
JOURNAL OF ELECTRONIC TESTING: Theory and Applications 19, 271–284, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Modeling Fault Coverage of Random Test Patterns

HAILONG CUI AND SHARAD C. SETH
University of Nebraska-Lincoln, Lincoln, Nebraska, USA

hcui@qualcomm.com

seth@cse.unl.edu

SHASHANK K. MEHTA
Indian Institute of Technology, Kanpur, India

skmehta@cse.iitk.ac.in

Received March 30, 2001; Revised September 10, 2002

Editor: H.-J. Wunderlich

Abstract. We present a new probabilistic fault coverage model that is accurate, simple, predictive, and easily
integrated with the normal design flow of built-in self-test circuits. The parameters of the model are determined
by fitting the fault simulation data obtained on an initial segment of the random test. A cost-based analysis finds
the point at which to stop fault simulation, determine the parameters, and estimate fault coverage for longer test
lengths. Experimental results on benchmark circuits demonstrate the effectiveness of this approach in making
accurate predictions at a low computational cost. As compared to the cost of fault-simulating all the test vectors,
the savings in computational time for larger circuits ranged from four to fourteen times. We also present an
analysis of the mean and the variance of the fault coverage achieved by a random test of a given length. This
analysis and simulation results demonstrate that while the mean coverage is determined by the distribution of the
detectabilities of individual faults, the dual distribution of fault coverage of individual test vectors determines the
variance.

Keywords: probabilistic model, BIST, fault-coverage prediction, cost-benefit analysis of fault simulation, variance
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1. Introduction

Motivation. Assessing the random-pattern testability of
a circuit is often necessary in VLSI testing. In random
built-in self-test (BIST) a very large number of pseudo-
random patterns can be applied to the circuit under test
but the designer must ensure that the circuit is random-
pattern testable. If it is, the designer must further de-
termine the number of test patterns that would achieve
the desired fault coverage. Otherwise, several available
corrective actions may be chosen, including embedding
deterministic test patterns for hard-to-detect faults in

the pseudo-random test sequence [1, 2], inserting test
points to improve the circuit’s testability [3–5], or al-
tering the scan-testing scheme [6].

One way to measure the testability of a circuit for a
given set of test patterns is through fault simulation but
this may be prohibitively expensive if the circuit is large
or the number of patterns is high. In such situations it
is attractive to seek accurate mathematical models for
fault coverage estimation. Developing such a model is
our main objective in this paper.

The model may be integrated with the random BIST
as follows. We perform fault simulation in incremental
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steps. After each step, we check if a stopping crite-
rion based on the marginal cost of fault-coverage in-
crease is satisfied, this check being based on our new
model for fault coverage estimation. If the stopping cri-
terion is reached before the desired fault coverage, the
model is used to estimate the fault coverage achievable
with additional number of test patterns. The ISCAS-89
benchmark s9234 (scan version) provides a good illus-
trative example. For this circuit the stopping criterion
is reached after 187,892 test patterns with 90.6% fault
coverage. Suppose a maximum of one million random
test patterns could be affordably applied to this circuit.
Our model predicts 92.6% fault coverage after one mil-
lion patterns (as compared to 92.1% measured for an
actual sample). The predictive model saves 76.6% time
over actual fault simulation in this example. Empiri-
cally, the gain seems to grow for larger circuits.

In the above example, the estimation of fault cover-
age would lead to one of two situations: the estimate
is below the acceptable fault coverage or otherwise. In
the first case, the random-pattern-resistant faults can
be identified at the stopping point using statistical fault
analysis (STAFAN [7]). We note that it is quite easy
to instrument and extend a fault simulator to facilitate
such analysis. If test points were inserted to improve the
circuit’s testability, the proposed approach may be used
again to validate that the improvement is sufficient. In
the second case, the verification that the fault cover-
age is indeed sufficient may be carried out by full fault
simulation, if feasible. Otherwise, simulating a sample
of remaining faults could serve the same purpose, with
the sample size chosen to provide the required degree
of confidence [8].

Previous Work. To be useful, a fault-coverage model
should be accurate, simple (i.e. involve only a small
number of parameters), predictive, and fit easily in the
normal design flow. We briefly review and evaluate
the fault-coverage models that have appeared in the
literature in terms of these desirable properties.

The simplest fault-coverage model is the one-
parameter RC-model, due to Williams [9]. It was in-
spired by the observed similarity of the fault-coverage
curve with the time response of a RC circuit. However,
as we show later, the model is too simplistic to capture
the full range of fault coverage accurately (see Fig. 6).

