
Fast Enhancement of Validation Test Sets to Improve Stuck-at Fault
Coverage for RTL circuits

L. Lingappan†, V. Gangaram‡, N. K. Jha† and S. Chakravarty††
†Princeton University, Princeton, NJ 08544

{llingapp, jha}@princeton.edu
‡ Intel Corporation, Folsom, CA 95630

vijay.gangaram@intel.com
†† Cswitch Inc., Santa Clara, CA 95054

sreejit@ieee.org

Abstract— A digital circuit usually comprises a controller and
datapath. The time spent for determining a valid controller
behavior to detect a fault usually dominates test generation time. A
validation test set is used to verify controller behavior and, hence,
it activates various controller behaviors. In this paper, we present
a novel methodology wherein the controller behaviors exercised by
test sequences in a validation test set are reused for detecting faults
in the datapath. A heuristic is used to identify controller behaviors
that can justify/propagate pre-computed test vectors/responses of
datapath register-transfer level (RTL) modules. Such controller
behaviors are said to be compatible with the corresponding pre-
computed test vectors/responses. The heuristic is fairly accurate,
resulting in the detection of a majority of stuck-at faults in the
datapath RTL modules. Also, since test generation is performed at
the RTL and the controller behavior is predetermined, test genera-
tion time is reduced. For microprocessors, if the validation test set
consists of instruction sequences then the proposed methodology
also generates instruction-level test sequences.

I. INTRODUCTION

Validation/functional testing methods [1]–[7] start with a
functional description of the circuit and make sure that the
circuit’s operation corresponds to its description. These meth-
ods are geared towards extensive validation of the controller
behavior of a given circuit under test. However, validation test
sets do not have good stuck-at fault coverage. In this paper, we
present a novel method that uses validation test sets to generate
test sequences that detect a majority of stuck-at faults in the
datapath.

A. Related Work
A digital system, in general, consists of two main parts:

a datapath and controller. The datapath is used to store and
manipulate data and transfer data from one part of the system
to another. The controller, on the other hand, controls the
operation of the datapath. In practice, obtaining a suitable
controller behavior to detect a fault is much more difficult than
performing justification/propagation analysis on the datapath
alone [8] and, hence, constitutes a predominant portion of
the test generation time. Various schemes [9], [10] have been
suggested to avoid controller analysis during test generation
by inserting DFT elements at the interface between the con-
troller and datapath. DFT elements can also be inserted in the
controller to simplify its functionality in the test mode [11].

Design validation deals with verifying the conformance of
the design to its functional specification, thereby aiding in the
elimination of design errors. A functional coverage metric is
often used that measures the fraction of specified behaviors
exercised by a test suite. A majority of the design validation
schemes [2]–[4] use the percentage of state transition edges in
the controller that are exercised by a test suite as the functional
coverage metric. Hence, all the above validation schemes
generate test sets that exercise the controller in different ways
to detect design errors.

Acknowledgments: This work was supported by SRC under Contract
No. 2002-TJ-1039.

B. Paper Overview and Contributions
In this paper, we define the problem of identifying pre-

computed test vectors/responses of datapath RTL modules
that can be justified/propagated to primary inputs/outputs by
reusing the controller behavior derived from a validation
test sequence. Such a controller behavior is defined to be
compatible with the corresponding pre-computed test vec-
tors/responses. The advantages of the proposed approach are
as follows.
• Hardware design validation, in spite of being an NP-

complete problem, is an important step in the early
stages of the integrated circuit design flow. The proposed
approach exploits the availability of a validation test set
for high-level testability analysis.

• The controller behavior is pre-determined during test
generation. Hence, unlike conventional sequential test
generation approaches, the number of time frames for
which a sequential circuit is unrolled is fixed.

• Test generation is done at the RTL. Also, since the
controller behavior is pre-determined, test generation time
is reduced.

• The controller behavior is preserved during test gener-
ation for justifying/propagating pre-computed test vec-
tors/reponses of datapath modules. Hence, for micropro-
cessors, if the validation test set consists of instruction
sequences, then the proposed approach also generates a
test program consisting of instruction sequences.

Experimental results for a wide range of benchmark circuits
show that the proposed approach is efficient in generating tests
that reuse controller behaviors extracted from validation test
sequences and obtain high fault coverages for datapath RTL
modules.

The rest of the paper is organized as follows. Section II
motivates the proposed approach by illustrating its advan-
tages. Section III defines and illustrates the heuristic for
quickly identifying controller behaviors that can be reused
for justifying/propagating pre-computed test vectors/responses.
Section IV presents experimental results, while Section V
concludes.

