index.php

Nebraska	Hardware vs. Software
CSCE150A	
Administrivia Overview	• Hardware is the equipment used to perform the necessary
Hardware	computations. E.g. CPU, monitor, keyboard, mouse, printer, etc.
Software	• Software is the programs that enable us to solve problems with a
Example Program	computers by providing it with a list of instructions to follow
Pseudocode	Examples: Word, Firefox, games, etc.
Flowchart	e Firmware small programs stored in non volatile memory
Control Structures	• I minware - small programs stored in non-volatile memory
Hello World Program	
8/43	・ロ・ (日・ (日・ (日・ (日・ (日・ (日・ (日・ (日・ (日・ (日

Nebraska Lincoln Computer Hardware

- Main Memory
 - **RAM** Random Access Memory Memory that can be accessed in any order
 - ROM Read Only Memory Memory that cannot be written to
- Secondary Memory Hard disks, flash drives, CDs, DVDs, etc.
- Central Processing Unit (CPU) Coordinating all computer operations and perform arithmetic and logical operations
- \bullet Input/Output Devices Monitor, printer, keyboard, & mouse
- Computer Networks (not hardware, but configuration of the hardware) WAN, LAN, MAN, Wireless LAN

<ロト (母) (き) (き) (き) き めへの

CE150A	
ninistrivia rview	Memory is an essential component in any computer.
dware	 Memory Cell - the storage location
ware mple gram udocode	 Address - the location of the memory cell relative to other memory cells Content - what is stored in the memory cell
vchart trol ictures o World gram	 All programs run in memory Every memory cell has content, whether we know it or not. So always initialize variables

<0×0×4日×4日×4日×1日×10×40×

Nebiaska	Memory III
Lincom	

Nebraska

Memory I

e. bit - deriving from binary digit, is either a 0 or 1
e. byte - a memory cell is actually a grouping of smaller units called bytes. A byte is made up of 8 bits
e. Example: A single character, H requires a byte to store
e. kilobyte: 1024 bytes (*not* 1000 bytes)
e. In general, memory sizes are powers of two, 2¹⁰ = 1024 is the power of two closest to 1,000
e. megabyte: 2²⁰ = 1,048,576 bytes (or 1024 megabytes)
e. gigabyte: 2³⁰ = 1,073,741,824 bytes (or 1024 megabytes)
e. kilo-, mega-, giga- may refer to bytes in base-10 in some contexts (network data) or when discussing *bits*

Nebraska Memory II Address Contents 0 -27.2 42 1 2 0.005 3 -26 4 Н 998 х 999 75.62 Figure: Portion of Memory Cells

<ロ> (四) (個) (目) (日) (日) (の)

Nebraska Lincoln	Memory _{Exercise}
CSCE150A	
Administrivia Overview Hardware	Problem A certain portable MP3 player is advertised as a having a "30GB" hard drive. In reality, it has 30,000,000,000 bytes. How many actual (base-2)
Software Example Program	gigabytes does it have?
Pseudocode	
Control Structures	
Hello World Program	
13 / 43	(日)(個)(三)(三)(三)(3)(3)

Nebraska	Memory _{Exercise}
CSCE150A Administrivia Overview Hardware Software Example Program Pseudocode	Problem A certain portable MP3 player is advertised as a having a "30GB" hard drive. In reality, it has 30,000,000,000 bytes. How many actual (base-2) gigabytes does it have? Divide by the number of bytes in a gigabyte:
Control Structures Hello World Program 13 / 43	(D) (B) (2) (2) 2 OQ

Nebraska	Memory _{Exercise}	Nebraska	Men Exercis
CSCE150A		CSCE150A	
Administrivia Overview Hardware Software Example Program Pseudocode Flowchart Control Structures Hructword Program	Problem A certain portable MP3 player is advertised as a having a "30GB" hard drive. In reality, it has 30,000,000 bytes. How many actual (base-2) gigabytes does it have? Divide by the number of bytes in a gigabyte: <u>30,000,000,000 bytes</u> <u>1024 × 1024 × 1024 bytes-per-gigabyte</u>	Administrivia Overview Hardware Software Example Piseudocode Flowchart Control Structures Hello World Program	Prol A ce drive giga Divie

Nebraska	Memory _{Exercise}
CSCE150A	
Administrivia Overview Hardware Software	Problem A certain portable MP3 player is advertised as a having a "30GB" hard drive. In reality, it has 30,000,000,000 bytes. How many actual (base-2) gigabytes does it have?
Example Program Pseudocode Flowchart Control Structures	Divide by the number of bytes in a gigabyte: $\frac{30,000,000,000 \text{ bytes}}{1024 \times 1024 \times 1024} \text{ bytes-per-gigabyte} = 27.93\text{GB}$
Hello World Program 13 / 43	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日

