
CSCE 478/878 Lecture 7: Combining
Classifiers: Weighted Majority, Boosting, and

Bagging

Stephen D. Scott
(Adapted from Tom Mitchell slides and Rob Schapire)

October 29, 2001

1

Outline

• Combining classifiers to improve performance

• Combining arbitrary classifiers: Weighted Majority
algorithm

• Combining while learning:

– Boosting

– Bagging

2

Combining Classifiers

• Sometimes a single classifier (e.g. neural network,
decision tree) won’t perform well, but a weighted
combination of them will

• Each classifier (or expert) in the pool has its own weight

• When asked to predict the label for a new example,
each expert makes its own prediction, and then the
master algorithm combines them using the weights
for its own prediction (i.e. the “official” one)

• If the classifiers themselves cannot learn (e.g. heuris-
tics) then the best we can do is to learn a good set of
weights

• If we are using a learning algorithm (e.g. NN, dec.
tree), then we can rerun the algorithm on different
subsamples of the training set and set the classifiers’
weights during training

3

Weighted Majority Algorithm (WM)
[Sec. 7.5.4]

A = pool of fixed “experts”

0q > q1

?

algorithm
master

q0 =

q
1 =

pool of "experts"

w1
w2
w

1

2

1

2
n

y pred=0

pred=1

Correct label
n

n

n

a

a

a

Σ
i = 0

wi

i
= 1

Σ wi

a

a
(x)

(x)

(x)a

a

a

4

Weighted Majority Algorithm (WM)
(cont’d)

ai is ith pred. algorithm in pool A of algs; each alg is arbi-
trary function from X to {0,1}

wi is weight the master alg associates with ai

β ∈ [0,1) is parameter

• ∀ i set wi← 1

• For each training example (or trial) 〈x, c(x)〉

– Set q0 ← q1 ← 0

– For each algorithm ai

∗ If ai(x) = 0 then q0 ← q0 + wi
else q1 ← q1 + wi

– If q1 > q0 then predict 1 for c(x), else predict 0
(case for q1 = q0 is arbitrary)

– For each ai ∈ A

∗ If ai(x) 6= c(x) then wi← β wi

Setting β = 0 yields Halving algorithm over A

5

Weighted Majority
Mistake Bound (On-Line Model)

• Let aopt ∈ A be expert that makes fewest mistakes on
arb. sequence S of exs; let k = number of mistakes

• Let β = 1/2 and Wt =
∑n

i=1 wi,t = sum of wts
before trial t (W1 = n)

• On trial t such that WM makes a mistake, the total
weight reduced is

Wmis
t =

∑

ai(xt)6=c(xt)

wi ≥Wt/2

so

Wt+1 =
(

Wt −Wmis
t

)

+Wmis
t /2 = Wt−Wmis

t /2 ≤ 3Wt/4

• After seeing all of S, wopt,|S|+1 = (1/2)k and W|S|+1 ≤

n(3/4)M where M = total number of mistakes, yield-
ing

(
1

2

)k
≤ n

(
3

4

)M
,

so

M ≤
k + log2 n

− log2(3/4)
≤ 2.4 (k + log2 n)

6

Weighted Majority
Mistake Bound (cont’d)

• Thus for any arbitrary sequence of examples, WM
guaranteed to not perform much worse than best ex-
pert in pool plus log of number of experts

– Implicitly agnostic

• Other results:

– Bounds hold for general values of β ∈ [0,1)

– Better bounds hold for more sophisticated algo-
rithms, but only better by a constant factor (worst-
case lower bound: Ω(k + logn))

– Get bounds for real-valued labels and predictions

– Can track shifting concept, i.e. where best expert
can suddenly change in S; key: don’t let any weight
get too low relative to other weights, i.e. don’t over-
commit

7

Bagging Classifiers
[Breiman, ML Journal, ’96]

Bagging = Bootstrap aggregating

Bootstrap sampling: given a set D containing m training
examples:

• Create Di by drawing m examples uniformly at ran-
dom with replacement from D

• Expect Di to omit ≈ 37% of examples from D

Bagging:

• Create k bootstrap samples D1, . . . , Dk

• Train a classifier on each Di

• Classify new instance x ∈ X by majority vote of learned
classifiers (equal weights)

Result: An ensemble of classifiers

8

Bagging Experiment
[Breiman, ML Journal, ’96]