II. MOTIVATION

In this section, we illustrate the proposed approach and
motivate the need for a heuristic that efficiently identifies
controller behaviors extracted from validation test sequences
that can be reused successfully for justifying/propagating pre-
computed test vectors/responses of an embedded RTL module
to primary inputs/outputs of the circuit containing the RTL
module.

Consider the RTL circuit ascmp shown in Fig. 1(a). The
circuit comprises registers R1, R2, R3 and, R4, primary inputs
PI1, PI2 and reset rst, constant input “0”, primary output PO,
multiplexers M1, M2 and M3, comparator (>) CMP, adder
ADD, subtracter SUB and a controller. The bit-width of all

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007

CMP(>)ADDSUB

0 M�1 0 M�1

0 M�1Reg R�
Reg R�

Reg R� Reg R� Controller

m� m�
m�l�
l�

l� l�
PO

PI� PI�
“0”

rst

m�, m�, m�,
l�, l�, l�, l�

(a)

0
1
0
0
1
0
0
0
0
1
l�

100000S0S6X0/1
001011S6/S0S5X0/1
010000S5/S0S410/1
100000S0S400/1
001000S4/S0S3X0/1
010000S3/S0S210/1
100000S0S200/1
001000S2/S0S110/1
100000S0S100/1
001101S1/S0S0X0/1
l�l�l�m�m�m�NSPScmprst

0
1
0
0
1
0
0
0
0
1
l�

100000S0S6X0/1
001011S6/S0S5X0/1
010000S5/S0S410/1
100000S0S400/1
001000S4/S0S3X0/1
010000S3/S0S210/1
100000S0S200/1
001000S2/S0S110/1
100000S0S100/1
001101S1/S0S0X0/1
l�l�l�m�m�m�NSPScmprst

(b)

Fig. 1. (a) The RTL circuit ascmp, and (b) controller specification
for ascmp
modules in the datapath is four. The controller, shown in
Fig. 1(b), consists of seven states, S0, S1, S2, S3, S4, S5,
and S6, and generates the control signals shown in Fig. 1(a).
The next state (NS) and values at the outputs of the controller
are determined by its present state (PS), CMP’s output and rst.
Note that if rst is asserted then NS is always S0 irrespective
of PS and the value at CMP’s output.

Assume that T1 is a validation test sequence consisting
of the following six vectors: {(100000000), (000010000),
(000000000), (000000000), (000000101), (000000000)}. Each
vector consists of nine bit values held by different primary
inputs in the following order: rst, PI1[3 : 0], PI2[3 : 0]. The
behavior of the controller is governed by the values held by
the input signals to the controller (rst and CMP’s output).
These values are obtained by performing logic simulation
on the circuit ascmp using sequence T1. In order to reuse
the controller behavior, the following conditions are imposed
during test generation: (i) the circuit is unrolled for the same
number of cycles as the number of vectors in the validation
test sequence, and (ii) the values held by the controller inputs
in each cycle are determined by logic-simulating the circuit
using the validation test sequence.

Fig. 2 shows the control-data flow graph (CDFG) and state
transition sequence exercised by validation test sequence T1.
The CDFG captures the data flow through different modules
of the datapath. The Boolean values shown at the output of
comparator module CMP are obtained through logic simulation
of test sequence T1. If the controller behavior derived from
T1 is reused to generate a new test sequence T2 that targets
stuck-at faults, then the state transition sequence and CDFG
corresponding to T2 will be identical to those for T1 shown in
Fig. 2.

Next, assume that the RTL module ADD in Fig. 1(a) is the
module under test. RTL test generation is SAT based [12] and

CMP

CMPSUB

ADD CMP

PI�
PI	
PI	
“0”

PO

‘1’

‘1’

‘0’

S0

S1

S2

S3

S4

S0

v� v	
Unknown
state

Fig. 2. CDFG and state transition sequence exercised by validation
test sequence T1

uses a pre-computed test set approach [10], [13]. Justification
of module-level pre-computed test vectors is performed by
(i) first abstracting modules by their equivalent input/output
propagation rules, (ii) abstracting the different paths in the
circuit as a sequence of implications, and (iii) using a SAT
solver to resolve the implications to obtain requisite vectors at
the primary inputs.