Nebraska Lincoln	Computer Software I
CSCE150A	
Administrivia	
Overview	Operating System - controls the interaction between machine and user
Hardware	
Software	 Communicate with user
Example Program	Manage memory
Pseudocode	 Collect input/Display output

• Read/write data

Software Example Program Pseudocode Flowchart Control Structures Hello World Program

・ロト・(雪ト・ミト・ミート) ヨー うへや

Nebiaska Computer Software II Application

ftware ample ogram eudocode owchart ontrol tructures tello Worl Program

Figure: OS/device interaction

Nebraska Lincoln	Computer Software III
CSCE150A	
Administrivia Overview Hardware Software Example Program Pseudocode Flowchart Control Structures	 Application Software - developed to assist a computer use in accomplishing specific tasks (e.g. Word, Excel, Safari, etc.)
Hello World Program 16 / 43	(日)(四)(2)(2)(2) 2 の(4)

Nebraska	Computer Languages
CSCE150A	 Machine Language - A collection of binary numbers
Administrivia Overview Hardware Software Example Program Pseudocode Flowchart	 Machine language is not standardized, and will vary between families of processors, such as Intel (x86) and Macintosh ML bits directly control the electronic circuits Assembly Language - mnemonic codes rather than binary Low-level language - A language that is close to the hardware High-level Languages - combine algebraic expressions and symbols from English
Control Structures Hello World Program	 High-level language (HLL) - Closer to human language, easier to read, write, and maintain Must be translated to Machine language Independent from the hardware E.g. Fortran, Cobol, Lisp, C, Prolog, Pascal, C#, Java

Nebiaska Examples of Different Levels of Computer Languages

CSCE150A	char name[40]; printf("Please enter your name\n"); <u>C source code:</u> scant("%s", name);
dministrivia	princi (rielio vis , nerre),
verview	push offset string "Please enter your name\n"
ardware	(41364Ch) call dword ptr [_imp_printf (415194h)]
oftware	lea eax.inamel
kample rogram	push eax push edise string "%s" (4136460) add dise string "%s" (4136460) add dise string "%s" (4136460) add dise string "%s" (4136460) add dise string "%s" (4136460)
seudocode	lea eax,(name)
owchart	push eax push offset string "Hello %s" (41363Ch)
ontrol ructures	cail owerd.ptrmp_ormm(415194n)) add esp,8
ello World	68 4C 36 41 00 FF 15 94 51 41 00 83 C4 04 8D 45 D8
rogram	Machine Code: 50 68 48 36 41 00 FF 15 9C 51 41 00 83 C4 08 8D 45 D8 50 68 3C 36 41 00 FF 15 94 51 41 00 83 C4 08
19/43	Figure: Examples of Languages

Medicizión Compiling Code CSCEISOR Administrivio Verview Hardware Sotrare Grample Pregame Preview Hardware Sotrare Grample Pregame Preview Hardware Compiling is the process of taking your source code and turning it into executable code Source file - A file containing the program code A compiler turns the source file into an object file Object file - a file containing machine language instructions A Linker turns the object file into an executable Integrated Development Environment (IDE) - a program that combines simple word processing with a compiler, linker, and loader

Nebraska	Software Development Method	Nebraska	Steps Defined
CSCEISOA Administrivia Overview Hardware Software Example Program Pseudocode Flowchart Control Structures Hello World Program	 Specify the problem requirements Analyze the problem Design the algorithm to solve the problem Implement the algorithm Test and verify the completed program Maintain and update the program 	CSCE150A Administrivia Overview Hardware Software Esample Program Pseudocode Flowchart Control Structures Hello World Program	 Problem - specifying the problem requirements forces you to better understand the problem Analysis - analyzing the problem involves identifying the problem's inputs, outputs, and additional requirements Design - designing the algorithm to solve the problem requires you to develop a list of steps that solve the problem and verify the steps Implementation - implementing is writing the algorithm as a program Testing - testing accuracy of the program Maintenance - maintaining involves finding previously undetected errors and update the program to code

CSCE150A		
	1	<pre>#include <stdio.h></stdio.h></pre>
Administrivia	2	int main(void)
~ .	3	{
Overview	4	double miles, kilometers;
Hardware	5	<pre>printf("How many miles do you have?");</pre>
Software	6	
Example	7	<pre>scanf("%lf",&miles);</pre>
Program	8	
Pseudocode	9	kilometers = miles * 1.609;
Flowchart	10	<pre>printf("You have %f kilometers\n",kilometers);</pre>
Control	11	
Structures	12	return 0;
Hello World Program	13	}

Nebraska	Testing
CSCE150A	
Administrivia	
Overview	
Hardware	We need to took the new income means to make some it would . To took we
Software	we need to test the previous program to make sure it works. To test we
Example Program	correct.
Pseudocode	
Flowchart	
Control Structures	
Hello World Program	
26 / 43	(ロ)(費)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)

lowchart control tructures lello Wor 'rogram

- Algorithm A list of steps for solving a problem; can be represented as pseudocode or as a flowchart
- Pseudocode A combination of English phrases and C constructs to describe algorithm steps
- Flowchart A diagram that shows the step-by-step execution of a control structure
 - Less commonly used than pseudocode, but gives you a visual feel for the flow of the program

of the process. (日) (間) (目) (日) (日) (日)