Goel [10] provides another simple fault-coverage
model for projecting the cost of deterministic auto-
matic test pattern generation (ATPG). Based on empir-
ical observations, it represents the fault coverage curve
before the knee by an exponential and after the knee by

a linear function. One problem with the application of
this model to random testing is precisely defining when
the knee is reached. Another problem is that the linear
extrapolation, carried out over a very large number of
random vectors, can result in a large error. In our ex-
periments the prediction error exceeded 4% for some
examples.

More complex fault-coverage models are based on
a circuit’s detection profile which describes the dis-
tribution of random-pattern testability of faults in the
circuit [11–13]. In [11], the detection profile is deter-
mined by Bayesian estimation and requires determin-
istic ATPG on a sample of faults. During the ATPG, the
method further requires keeping track of if and when
a fault is first detected fortuitously, i.e. without be-
ing targeted for test generation. These requirements do
not fit well with the random pattern test generation for
BIST.

In the beta model [12, 13], the detection profile has
three parameters but no closed form. The authors pro-
pose a method of parameter estimation based on de-
terministic ATPG and fault simulation without fault
dropping. Thus, again the complexity is added to the
normal flow of the random BIST. On the other hand, if
the parameters are determined by a numerical method,
the computational cost can be very high and may indeed
exceed the time required for fault simulation. This is
borne out by our experiments with the benchmark cir-
cuit s15850. Even for the small fitting range of vectors,
[1–6800], the curve fitting takes 751 seconds while it
takes only 201 seconds to fault-simulate one million
vectors.

In addition to the references cited above, there is
a large body of work on pseudo-random testing and
BIST that is relevant as background to this paper but is
not being explicitly cited here. The reader may refer to
the pioneering text [14] for fundamental concepts and
techniques and to the recent book [15] for an update.

Paper Outline. The rest of the paper is organized as
follows. In Section 2 we formally describe dual distri-
butions associated with random-pattern testability and
their implicit constraints. Then, in Section 3, we an-
alyze the dual distributions to obtain a lower bound
and an approximation to the variance of fault cover-
age. Section 4 is the main section of the paper, where
we introduce our fault coverage model and show how
it can be characterized and applied to fault-coverage
analysis of random tests. Section 5 concludes the pa-
per with a summary of contributions and an outline of
future work.
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2. Fault and Vector Profiles

In this section we define the concepts of detectabil-
ity of a fault and coverage of a vector and show how
both distributions are required to determine the mean
and variance of fault coverage. Earlier papers have used
the detection profile (i.e. the distribution of detectability
of faults) to capture the many-to-many relationship be-
tween faults and test vectors. However, the detectability
profile can accurately model only the mean but not the
variance of the cumulative fault coverage. For the latter,
we must also know the dual distribution of coverage by
individual vectors. We coin the terms fault profile and
vector profile to distinguish between the two distribu-
tions. We introduce the notation shown in Table 1 to
facilitate further discussion.

The detectability of a fault fi is defined as:

xi = number of vectors detecting fi

Total number of all possible vectors

In realty it can only assume discrete values but is of-
ten assumed to be continuous to simplify analysis.
The fault profile p(x) represents the density of the de-
tectability distribution. For the dual case, we define
coverage of a test vector as the fraction of the total
number of faults detected by it. Then, the vector profile
g(y) represents the density of the coverage distribution.

Conceptually, the dual distributions can also be
viewed in terms of a bipartite graph (Fig. 1), in which
edges connect each fault to the vectors detecting the
fault. In the figure, xi (respectively, y j ) represent the
detectability (respectively, coverage) of fault fi (re-
spectively, vector Vj ). Obviously, the two profiles are
not completely independent; the bipartite relationship
depicted in Fig. 1 constrains them. In particular, cumu-
lative degrees of the nodes on the left and right hand
side must be equal. Let N (respectively, V ) be the total
number of faults (respectively, vectors). Then there are

Table 1. Summary of notation.

N : Total number of faults

M : Total number of detectable faults

n = M/N : Fraction of detectable faults

V : Total number of all possible vectors; V = 2m for a
combinational circuit with m inputs

Ft : Number of faults detected by the first t vectors

〈Ft 〉: Expected value of Ft

F(t): Normalized value of 〈Ft 〉

y    N

x

Faults Vectors

jV

fi

i

j

.

.