A pre-computed test vector for ADD consists of two sub-
vectors (v1,v2) corresponding to the two inputs of the module.
ADD uses a carry-lookahead implementation for computing the
sum of the values held by its two inputs. A pre-computed test
set that detects all the stuck-at faults in ADD consists of the
following vectors: {(15,1), (1,15), (2,14), (5,12), (8,9), (0,15),
(14,0), (13,1), (11,3), (7,7)}. The goal of RTL test generation
is to justify these vectors from the inputs of ADD to primary
inputs PI1, PI2, and rst, and propagate the responses to primary
output PO. The controller behavior derived from test sequence
T1 is reused during test generation by (i) ensuring that the
sequential circuit is unrolled six times (T1 consists of six
vectors) and (ii) maintaining the same values for signals rst
and CMP as imposed by test sequence T1.

In Fig. 2, a pre-computed test vector (v1,v2) can be delivered
to ADD only in state S4 and the response can be observed only
in the subsequent state S0. However, in general, a given module
can be exercised in multiple states by a given validation test
sequence. For example, CMP in Fig. 2 is exercised in states S1,
S2 and S4. By reusing the controller behavior extracted from
T1, five out of ten vectors in the pre-computed test set ({(1,15),
(2,14), (5,12), (8,9), (7,7)}) can be delivered to the inputs of
ADD and their responses observed at the primary output. The
controller behavior extracted from T1 is not compatible for test
generation using the remaining pre-computed vectors {(15,1),
(0,15), (14,0), (13,1), (11,3)}. While vectors {(15,1), (14,0),
(13,1), (11,3)} cannot be justified due to the Boolean value
held by the output of CMP in state S4 in Fig. 2, pre-computed
vector (0,15) cannot be justified due to the requirement that
the value at the output of CMP in state S2 should be ‘1’.
Hence, reusing controller behavior extracted from T1 results
in successful test generation for 50% of the pre-computed test
vectors of ADD. In general, a validation test set may contain
a large number of test sequences. For example, assume that
the validation test set of ascmp consists of 20 sequences. The
total number of pre-computed test vectors for all the datapath
RTL modules in ascmp is 58. Hence, in the worst case, 1160
(58×20) test generation runs have to be attempted to determine
whether there exists a controller behavior that can be reused to
justify/propagate each pre-computed test vector/response. This
problem worsens if the average length of the validation test

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007

x1

n1

n4

n2

n3

n5

n6

x4

x2

z

Y1

Y1

x5

n1

n4

n2

n3

n5

n6

n1

n4

n2

n3

n5

n6
y1

i1i1x1

z z

C = 0 C = 1 C = 2

x4 x4

x5
x5

0/1 (1)x3

x2

x3

x1

x2

x31/0 (1)

0/1 (1)

1/0 (1)
0/1 (1)

f1f1 f1

Fig. 3. Activation and detection cycles for fault f1 obtained by fault
simulation
sequences is high. Even though reusing controller behavior
and test generation at the RTL reduce the time required for
each test generation run, performing test generation for each
pre-computed test vector by reusing the controller behavior ex-
tracted from each validation test sequence till all pre-computed
test vectors/responses get justified/propagated might result in
a prohibitively large number of test generation runs. In the
next section, we present a heuristic that identifies efficiently
whether the controller behavior extracted from a validation
test sequence is compatible for justifying/propagating a pre-
computed test vector/response to primary inputs/outputs.

III. IDENTIFICATION OF COMPATIBLE CONTROLLER
BEHAVIORS

In the previous section, we showed that a pre-computed test
vector/response of an embedded RTL module in the datapath
of a circuit can be justified/propagated by reusing the controller
behavior extracted from a validation test sequence. Such a
controller behavior is defined to be compatible with the pre-
computed test vector/response. Next, we present a heuristic to
quickly identify a compatible controller behavior for a given
pre-computed test vector/response. Hence, test generation is
performed only for those pre-computed test vectors/responses
for which a compatible controller behavior has been selected
by the heuristic. This significantly reduces the number of
test generation attempts required to justify/propagate the pre-
computed test vectors/responses of all the RTL modules in the
datapath of a circuit.

The heuristic consists of two steps. The validation test
sequences are first fault-simulated. The stuck-at fault simulator
is augmented to capture the cycles in which a fault gets
activated and eventually detected. If a detected fault belongs
to an RTL module in the datapath, then the second part of the
heuristic is used to estimate whether the controller behavior
extracted from the corresponding validation test sequence is
compatible with any one of the module’s pre-computed test
vectors/responses. This is done under the assumption that pre-
computed test vectors (responses) will take the same number
of cycles to get justified (propagated) as taken for the detected
stuck-at fault. We next present the two steps of the heuristic
in detail.