Nebräska	Example of Pseudocode
CSCE150A Administrivia Overview Hardware Software Example Program Pseudocode Flowchart Control Structures Helio World Program	 Problem - How do I compute my grade for this course? Specify the problem - get the scores for elements of the course and compute the final grade Analyze the problem - we need to input the scores and percentage for each part of the course and output the grade Design - Get the scores for homeworks, quizzes, exams, learning objects, and lab FinalScore = homework * 0.35 + quizzes * 0.10 + midterm * 0.1 + final * 0.15 + lab * 0.25 + learningObjects * 0.05 Output FinalScore
29/43	(ロ) (費) (注) (注) (注) (注) (注) (注) (注) (注) (注) (注

Nebraska Flowchart CSCE150A Input/ Output Figure: Flowchart objects

10) (B) (B) (B) (B) (B) (B) (B)

Nebraska Example of Flowchart

Nebiaska Sequential

ello Wor

- Use a sequential structure whenever program statements follow one after the another with no decisions and no repetitions
- · Processing flow is always downward from top to bottom in sequential structures

Nebraska Lincoln	If Then	
CSCE150A Administrivia Overview Hardware Software Example Program Pseudocode Flowchart Control Structures Heilo World Program	 Use the If-Then structure when there is a single process to do or not do Processing flow is down either the left side or the right side A <i>conditional</i> is checked. If it is <i>true</i> then the action is performed If the conditional is <i>false</i> then the action is <i>not</i> performed and the flow continues 	IS "FAMILY GUY" ON RIGHT NOW? VES WATCH TY! Figure: If Then
34 / 43		< ロ > < 聞 > < 言 > < 言 > 、 言 > 、 言 > の Q (

Nebraska	If Then Else
CSCE150A	OUT THE HISKERS
Administrivia	NO
Overview	
Hardware	(orm and sulk) (head downtown)
Software	$\bigcirc \bigcirc \bigcirc$
Example Program	Figure: If Then Else
Pseudocode	
Flowchart	
Control Structures	• Use If Then Else when one of two processes must be chosen
Hello World Program	 Processing flow is down either the left side or the right side
	 Similar to the If-Else, a conditional is checked, but some action is performed in either event
35 / 43	

Nebraska Switch • Whenever there are multiple potential 10 options depending on a single values, use the 4 ۸ switch statement HOURS SPENT STUDYING • Example: Multiple If-Then-Else statements • If a conditional can match several possibilities, then a different action must be chosen for each possibility Figure: Switch

unknown and process might not be executed

execution to see if the loop should continue

progress is made toward its terminating

at all (indeterminate pre-test)

Nebraska For-Do CSCE150A 5 TIMES INSERT A QUARTER Figure: For-Do • Use For-Do when you need to repeat an action multiple times, and you know how many times you will repeat it • Also known as a For Loop • A specific action or actions are executed for as many times as are specified • Must know the number of times to be executed up front (though may still be variable: n)

Nebraska Do-While

- Do-While: similar to While-Do, but the action is executed at least once unconditionally
- Conditional can be seen as being checked at the end of the loop
- Difference is subtle but important

Figure: Do-While

Nebraska

• Use While-Do when the number of loops is • A conditional is checked before each • Each time the loop executes, (hopefully)

Figure: While-Do (日)(個)(日)(日)(日)(日)(日)(000)

While-Do

or end

condition

START

Nebraska	Questions	
CSCE150A		
Administrivia		
Overview		
Hardware		
Software	Questions?	
Example Program		
Pseudocode		
Flowchart		
Control Structures		
Hello World Program		
41/43	<ロ> (費) (注) (注) (注) (注) (注) (注)	

Nebraska Lincoln	Example Program Your First Program	Nebraska Lincoln	Example Program Hello World
CSCE150A		CSCE150A	
Administrivia Overview Hardware Software Example Program Pseudocode Flowchart Control Structures Helio World Program	 Your first program: Edit code using your favorite text editor (pico, emacs, gvim (tip: use gvim Easy), etc.) Save code to a file, helloWorld.c CSE command line: use gcc to compile into an executable file, a.out Run program by calling a.out More details in lab 	Administrivia Overview Hardware Software Example Program Pseudocode Flowchart Control Structures Hello World Program	<pre>1 #include<stdlib.h> 2 #include<stdlib.h> 3 4 int main(int argc, char *argv[]) 5 { 6 printf("Hello World!\n"); 7 return 0; 8 }</stdlib.h></stdlib.h></pre>
42 / 43	<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日> <日	43 / 43	〈□〉〈母〉〈さ〉〈さ〉 さ うくで