V

Fig. 1. The dual view of fault and vector profiles.

p(xi ) · N number of fault nodes in the graph with de-
gree xi · V . The cumulative degree of all the fault nodes
is given by:

∑
i

(p(xi ) · N ) · (xi · V ) = N · V
∑

i

p(xi ) · xi

On the vector side, the cumulative degree of all the
vector nodes is:

∑
j

(g(y j ) · V ) · (y j · N ) = N · V
∑

i

g(y j ) · y j

Equating the two and canceling the constants N and
V we obtain a constraint between the fault and vector
profiles:

∑
i

p(xi ) · xi =
∑

j

g(y j ) · y j

The continuous version of this constraint is:∫
xp(x) dx =

∫
yg(y) dy (1)

Thus, the mean of the coverage is fixed once the de-
tectability profile is fixed. However, this doesn’t fix the
vector profile, and different vector profiles can indeed
affect the cumulative fault coverage. As a simple exam-
ple, consider two cases shown in the bipartite graphs of
Fig. 2, where we have three faults f1, f2, f3 and three
vectors v1, v2, v3. If a fault fi is detected by vector v j

there is an edge between them in the graph. From the
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Fig. 2. Many-to-many relationship between faults and vectors.

figure, the fault and the vector profiles can be easily de-
termined and are shown in Table 2. The fault profiles
are seen to be identical in the two cases but the vector
profiles are different. It is easily verified that in both
cases the expected fault coverage for the first random
vector will be 4/9. The variance, on the other hand, is
different: 2/81 in the first case and 8/81 in the second
case. The difference in the variance suggests that for
two circuits with the same fault profile, the fault cover-
age curves can be quite different if their vector profiles
are different. How do the fault and vector profiles look
like for real circuits? We have analyzed them for the
scan versions of ISCAS-89 benchmarks. Figs. 3 and 4
show the fault and vector profiles for two benchmark
circuits. In general, we found that the fault profile is
characterized by many spikes and jumps. The vector
profile is less chaotic and often resembles a single bell-
shaped curve with small variance, similar to the first
chart in Fig. 4. The effect of vector profile on the vari-
ance of fault coverage in real circuits can be seen in the
statistics we collected during 100 independent runs on
each circuit. During each run, 20,000 randomly gener-

Fig. 3. Fault profiles of two benchmark circuits.

Table 2. Fault and vector profiles for the example.

Fault profile Vector profile

Situation x p(x) y g(y)

(a) 1/3 2/3 1/3 2/3

2/3 1/3 2/3 1/3

(b) 1/3 2/3 0 1/3

2/3 1/3 2/3 2/3

ated patterns were fault simulated on the scan versions
of these circuits. In each case, the variance about the
mean is shown by a band in Fig. 5. The range of vari-
ance reduces to a fraction of a percent in the first case
but is about 4.5% in the second case. The narrower error
band of circuit s5378 is partially due to its low-variance
vector profile.

3. Variance Analysis

For a single fault fi with detectability xi , define the
random variable Ri,t :

Ri,t =
{

0 if fi is detected during the first t vectors

1 otherwise

Assume that vectors are randomly generated, then the
probability that fault fi with detectability xi remains
undetected after t vectors is:

P(Ri,t = 1) = (1 − xi )
t
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Fig. 4. Vector profile of two benchmark circuits.

Fig. 5. Empirical error bands of benchmark circuits.

hence, the expected value of Ri,t and its variance, re-
spectively, are:

〈Ri,t 〉 = (1 − xi )
t

Var(Ri,t ) = (1 − xi )
t − (1 − xi )

2t

The number of faults detected by the first t vectors
will be:

Ft = N −
N∑

i=1

Ri,t

with the expected value:

〈Ft 〉 = N −
N∑

i=1

〈Ri,t 〉 (2)

and the variance:

Var(Ft ) = Var

(
N∑

i=1

Ri,t

)
(3)

=
N∑

i=1

Var(Ri,t ) +
∑

i

∑
j �=i

cov(Ri,t R j,t )

where Var(Ri,t ) is the variance of Ri,t , and cov(Ri,t R j,t )
is the covariance between Ri,t and R j,t . The first term
accounts for the statistical effect of all faults when their
detection is independent, and the second term reflects
the correlation in the detection of faults.

An exact quantification of the variance in Eq. (3)
appears to be very difficult. However, a lower bound
and an approximation for it can be derived, as we show
in Section 3.2.
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3.1. Expected Fault Coverage

The expected fault coverage has been discussed in [11].
For completeness, we include an abbreviated derivation
below.

Substitute P(Ri,t = 1) = (1 − xi )t in Eq. (2). Then,
the expected fault coverage at time t is:

〈Ft 〉 = N −
N∑

i=1

(1 − xi )
t

= N − N
∫ 1

0
p(x)(1 − x)t dx

= N

[
1 −

∫ 1

0
p(x)(1 − x)t dx

]

After normalization, we have

F(t) = 1 −
∫ 1

0
p(x)(1 − x)t dx (4)

Hence, as noted earlier, the expected fault coverage
only depends on the fault profile, independent of the
vector profile g(y).