A. Augmented Fault Simulation to Derive Activation-
Detection Time Frame Pair

We modified the HOPE fault simulator [14] in order to obtain
the activation-detection cycles as a by-product of fault simula-
tion. HOPE is a hybrid of concurrent, differential and parallel
fault simulation algorithms. It is based on an iterative-logic
array (ILA) model of the sequential circuit. Upon activation,
a fault gives rise to a fault effect which is propagated through
the ILA model of the sequential circuit one cycle at a time
until it either reaches a primary output or is blocked due to
circuit conditions or length of the test sequence.

n1

1/0 (1)

1/0 (2)

0/1 (2)

Fig. 4. Special case for determining activation and detection cycles
With each fault effect, we associate a tag which is an integer

data structure that stores the activation cycle of the fault effect.
The tag gets propagated through the ILA along with the fault
effect. When the fault effect reaches a primary output port, the
fault simulator declares the fault detected, reports the activation
cycle stored in the tag and current cycle of the ILA as the
detection cycle. Once the fault is detected, it is dropped from
the fault list.

Example 1: Fig. 3 shows the ILA model of a sequential
circuit over three cycles, C = (0, 1, 2). The circuit comprises
six NAND gates n1, n2, n3, n4, n5 and n6, five primary inputs
x1, x2, x3, x4, and x5, a primary output z and a flip-flop. Y1 and
y1 represent the input and output of the flip-flop, respectively.
Assume a stuck-at 1 (SA1) fault at primary input x3 and a test
sequence {(00110), (10001), (11101)} that detects the fault.
Each test vector corresponds to the values held by primary
inputs (x1,x2,x3,x4,x5) in that order. The fault is present in all
the three cycles and gets activated in cycle C = 1, giving rise
to the fault effect 0/1 (good-circuit value/faulty-circuit value).
The activation cycle, C = 1, is stored in an integer tag (shown
within brackets in Fig. 3) along with the fault effect. The tag
gets propagated along with the fault effect to primary output
z in cycle C = 2. At this point, the fault simulator checks the
tag associated with the fault effect and declares that fault f1
was activated in cycle C = 1 and detected in cycle C = 2.

The above example does not capture the special case shown
in Fig. 4. Here, a fault gets activated in two different cycles,
C = 1 and C = 2. These fault effects get propagated to a cycle
C ≥ 2 and meet at a NAND gate n1. Both the fault effects
get propagated to the output of gate n1. In this case, the tag
associated with the fault effect at the output of gate n1 is
assigned the greater of the two cycle values, i.e., C = 2. This is
because, in general, activating a fault is easier than propagating
the corresponding fault effect in a circuit and choosing the
larger activation cycle reduces the number of cycles for which
propagation analysis needs to be done.

In the next section, we present a heuristic that uses the infor-
mation derived from the augmented fault simulator to identify
compatible controller behaviors that can be reused to success-
fully justify/propagate pre-computed test vectors/responses of
an embedded RTL module.

B. Analysis of Requirements to Identify Compatible Faults
Given a validation test sequence, we first extract the CDFG

exercised by the sequence. Fig. 2 shows one such CDFG
extracted for circuit ascmp, shown in Fig. 1, using validation
test sequence T1. We next need to determine efficiently and ac-
curately whether justification/propagation of any pre-computed
test vector/response of an RTL module in the CDFG will
result in a failure. For this purpose, we define two measures
called 1-requirement (r1) and 0-requirement (r0) for each
line in the CDFG. They capture approximate requirements
for a line to hold binary value ‘1’ or ‘0’, respectively, for
justifying/propagating a pre-computed test vector/response in
the CDFG. The range of values that r0 and r1 can assume is
0≤ r0, r1 ≤ 1. Also, for any line, if r1(r0) > 0 then r0(r1) = 0.
Given a set of initial assignments, the non-zero requirement
values are justified to primary inputs in the CDFG. The initial

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007

JUSTIFICATION PROCESS (CDFG, initial (r0, r1) values)
1 : Levelize circuit; L ← max level
2 : Q[L]: Array of queues //Each queue stores the initial

assignment of non-zero requirement values per level
3 : for i = 0 to L
4 : while (Q[i] non empty)
5 : {o, r0(o), r1(o)} = pop Q[L]
6 : Justify r0(o), r1(o)
7 : for each input i of gate G //G is the gate whose

output is line o
8 : if (r0(i) > 0) AND (r1(i) > 0)
9 : evaluate g
10: if g > g0 //g0 = 1.0
11: Declare incompatible; STOP
12: else
13: if r1(i) > r0(i)
14: r0(i) = 0
15: else
16: r1(i) = 0
17: push {i, r0(i), r1(i)} to Q[level(i)]
18: Declare compatible