Given sample S of labeled data, Breiman did the following
100 times and reported avg:

1. Divide S randomly into test set T (10%) and training
set D (90%)

2. Learn decision tree from D and let eS be its error rate
on T

3. Do 50 times: Create bootstrap set Di and learn deci-
sion tree (so ensemble size = 50). Then let eB be the
error of a majority vote of the trees on T

Results

Data Set ēS ēB Decrease
waveform 29.0 19.4 33%
heart 10.0 5.3 47%
breast cancer 6.0 4.2 30%
ionosphere 11.2 8.6 23%
diabetes 23.4 18.8 20%
glass 32.0 24.9 27%
soybean 14.5 10.6 27%

9

Bagging Experiment
(cont’d)

Same experiment, but using a nearest neighbor classifier
(Chapt. 8), where prediction of new example x’s label is
that of x’s nearest neighbor in training set, where distance
is e.g. Euclidean distance

Results

Data Set ēS ēB Decrease
waveform 26.1 26.1 0%
heart 6.3 6.3 0%
breast cancer 4.9 4.9 0%
ionosphere 35.7 35.7 0%
diabetes 16.4 16.4 0%
glass 16.4 16.4 0%

What happened?

10

When Does Bagging Help?

When learner is unstable, i.e. if small change in training
set causes large change in hypothesis produced

• Decision trees, neural networks

• Not nearest neighbor

Experimentally, bagging can help substantially for unsta-
ble learners; can somewhat degrade results for stable learn-
ers

11

Boosting Classifiers
[Freund & Schapire, ICML ’96; many more]

Similar to bagging, but don’t always sample uniformly; in-
stead adjust resampling distribution over D to focus atten-
tion on previously misclassified examples

Final classifier weights learned classifiers, but not uniform;
instead weight of classifier ht depends on its performance
on data it was trained on

Repeat for t = 1, . . . , T :

1. Run learning algorithm on examples randomly drawn
from training set D according to distributionDt (D1 =

uniform)

2. Output of learner is hypothesis ht : X → {−1,+1}

3. Compute errorD(ht) = error of ht on examples drawn
according to Dt (can compute exactly)

4. Create Dt+1 from Dt by increasing weight of exam-
ples that ht mispredicts

Final classifier is weighted combination of h1, . . . , hT , where
ht’s weight depends on its error w.r.t. Dt

12

Boosting
(cont’d)

• Preliminaries: D = {(~x1, y1), . . . , (~xm, ym)}, yi ∈

{−1,+1}, Dt(i) = weight of (~xi, yi) under Dt

• Initialization: D1(i) = 1/m

• Error Computation: εt = Pr
Dt

[ht(~xi) 6= yi]

(easy to do since we know Dt)

• If εt > 1/2 then halt; else:

• Weighting Factor: αt =
1

2
ln

(

1− εt

εt

)

(grows as εt decreases)

• Update: Dt+1(i) =
Dt(i) exp (−αt yi ht(~xi))

Zt︸︷︷︸

normalization factor

(increase wt. of mispredicted exs, decr. wt of correctly
pred.)

• Final Hypothesis: H(~x) = sign





T∑

t=1

αt ht(~x)





13

Boosting
Example

D 1

D 1

D 2

2D

h2

1

α1

= 0.30

= 0.42

ε

h1

D 3
h3

D 3

ε

α
= 0.14

= 0.92

ε

α
= 0.21

= 0.65

3

3

2

2

14

Boosting
Example (cont’d)

+ 0.65 + 0.920.42

Not in original
hypothesis class!

= signfinalH

=

Other advantages to ensembles (boost/bag):

• Helps with problem of choosing one of several consis-
tent hypotheses

• Compensates for imperfect search algorithms (e.g. it
is hard to find smallest decision tree or a consistent
ANN)

15

Boosting
Miscellany

• If each εt < 1/2− γt, error of H(·) on D drops
exponentially in

∑T
t=1 γt

• Can also bound generalization error of H(·)

independent of T

• Also successful empirically on neural network and de-
cision tree learners

– Empirically, generalization sometimes improves if
training continues after H(·)’s error on D drops to
0 [cf. generalization error’s independence of T]

– Contrary to intuition: would expect overfitting

– Related to increasing the combined classifier’s
margin (confidence in prediction)

• Can apply to labels that are multi-valued using e.g.
error-correcting output codes

Topic summary due in 1 week!
16