3.2. A Lower Bound for the Variance
of Fault Coverage

As no good model for cov(Ri,t R j,t ) is known, it is dif-
ficult to model the variance of the fault coverage ac-
curately. However, we can derive a lower bound for it
(see Appendix B):

Var(F(t)) ≥ N − 1

N
((1 − 〈y〉)2 + Var(y))t

+ 1 − F(t)

N
− (1 − F(t))2 (5)

where 〈y〉 and Var(y) are the mean and the variance of
coverage.

Following the profile constraint in Eq. (1), 〈y〉 equals
to the mean of the detectability. The variance of the
coverage would indeed affect the variance of the fault
coverage as shown in the examples in Section 2.

One approximation to the variance of the fault cov-
erage can be found in Appendix B:

Var(F(t)) ∼= N − 1

N
(ψ1)t

(
1 + t(t − 1)ψ2

(ψ1)2

)

+ 1 − F(t)

N
− (1 − F(t))2 (6)

where ψ1 and ψ2 are constants depending on both the
vector profile and the fault profile. Unfortunately, the
constants do not have closed-form expressions and can
only be determined through an expensive process, e.g.
curve-fitting or simulation. In Appendix B, we also de-
rive the following approximation to the fault-coverage
variance that is based on assuming independence of
fault-detection:

Var(F(t)) ∼= F(2t) − F(t)

N
(7)

This approximation is easy to compute and, experi-
mentally, is seen to be just as effective as Eq. (6) in
fault-coverage estimation (see Table 5).

4. Fault Coverage Model for Random Patterns

We have seen that the expected fault coverage depends
on the circuit’s fault profile. As the examples in Fig. 3
illustrate, however, it is not possible to represent the
fault profile accurately with an analytic function. This
problem can be dealt with in two ways. First, a Bayesian
approach can be used to approximate p(x) by a polyno-
mial in x [11]. In this case, the number of test vectors de-
termines the degree of the approximating polynomial.
Second, a flexible analytic function, with an a priori
fixed and small number of parameters, may be used for
the approximation. In the literature the beta function1

has been shown to be quite effective because of its abil-
ity to model different shapes with different values of its
two parameters. The following beta model was derived
in [12].

p(x) = (1 − n)δ(x) + n
1

B(α, β)
xα−1(1 − x)β−1

where n represents the fraction of detectable faults,
and δ(x) is Dirac’s delta function. B(α, β) is the beta
function used as the normalization constant.

When this p(x) is substituted in Eq. (4), we get

F(t) = n ·
(

1 − 	(t + β)	(α + β)

	(t + α + β)	(β)

)
(8)

where 	(·) is the gamma function. This equation is at-
tractive because of its ability to model different shapes
with different values of its two parameters. Unfortu-
nately, it does not have a closed form. Two alternatives
to get around this problem were discussed in Introduc-
tion and both were shown to suffer from undesirable
characteristics.
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We will now derive a closed form approximation
for F(t) by measuring the ratio of incremental fault
coverage and the remaining detectable faults. The in-
cremental fault coverage for vector t + 1 is:

F(t + 1) − F(t) =
∫ 1

0
xp(x)(1 − x)t dx

=
∫ 1

0
x(1 − x)t

[
(1 − n)δ(x)

+ n
1

B(α, β)
xα−1(1 − x)β−1

]
dx

= n
1

B(α, β)

∫ 1

0
x (α+1)−1(1 − x)β+t−1dx

= n
B(α + 1, β + t)

B(α, β)

Further, Eq. (8) can be rewritten as:

n − F(t) = n
	(t + β)	(α + β)

	(t + α + β)	(β)

= n
	(t + β)	(α)/	(t + α + β)

	(β)	(α)/	(α + β)

= n
B(α, β + t)

B(α, β)

hence, the ratio

F(t + 1) − F(t)

n − F(t)
= B(α + 1, β + t)

B(α, β + t)

= α

t + α + β

Next, we approximate the derivative of F(t) by its first
order difference, i.e. dF(t) ∼= F(t + 1) − F(t). The
continuous version of this equation is:

dF(t)

dt
= α

t + α + β
(n − F(t))

With the initial condition F(0) = 0, the solution to the
above equation is:

F(t) = n

(
1 −

[
α + β

t + α + β

]α)
(9)

= n

(
1 − 1

(At + 1)α

)

where A = 1/(α + β). Equation (9) provides a three-
parameter power model for the fault coverage at time t .

4.1. Characterization of the Fault Coverage Model

Once we have the fault coverage model and the vari-
ance approximation, the characterization is done by
weighted nonlinear least square (NLS) curve fitting
([16], p. 27).