Fig. 5. Algorithm for justifying requirement values

assignments correspond to a pre-computed test vector/response
and the values at the controller inputs. Justification through
RTL modules is performed using their gate-level implemen-
tation. The justification process obeys the following rules for
gate-level modules:
• AND gate: Let the number of gate inputs be n. Let i and

o represent the gate input and output lines, respectively.
Then
i f r0(i) < r0(o)/n, then r0(i) = r0(o)/n
i f r1(i) < r1(o), then r1(i) = r1(o)

• OR gate: Let the number of gate inputs be n. Let i and
o represent the gate input and output lines, respectively.
Then
i f r0(i) < r0(o), then r0(i) = r0(o)
i f r1(i) < r1(o)/n, then r1(i) = r1(o)/n

• NOT gate: Let i and o represent the gate input and output
lines, respectively. Then
i f r0(i) < r1(o), then r0(i) = r1(o)
i f r1(i) < r0(o), then r1(i) = r0(o)

• Fan-out point: Let a line i have k fan-outs o1,o2, . . . ,ok .
Then
r0(i) = max(r0(op), r0(i))
r1(i) = max(r1(op), r1(i)), 1≤ p≤ k

The CDFG is levelized before the justification process. Hence,
a single pass is sufficient to justify the requirement values to the
primary inputs. In some cases, during the justification process
a condition might arise wherein the 0- and 1-requirements of a
particular line are both assigned values greater than 0. Such a
conflicting situation arises when a given line in a CDFG might
need to hold both Boolean values ‘0’ and ‘1’ in order to satisfy
the initial assignment of requirement values. The extent of the
conflict on a line l is measured with the help of the following
metric g.

g =
1

21−(r0(l)∗r1(l))−1
−1

When either r0(l) or r1(l) hold the value 0, g evaluates to 0,
indicating no conflict. However, when both r0(l) and r1(l) are
equal to 1, g evaluates to infinity indicating that l needs to hold
both complementary Boolean values, which is not possible.
Also, g is a monotonically increasing function in both r0(l)
and r1(l) in the range 0 < r0(l), r1(l) ≤ 1. Based on the ex-

x

x� x�

x

z

n

n�
o

o�a
 (1, 0)

(1, 0)

(1, 0)(0.5, 0)

(0.5, 0)

(0.5, 0)

(0.5, 0)

(0, 0.5)

(0, 0.5)

(0.5, 0.5)
(0, 0.25)

(0,
0.25)

(0, 0.5) fo

fo� Initial

assignment

(0.5, 0)

Conflict
resolution

Fig. 6. Justification of requirement values

periments presented in Section IV, a threshold value of 1.0 was
selected for g. Hence, if g for a conflicting situation is greater
than 1.0, then justification is stopped and the corresponding
controller behavior is declared to be incompatible with the
pre-computed test vector/response. However, if g ≤ 1.0, then
the smaller of the two requirement values is changed to 0.

The justification process is summarized by the pseudocode
shown in Fig. 5. Q is an array of queues that stores requirement
values of lines that need to be justified. The values are stored
based on the levels of the corresponding lines. The values
are justified starting from lines with the lowest level number
(primary outputs in the CDFG) to lines that have the maximum
level number (primary inputs in the CDFG). Step 6 in Fig. 5
is performed using the rules described above for gate-level
modules. In case of a conflict on a line o (both r0(o), r1(o) >
0), g is evaluated. Depending on its value, we either continue
with the justification process or declare the controller behavior
corresponding to the CDFG as incompatible with the targeted
pre-computed test vector/response. If the justification process
completes with all intermediate g values, if any, falling below
the threshold value (g0), then the controller behavior is declared
to be compatible with the pre-computed test vector/response.
In this case, we proceed to the test generation phase. Next,
we present an example that further illustrates the justification
process.

Example 2: Consider the gate-level circuit shown in Fig. 6.
It consists of one NOR gate n1, one NAND gate n2, one
AND gate a1, two OR gates o1 and o2, four primary inputs
x1, x2, x3 and x4, one primary output z, and two fan-out
nodes f o1 and f o2. The requirement values are captured in
the format (r0,r1). Assume that an initial requirement value
assignment of (1,0) is made at z, while the requirement values
for all the other nodes are initialized to (0,0). The initial non-
zero assignment at z is justified using the procedure shown in
Fig. 5 to the primary inputs. In other words, we want to quickly
estimate whether there exists an assignment of Boolean values
to primary inputs that imply a Boolean value ‘0’ at z. Fig. 6
shows the requirement values at different nodes at the end of
the justification process. A conflict arises at fan-out node f o1,
since both r0(f o1) and r1(f o1) get assigned a value of 0.5.
g for this conflict evaluates to 0.46. Since g is less than g0
(1.0), the conflict is resolved using steps 13-16 in Fig. 5. In
this case, the heuristic predicts that there exist primary input
value assignments that resolve this conflict. This is indeed true
as there are three vectors (x1,x2,x3,x4) = {(0100), (1000),
(1100)} that result in a Boolean value ‘0’ at z. The requirement
values at all the nodes can be verified by using the justification
rules for gate-level modules described above.

The above heuristic is used to estimate whether the controller
behavior shown in Fig. 2 that is derived from validation
test sequence T1 is compatible with any pre-computed test
vector/response of the RTL module ADD in Fig. 1. We first
use the augmented fault simulator described in Section III-A

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007

to check whether T1 detects any faults in ADD. It turns out
that T1 detects 12 faults in ADD. The activation and detection
cycles indicate that these faults are activated in state S4 shown
in Fig. 2 and detected in subsequent state S0. We next assume
that any pre-computed test vector of ADD can be delivered
to it only in state S4 and its response observed in one of the
subsequent states. This assumption holds for ADD in Fig. 2
as it is activated only in state S4. However, in general, a
module can get activated multiple times in a CDFG. Hence,
the augmented fault simulator is used to obtain the number
of cycles required to deliver a pre-computed test vector from
the primary inputs to the inputs of the module under test
and observe its response at a primary output. The initial
non-zero requirement values correspond to the pre-computed
vectors at the inputs of ADD in state S4 and the output
of CMP in states S1, S2 and S4 to preserve the controller
behavior. For example, for the pre-computed test vector (1,15)
the 0-requirement values for the two input nodes of ADD are
(1110,0000). The requirement values are listed in the bit order
(3,2,1,0). Similarly the 1-requirement values for the two input
nodes are {(0001),(1111)}. The requirement values for other
pre-computed test vectors can be obtained in a similar fashion.
The requirement values (r0,r1) for the output of CMP in states
S1, S2 and S4 are (0,1), (0,1) and (1,0), respectively. For
each pre-computed test vector, the initial non-zero requirement
value assignments are justified using the procedure shown in
Fig. 5. Only a single pass through the CDFG is required for
each pre-computed test vector/response to determine whether
the controller behavior corresponding to the CDFG is com-
patible with the pre-computed test vector/response. For the
pre-computed test vectors {(1,15), (2,14), (5,12), (8,9), (7,7)},
none of the conflicts generated in the justification process result
in g being greater than 1.0. Hence, the controller behavior is
declared to be compatible with each of these pre-computed test
vectors. RTL test generation is then performed to justify all the
above five pre-computed test vectors. For the remaining pre-
computed test vectors {(15,1), (0,15), (14,0), (13,1), (11,3)},
conflicts result in the following g values, (3.96, 4.69, 3.96,
3.96, 3.96), respectively. All these values are greater then the
threshold limit (g0) of 1.0. Hence, the controller behavior is
declared to be incompatible with all the five pre-computed test
vectors and no test generation is performed for these vectors.
The g values for the pre-computed test vectors {(15,1), (14,0),
(13,1), (11,3)} are equal because they cause identical conflicts
at the most significant bit of the input to ADD from R1 in
Fig. 1(a). For ADD, all the pre-computed test vectors that are
found to be compatible with the controller behavior also get
successfully justified. None of the pre-computed test vectors
that are found to be incompatible can be justified by reusing the
controller behavior extracted from T1. Hence, in this case, the
heuristic is 100% accurate in efficiently determining whether
a controller behavior is compatible with any pre-computed test
vector/response of an embedded RTL module.