Let Y (ti ) be the actual fault coverage at time ti ,
i = 1 . . . k, where k is the number of sampling points.
Also, let F(t ; θ ) be the model where θ is the parame-
ter set. Then because of the random error, we have the
following equation:

Y (ti ) = F(ti ; θ ) + e(ti )

where e(ti ) is the discrepancy between the data and the
model at time ti .

Then the objective of the weighted NLS curve fitting
is to find the parameter set θ ′ such that

k∑
i

(Y (ti ) − F(ti ; θ ′))2

σ 2(e(ti ))

is minimized, i.e., the variance of the error σ 2(e(ti )) is
used as a weighting function. Here F(ti ; θ ) is given by
Eq. (9) and σ 2(e(ti )) is given by Eq. (7).

4.2. Comparison with Other Models

The original RC model [9] does not consider redundant
faults but can be easily extended as follows to account
for them:

F(t) = n(1 − t−α)

This equation can be considered to be a special case
of our model (Eq. (9)) with t substituting At + 1. The
simplification reduces the accuracy of the RC model,
as confirmed by the comparison in Fig. 6. Note that the
best fit for the RC model consistently over-estimates
around the knee and underestimates beyond the knee.
The error comparison for several ISCAS-89 benchmark
circuits will be presented in Section 4.5.

The non-parametric detection profile model [11] is
not amenable to curve fitting hence it cannot be com-
pared directly with our model. We have already pointed
out the limitations of this Bayesian method to random
tests in Introduction.

The beta model [12, 13] is parametric and was
developed for deterministic test generation. Like the
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Fig. 6. Curve fitting using the full range of data: Williams’ model (left) vs. our model (right).

Bayesian method, it is not well suited to random test
generation. The reasons are as follows:

(a) If the parameters are determined by fault sampling
(as recommended by the authors) then determin-
istic ATPG and full fault simulation (without fault
dropping) are required. These steps are not easy to
integrate in the random-BIST design flow.

(b) If the parameters are determined by curve fitting,
the beta model requires O(t) time to calculate the
fault coverage at time t vs. O(1) time required by
our model. The overall CPU-time comparison is
shown in Table 3. Notably, not only is the CPU
time for our model two or three orders of magni-
tude smaller but also it is almost independent of the
fitting range. For the beta model, the CPU time rises
nearly as the square of the fitting range. Even for
a small fitting range 1–6800, it consumes 750.49
CPU seconds on a SGI Origin 2000 machine. Con-
sidering that it takes just over 200 seconds on the
same machine to fault-simulate one million ran-
dom patterns for this circuit, it is clear that the beta
model is not practical in this case.

4.3. Cost-Benefit Analysis of Random ATPG

The computing cost of random ATPG can be divided
into two parts: the cost of random pattern generation

Table 3. CPU time comparison for the circuit s15850.

Fitting range 1–3264 1–6800 1–13600 1–27200

The new model 0.63s 1.24s 1.279s 2.149s

The beta model 188.93s 750.49s 2658.09s 6022.13s

and the cost of fault simulation to grade the test vectors.
The first part requires little CPU time and hence can be
ignored. The cost of fault simulation may be measured
in terms of the number of logic gates evaluated dur-
ing simulation. This number may vary with the fault
simulation algorithm used. However, if a detailed anal-
ysis is not required a simplifying assumption may be
used that every fault incurs a unit cost to simulate. The
same assumption is implicit in the analysis presented
by Goel [10].

As only the undetected faults are simulated each
time, the total cost up to time t , C(t), will be pro-
portional to the sum of remaining faults from 1 to t .
Expressing this in the continuous form, we have:

C(t) =
∫ t

0
(1 − F(x)) dx

So the rate of cost increase at time t will be

dC(t)/dt = 1 − F(t)

On the other hand, the rate of fault-coverage increase
is dF(t)/dt . Now, consider the ratio of these two rates:

Rt = dF(t)

dC(t)
= F ′(t)

1 − F(t)

Obviously, as t → ∞,

F ′(t) → 0

and

1 − F(t) → 1 − n, 1 − n ≥ 0

If the circuit has many redundant faults, 1 − n will
be significant, otherwise, 1 − n is close or equal to 0.
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Fig. 7. Fault simulation stops when a criterion, based on cost-benefit analysis, is satisfied.

Therefore, Rt will go to zero relatively quickly for a
random-test-resistant circuit vs. a random-testable cir-
cuit. This property can be exploited for an early iden-
tification of a random-test-resistant circuit. We select a
threshold value θ such that when Rt ≤ θ the test gen-
eration process terminates. This stopping criterion ef-
fectively distinguishes circuits with a substantial num-
ber of redundant or random-pattern-resistant faults. In
Fig. 7, circuit s1196 is more testable, and the test gen-
eration process continues until it reaches a very high
coverage just before t = 15,000 (indicated by the short
triangle). For the circuit s9234, the process stops be-
fore t = 200,000 where the threshold value of 10−6 is
reached.

4.4. Stopping Criterion

Once characterized, the model can be used to predict
the fault coverage. An important issue in model charac-
terization is deciding how much fault-simulation data
is enough for this purpose. Intuitively, fault simulation
should be continued beyond the “knee” of the fault-
coverage curve. However, this intuitively appealing no-
tion is highly dependent on the scale of data presenta-
tion: as the coverage data is zoomed in, many more
knees may be revealed in what earlier appeared to be
a straight line. What then should be the scale used to
determine the knee? We bypass this vexing problem by
using a stopping criterion based on the benefit/cost ra-
tio of the last section with a lower bound on the desired
fault coverage. Specifically, we stop fault simulation
and determine the final values of the model parameters
if the cumulative fault coverage reaches a lower bound
λ or the benefit/cost ratio Rt falls below a threshold θ . λ

is set according to the required fault coverage while θ is
set experimentally to balance the cost vs. the accuracy
of fault-coverage prediction.

Based on this stopping criterion, a flow chart of the
prediction process is shown in Fig. 8. It starts with a

R

thenIf F(t) <

be 20%

Do curve fitting using

the sampled data

make prediction

Increase fitting range

t ?

λ

No

Yes

λ< θ or F(t) < 

range

Set initial fitting

range as 1-5000

Sample 50 data points

uniformly in the fitting

Fig. 8. The prediction process.
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small fitting range (5000 random patterns) for fault sim-
ulation and samples 50 points uniformly in this range
for curve fitting. The stopping criterion is next used to
decide whether to stop or continue the process of fault
simulation, data-point sampling, and curve fitting for
another iteration. In the latter case, the fitting range is
increased by 20% over the last value. When the stop-
ping criterion is met, if the desired fault coverage is
reached, there is no need for prediction. Otherwise, the
model is used to decide whether or not the desired fault
coverage will be achieved within the allowable number
of random patterns.

4.5. Experimental Results

In order to demonstrate the predictive power of the
model for random ATPG, we carried out the process
described above on the scan versions of the ISCAS89
benchmark circuits. The lower bound λ on the fault
coverage is assumed to be 99.5%. For this value of λ,
θ = 10−6 was found experimentally to give better than
1% accuracy in fault-coverage estimation. We assume
one million to be the maximum affordable number of
test vectors.

The results are shown in Table 4. The columns are
arranged left to right as follows. After circuit name,
the next two columns give the vector number and fault
coverage at the stopping point. This is followed by the
column named “Total vectors” that has the value of
either one million vectors (if the desired fault cover-
age of 99.5% is not achieved by this time) or a smaller

Table 4. Experimental results on the ISCAS89 benchmark circuits (scan version).

% FC at total Times (secs)

Circuit Stop vector Stop % FC Total vectors Actual Predicted Error CF FCst FCadd % Saving in time

s9234 187892 90.6 106 92.1 92.6 0.5 3.2 20.8 81.9 394

s15850 130480 94.1 106 95.9 95.3 −0.5 3.4 24.0 177.2 738

s3330 187892 91.4 106 93.6 93.6 0.0 4.0 6.0 30.0 498

s13207 324678 98.4 106 98.5 98.6 0.1 3.9 21.1 86.7 412

s38584 75509 95.6 106 95.7 95.9 0.2 2.8 43.6 630.1 1444

s38417 561044 98.9 106 99.2 99.1 −0.1 3.7 127.6 598.3 469

s1196 14634 99.1 23100 99.5 99.0 −0.5 4.5 0.1 0.2 214

s1238 75509 94.9 106 94.9 95.4 0.5 3.0 0.8 9.0 1171

s1423 36414 99.0 106 99.1 99.1 0.0 2.5 0.3 8.3 2624

s5378 52437 99.0 106 99.1 99.5 0.4 2.6 1.8 30.1 1686

s1488 1868 99.3 2200 99.5 99.2 −0.3 1.7 0.03 0.03 82

s1494 3228 99.1 106 99.2 100 0.8 6.8 0.1 8.40 168

number of vectors that achieve the desired fault cover-
age. The next two columns give, respectively, the actual
fault coverage achieved at the vector number given in
“Total vectors” and the fault coverage predicted after
curve-fitting. This is followed by the column indicating
the error in prediction. The next three columns give the
CPU times, respectively, for curve fitting, fault simu-
lation to the stopping point, and the additional fault
simulation for the total number of vectors given by
“Total vectors”. These times were recorded for the SGI
Origin 2000. The last column shows the percentage of
additional fault simulation time required over the fault
simulation time to the stopping point.