The output of ADD in Fig. 2 is directly connected to
the primary output PO. Hence, no propagation analysis is
required. However, in general, an RTL module’s output might
be connected to other modules in the CDFG. In this case,
we assign additional requirement values initially to ensure that
a controller behavior is compatible for both justification and
propagation of pre-computed test vectors and responses, re-
spectively. Once a controller behavior is found to be compatible
with a pre-computed test vector and response, SAT based RTL
ATPG [12] is used to obtain a test sequence that reuses the
controller behavior to justify and propagate the pre-computed
test vector and response to primary inputs and outputs, respec-
tively. In the next section, we present experimental results for

TABLE I
CIRCUIT STATISTICS

Circuit BW ♯lits ♯regs ♯FFs ♯gates

Sqr mul 32 21,689 6 210 11,248
Sqr add 32 13,563 7 226 7,623

ex1 1-16 3,907 8 130 2,017
Bessel 32 23,007 5 162 13,123
Paulin 32 76,123 5 196 39,558
ASPP4 32 101,278 7 229 52,742
Parwan 8-12 2,451 7 89 1,323

various benchmark circuits using the proposed approach.

IV. EXPERIMENTAL RESULTS

In this section, we provide experimental results obtained by
applying our methodology to various benchmarks. The fault
simulator used in our experiments was obtained by modifying
the HOPE fault simulator [14], as illustrated in Section III-A.
The heuristic, explained in Section III-B, first uses a Perl
script to generate CDFGs corresponding to different validation
test sequences of a circuit [15]. A C++ code is then used
to levelize the circuit and determine whether the controller
behavior corresponding to a CDFG is compatible with a pre-
computed test vector/response. The controller behaviors that
are found to be compatible are reused during SAT based RTL
test generation [12]. All experiments were performed on a 3.06
GHz Linux server with 2 GB of memory. Synopsys Design
Compiler [16] is used to obtain the synthesized gate-level
netlists.

Table I shows the circuit statistics for the benchmarks used in
our experiments. Column 2 gives the bit-width of the datapath.
Columns 3, 4, 5 and 6 report the literal-count of the synthesized
circuit, number of registers, number of flip-flops, and number
of gates, respectively. Of the seven circuits, RTL circuits
Sqr Mul and Sqr add perform a polynomial computation of
their inputs [12]. In ex1, the datapath input values influence the
controller behavior heavily. Hence, the controller and datapath
are tightly coupled in ex1 [12]. Bessel is a circuit used in the
computation of an integer-order Bessel function [17]. Paulin is
a differential equation solver and is data-dominated. ASPP4 is
an application-specific programmable processor (ASPP) taken
from [15] that can emulate the behavior of Paulin. Parwan [18]
is a simple accumulator-based microprocessor. It has an 8-bit
data bus and a 12-bit address bus for external accesses.

Table II presents results obtained using the proposed method-
ology for the above benchmarks. Columns 2 and 3 present the
number of validation test sequences used for each benchmark
and the overall fault coverage obtained by these sequences
for the datapath RTL modules, respectively. These sequences
were hand-derived to exercise all the state transition edges in
the controller. The total number of pre-computed test vectors
for the datapath RTL modules in these circuits is presented in
Column 4. Column 5 indicates the number of times a controller
behavior extracted from any validation test sequence is found
to be compatible with a pre-computed test vector/response.
Column 6 presents the number of RTL test generation runs
per benchmark that are successful. Column 7 gives the total
time taken to find compatible controller behaviors and per-
form RTL test generation runs. Column 8 presents the fault
coverage obtained by the generated test sequences for the
datapath RTL modules, while Column 9 presents the overall
controller/datapath fault coverage.

A majority of stuck-at faults in the datapath get detected by
reusing the controller behaviors extracted from the validation
test sequences (Column 8). The overall fault coverage shown
in Column 9 is lower than the fault coverage for the datapath
RTL modules as the faults in the gate-level controller are not

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007

TABLE II
TEST GENERATION RESULTS

validation Initial # pre-computed # success Total Datapath Overall
Module test datapath test vectors # compatible justified/ time fault fault

sequences fault cov. (%) propagated (in secs) cov. (%) cov. (%)
Sqr mul 12 40.7 62 79 62 217.8 100.0 99.2
Sqr add 16 23.6 64 75 64 156.2 100.0 98.1

ex1 35 58.1 103 156 99 118.3 99.8 96.6
Bessel 27 47.3 79 105 76 179.9 99.7 97.2
Paulin 49 20.1 123 193 119 285.4 98.2 96.8
ASPP4 44 27.8 155 238 145 364.1 95.3 94.4
Parwan 26 56.6 123 170 97 380.3 96.9 87.4

targeted for test generation. The number of test generation
runs (Column 5) is comparable to the number of pre-computed
test vectors (Column 4) and a large number of these runs are
also successful (Column 6). This directly reflects the accuracy
of the heuristic presented in Section III which identifies con-
troller behaviors that can be reused for justifying/propagating
a given pre-computed test vector/response. The accuracy of the
heuristic reduces the number of test generation runs per pre-
computed test vector/response and, hence, the overall number
of test generation runs for each benchmark. Also, SAT based
RTL test generation reduces the overall test generation time
(Column 7). For Parwan, the validation test set consists of
instruction sequences. Since test generation preserves con-
troller behaviors extracted from validation test sequences, the
generated sequences constitute a test program consisting of 145
instructions.

V. CONCLUSIONS

In this paper, we presented a novel approach for using a val-
idation test set to generate test sequences that have good stuck-
at fault coverage for datapath RTL modules. The scheme first
derives the controller behaviors from validation test sequences
and reuses them for simplifying justification/propagation anal-
ysis corresponding to pre-computed test vectors/responses of
datapath RTL modules. A heuristic is used to identify controller
behaviors that are compatible with a given set of pre-computed
test vectors/responses. It requires only a single pass through
the CDFG corresponding to a validation test sequence and is
accurate, resulting in a small number of test generation runs.
Test generation is performed at the RTL and the controller
behavior is pre-specified, which results in very small test
generation times.

REFERENCES

[1] N. K. Jha and S. Gupta, Testing of Digital Systems. Cambridge
University Press, Cambridge, 2003.

[2] D. J. Moundanos, J. A. Abraham, and Y. V. Hoskote, “Abstraction
techniques for validation coverage analysis and test generation,”
IEEE Trans. Comput., vol. 47, pp. 2–14, Jan. 1998.

[3] K. T. Cheng and J. Y. Jou, “A functional fault model for se-
quential machines,” IEEE Trans. Computer-Aided Design, vol. 2,
pp. 1065–1073, Sept. 1992.

[4] R. C. Ho and M. A. Horowitz, “Validation coverage analysis
for complex digital designs,” in Proc. Int. Conf. Computer-Aided
Design, pp. 146–151, Nov. 1996.

[5] F. Fallah, P. Ashar, and S. Devadas, “Simulation vector genera-
tion from HDL descriptions for observability-enhanced statement
coverage,” in Proc. Design Automation Conf., pp. 666–671, June
1999.

[6] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and
R. Smeets, “A study in coverage-driven test generation,” in Proc.
Design Automation Conf., pp. 970–975, June 1999.

[7] N. Yogi and V. D. Agrawal, “Spectral characterization of func-
tional vectors for gate-level fault coverage tests,” in Proc. VLSI
Design & Test Symp., pp. 407–417, Aug. 2006.

[8] T. E. Marchok, A. El-Maleh, W. Maly, and J. Rajski, “Complexity
of sequential ATPG,” in Proc. European Design and Test Conf.,
pp. 252–261, Mar. 1995.

[9] I. Ghosh, A. Raghunathan, and N. K. Jha, “A design for testability
technique of RTL circuits using control/data flow extraction,”
in Proc. Int. Conf. Computer-Aided Design, pp. 329–336, Nov.
1996.

[10] S. Ravi, G. Lakshminarayana, and N. K. Jha, “TAO: Regular
expression-based register-transfer level testability analysis and
optimization,” IEEE Trans. VLSI Systems, vol. 9, pp. 824–832,
Dec. 2001.

[11] L. Lingappan and N. K. Jha, “Unsatisfiability based efficient
design for testability solution for register-transfer level circuits,”
in Proc. VLSI Test Symp., pp. 418–423, May 2005.

[12] L. Lingappan, S. Ravi, and N. K. Jha, “Satisfiability-based test
generation for nonseparable RTL controller-datapath circuits,”
IEEE Trans. Computer-Aided Design, vol. 25, pp. 544–557, Mar.
2006.

[13] B. T. Murray and J. P. Hayes, “Hierarchical test generation using
precomputed tests for modules,” IEEE Trans. Computer-Aided
Design, vol. 9, pp. 594–603, June 1990.

[14] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault simu-
lator for synchronous sequential circuits,” IEEE Trans. Computer-
Aided Design, vol. 15, pp. 1048–1058, Sept. 1996.

[15] I. Ghosh, A. Raghunathan, and N. K. Jha, “Hierarchical test
generation and design for testability methods for ASPPs and
ASIPs,” IEEE Trans. Computer-Aided Design, vol. 18, pp. 357–
370, Mar. 1999.

[16] Design Compiler. Synopsys Inc. (http://www.synopsys.
com).

[17] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C. Cambridge University Press, 1993.

[18] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems.
McGraw-Hill, New York, 1993.

20th International Conference on VLSI Design (VLSID'07)
0-7695-2762-0/07 $20.00 © 2007