The upper part of Table 4 is for the large circuits
in the benchmark set. It can be seen that for all of
these circuits, this method provides an effective way of
identifying the stopping point and affording significant
savings in time as seen in the last column. The error in
prediction never exceeds 0.5% in magnitude.

The other six circuits are too small to demonstrate
the full benefit of the proposed technique. The initial
fitting range for the last two circuits was set to [1–500].
Here, the curve fitting time dominates the fault simula-
tion time in three cases. It may be noted, however, that
these times were obtained on Matlab in which curve
fitting programs are interpreted. If the programs were
written in C/C++, the curve fitting time could be fur-
ther reduced.

Table 5 compares the resulting errors when the
curve fitting required in the procedure described in the
last section is carried in three different ways: by our
weighted NLS method using Eq. (7) for variance (the
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Table 5. Comparison of errors in fault-coverage
estimation.

% Error using

Circuit Eq. (7) Eq. (6) William’s

s9234 0.5 0.1 0.9

s15850 −0.5 −0.9 −0.8

s3330 0.0 −1.2 −0.3

s13207 0.1 0.0 0.5

s38584 0.2 0.2 0.7

s38417 −0.1 0.0 −0.5

s1196 −0.5 −0.6 −1.8

s1238 0.5 0.5 1.9

s1423 0.0 0.0 0.3

s5378 0.4 0.4 0.6

s1488 −0.3 −0.2 −2.4

s1494 0.8 0.8 0.7

method used to report the results in Table 4), by our
weighted NLS method again but using Eq. (6) for vari-
ance, and by the William’s RC model. The errors are
seen to be comparable for the two weighted NLS cases
while they are consistently higher for the William’s
model (except for s1494 where the latter is slightly
lower).

The comparison of our model against the beta mod-
els is omitted here because, computationally, it was not
feasible to fit the hundreds of thousand of vector data in
the beta models (see Section 4.2). The curve fitting time
for both the RC model and the new model, in contrast,
is consistently within a few seconds.

5. Conclusion

We presented a new fault coverage model along with
a suggested method of its use in BIST applications.
The model is easily characterized by just the fault-
simulation data and experimental results attest to its
efficiency and accuracy.

Although the projected fault coverage agrees well
with the actual data in almost all cases, inaccuracies in
predictions can arise for two reasons:

(a) As the variance of fault coverage is an approxi-
mation, when the approximation is not good, the
weighted nonlinear least square fitting may de-
viate from the true value and lead to inaccurate
predictions.

(b) The fault coverage curve is a time series. There is
strong dependence between successive data points,
which violates the assumptions of nonlinear least
square fitting [16]. This may contribute to error in
parameter estimation. We have used a first-order
autoregressive error process (AR(1), [16]) to re-
duce the dependency.

Our preliminary investigations show that the fault
coverage model can be extended to deterministic ATPG
based on the assumption that in targeted test generation,
the non-targeted faults are randomly detected [11]. The
variance of the fault-coverage estimate can be shown to
be determined by the fault coverage due to the random
part.

Our current focus is on developing a more precise
understanding of the effect of vector profile on the vari-
ance of fault coverage. We would also like to eval-
uate the usefulness of the model on larger industrial
examples.

Appendix A: Definitions of Some Mathematical
Functions

The gamma function is:

	(α) =
∫ ∞

0
e−x xα−1dx, α > 0

It has the following property:

	(α + 1) = α	(α)

The beta function is:

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt, α > 0, β > 0

In terms of gamma function, beta function can also be
expressed as following:

B(α, β) = 	(α)	(β)

	(α + β)

The Dirac’s delta function is defined by the following
two equations:

δ(x−a) = 0, for x �= a, and
∫ ∞

−∞
δ(x−a) dx = 1
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Appendix B: A Lower Bound on the Variance
of the Fault Coverage

From Eq. (3),

Var(Ft ) =
N∑

i=1

Var(Ri,t ) +
∑

i

∑
j �=i

cov(Ri,t R j,t )

Recall that cov(X, Y ) = 〈XY 〉 − 〈X〉〈Y 〉, therefore,

Var(Ft ) =
N∑

i=1

Var(Ri,t ) +
∑

i

∑
j �=i

〈Ri,t R j,t 〉

−
∑

i

∑
j �=i

〈Ri,t 〉〈R j,t 〉 (10)

The first part can be evaluated as following:

N∑
i=1

Var(Ri,t ) =
N∑

i=1

((1 − xi )
t − (1 − xi )

2t )

=
N∑

i=1

(1 − xi )
t −

N∑
i=1

(1 − xi )
2t

(11)

=
N∑

i=1

〈Ri,t 〉 −
N∑

i=1

〈Ri,2t 〉

= (N − 〈Ft 〉) − (N − 〈F2t 〉)

And the third part:∑
i

∑
j �=i

〈Ri,t 〉〈R j,t 〉

=
∑

i

〈Ri,t 〉 ·
( ∑

j

〈R j,t 〉 − 〈Ri,t 〉
)

=
∑

i

〈Ri,t 〉 · (N − 〈Ft 〉 − 〈Ri,t 〉)

= (N − 〈Ft 〉)2 − (N − 〈F2t 〉) (12)

For the second part,∑
i

∑
j �=i

〈Ri,t R j,t 〉 = N (N − 1) · Pt

where Pt is the following probability:
Randomly pick two faults, what is the expected prob-

ability Pt that both remain undetected after time t?
Denote random variable Z as the portion of vectors

that detect neither of the two randomly picked faults,
then the probability that both remain undetected is Zt

and the expectation of the probability Pt = 〈Zt 〉, which

is actually the t th moment of random variable Z . Be-
cause faults have different detectability xi ’s, and vec-
tors have different coverage y j ’s, the distribution of Z
would be much difficult to obtain, not to mention a
general expression for its higher moments 〈Zt 〉.

The expectation of Z , however, can be found by us-
ing the vector profile. Considering vector v j with cov-
erage y j , the probability it doesn’t detect the first fault
is (1 − y j ). And the probability it doesn’t detect both
faults would be (1− y j )2. Therefore the expected value
of Z is:

〈Z〉 =
∫ 1

0
(1 − y)2g(y) dy

=
∫ 1

0
(1 − 2y + y2)g(y) dy

= 1 − 2
∫ 1

0
yg(y) dy +

∫ 1

0
y2g(y) dy

= 1 − 2〈y〉 + 〈y〉2 + Var(y)

= (1 − 〈y〉)2 + Var(y)

Note that
∫ 1

0 y2g(y)dy, the 2nd moment of the vector
profile, evaluates to 〈y〉2 +Var(y). Since Z is a positive
random variable, we have the following inequality (see
Appendix C),

〈Zt 〉 ≥ 〈Z〉t

Therefore

Pt ≥ ((1 − 〈y〉)2 + Var(y))t

and∑
i

∑
j �=i

〈Ri,t R j,t 〉 ≥ N (N − 1)[(1 − 〈y〉)2 + Var(y)]t

(13)

By applying delta method (see [17], pp. 54–55), an
approximation to Pt is:

Pt
∼= 〈Z〉t

(
1 + t(t − 1)Var(Z )

〈Z〉2

)

Combine all the three parts in 11, 12, and 13, then we
get a lower bound on the variance of the fault coverage:

Var(Ft ) ≥ N (N − 1)((1 − 〈y〉)2 + Var(y))t

+ (N − 〈Ft 〉) − (N − 〈Ft 〉)2
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When normalized,

Var(F(t)) ≥ N − 1

N
((1 − 〈y〉)2 + Var(y))t

+ 1 − F(t)

N
− (1 − F(t))2

And the approximation:

Var(F(t)) ∼= N − 1

N
〈Z〉t

(
1 + t(t − 1)Var(Z )

〈Z〉2

)

+ 1 − F(t)

N
− (1 − F(t))2

Write 〈Z〉 and Var(Z ) as constants ψ1 and ψ2 in (0, 1),
we have:

Var(F(t)) ∼= N − 1

N
(ψ1)t

(
1 + t(t − 1)ψ2

(ψ1)2

)

+ 1 − F(t)

N
− (1 − F(t))2

If we assume the detection of the faults are independent,
i.e. the covariance cov(Ri,t R j,t ) = 0 then the second
and third parts in formula 10 are canceled off. From
formula 11, we have a simple approximation:

Var(Ft ) ∼= (N − 〈Ft 〉) − (N − 〈F2t 〉)

After normalization,

Var(F(t)) ∼= F(2t) − F(t)

N

Appendix C: Jensen Inequality

Given positive random variable X and a convex func-
tion φ such that

φ(at + (1 − t)b) < tφ(a) + (1 − t)φ(b)

and if φ(X ) is positive, then

〈φ(X )〉 ≥ φ(〈X〉)

Now that xt is a convex function,

〈Xt 〉 ≥ 〈X〉t

See [18] for detail.
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Note
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