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Clara, Calif. That is, from here on out, 
chip designers will concentrate on how 
to gang together lots of cores, just as the 
previous generation of microprocessor 
engineers thought about the circuitry 
they were creating at the level of indi-
vidual transistors.

The trick will be to invent ways for 
programmers to write applications that 
exploit the increasing number of proces-
sors found on each chip without stretch-
ing the time needed to develop software or 
lowering its quality. Say your Hail Mary 
now, because this is not going to be easy.

When the president and CEO of Intel, 
Paul S. Otellini, announced in 2004 that 
his company would dedicate “all of our 
future product designs to multicore envi-
ronments,” why did he label this “a key 
inflection point for the industry”? The 
answer is clear to anyone familiar with 
the many now-defunct companies that 
bet their futures on the transition from 
single-core computers to systems with 
multiple processors working in paral-
lel. Ardent, Convex, Encore, Floating 
Point Systems, Inmos, Kendall Square 
Research, MasPar, nCUBE, Sequent, 
Tandem, and Thinking Machines are just 
the most prominent names from a very 
long list of long-gone parallel hopefuls. 
Otellini was announcing that despite this 
sobering record, software applications in 
the future will run faster only if program-
mers can write parallel programs for the 
kinds of multicore microprocessors that 
Intel and other semiconductor compa-
nies have started shipping.

But why is parallel process-
ing so challenging? An anal-
ogy helps here. Programming 
is in many ways like writ-
ing a news story. Potentially, 
10 reporters could complete a 
story 10 times as fast as a sin-
gle reporter could ever manage 
it. But they’d need to divide a 
task into 10 equally sized 
pieces; otherwise they couldn’t 
achieve a full tenfold speedup. 

C o m p l i c a t i o n s  w o u l d 
arise, however, if one part of 
the story couldn’t be written 
until the rest of it was done. 
The 10 reporters would also 
need to ensure that each bit 
of text was consistent with 

what came before and that the next 
section f lowed logically from it, with-
out repeating any material. Also, they 
would have to time their efforts so that 
they finished simultaneously. After all, 
you can’t publish a story while you’re 
still waiting for a piece in the middle 
to be completed. These same issues—
load balancing, sequential dependen-
cies, and synchronization—challenge 
parallel programmers.

Researchers have been trying to 
tackle these problems since the 1960s. 
Many ideas have been tried, and just 
about as many have failed. One early 
vision was that the right computer lan-
guage would make parallel program-
ming straightforward. There have 
been hundreds—if not thousands—of 
attempts at developing such languages, 
including such long-gone examples 
as APL, Id, Linda, Occam, and SISAL. 
Some made parallel programming eas-
ier, but none has made it as fast, efficient, 
and flexible as traditional sequential pro-
gramming. Nor has any become as popu-
lar as the languages invented primarily 
for sequential programming.

Another hope was that if you just 
designed the hardware properly, parallel 
programming would become easy. Many 
private investors have been seduced by 
this idea. And many people have tried to 
build the El Dorado of computer archi-
tecture, but no one has yet succeeded.

A third idea, also dating back to the 
1960s, is to write software that will auto-
matically parallelize existing sequential 
programs. History teaches that success 
here is inversely proportional to the 
number of cores. Depending on the pro-
gram, there will likely be some benefit 
from trying to automatically parallelize 
it for two, four, or even eight cores. But 
most experts remain skeptical that the 
automatic parallelization of arbitrary 
sequential code is going to be benefi-
cial for 32, 64, or 128 cores, despite some 
recently published advances in this area. 

All in all, things look pretty bleak. 
Nevertheless, there has been progress 
in some communities. In general, par-
allelism can work when you can afford 
to assemble a crack team of Ph.D.-level 
programmers to tackle a problem with 
many different tasks that depend very 
little on one another. One example is 
the database systems that banks use 

In 1975, future Hall of Famer Roger Staubach had the football 
but little else in a playoff game against the Minnesota Vikings. 
Behind by four points at midfield with 24 seconds to go, the 
Dallas Cowboys quarterback closed his eyes, threw the ball as 
hard as he could, and said a Hail Mary. (For you soccer fans, 
this would be like David Beckham taking a shot on goal from 
midfield late in injury time.)

His prayer was answered. Staubach’s 
receiver collided with a Viking defender 
just as the ball arrived but nevertheless 
managed to pin the football against his 
leg, scoring the touchdown that took the 
Cowboys to the Super Bowl. (Imagine 
Beckham’s long ball beating the goalie.) 
Ever since that game, a desperate pass 
with little chance of success has been 
labeled a Hail Mary.

Thirty years later, the semiconductor 
industry threw the equivalent of a Hail 
Mary pass when it switched from mak-
ing microprocessors run faster to putting 
more of them on a chip—doing so with-
out any clear notion of how such devices 
would in general be programmed. The 
hope is that someone will be able to fig-
ure out how to do that, but at the moment, 
the ball is still in the air.

Why take such a gamble? In short, 
because there wasn’t much of an alter-
native. 

For decades, microprocessor design-
ers used the burgeoning number of tran-
sistors that could be squeezed onto each 
chip to boost computational horsepower. 
They did this by creating microprocessors 
that could carry out several operations at 
once—for example, fetching the 
next instruction from memory 
while the current one was being 
executed. And chipmakers con-
tinually upped microprocessor 
clock rates, something the 
diminishing size of transistors 
readily allowed.

But around 2003, chipmak-
ers found they could no longer 
reduce the operating voltage as 
sharply as they had in the past 
as they strived to make transis-
tors smaller and faster. That in 
turn caused the amount of waste 
heat that had to be dissipated 
from each square millimeter 
of silicon to go up. Eventually 
designers hit what they call the 

power wall, the limit on the amount of 
power a microprocessor chip could rea-
sonably dissipate. After all, a laptop that 
burned your lap would be a tough sell.

Designers now accept that although 
transistors will still get smaller and 
more numerous on each chip, they aren’t 
going to operate faster than they do today. 
(Indeed, peak clock speeds are lower now 
than they were five years ago.) And if you 
tried to incorporate all those transistors 
into one giant microprocessor, you might 
well end up with a device that couldn’t 
compute any faster than the chip it was 
replacing, which explains the shift to 
assembling them into multiple micro-
processor cores instead. Although each 
core may have modest computational 
abilities, you’ll have many of them at 
your disposal.

Such novel chips are called multicore 
microprocessors—or sometimes many-
core microprocessors when a large 
number of cores are involved—to distin-
guish them from traditional single-core 
designs. In a sense, the core has become 
the new transistor, to borrow a phrase 
from Chris Rowen, president and chief 
technology officer of Tensilica, in Santa 
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Clara, Calif. That is, from here on out, 
chip designers will concentrate on how 
to gang together lots of cores, just as the 
previous generation of microprocessor 
engineers thought about the circuitry 
they were creating at the level of indi-
vidual transistors.

The trick will be to invent ways for 
programmers to write applications that 
exploit the increasing number of proces-
sors found on each chip without stretch-
ing the time needed to develop software or 
lowering its quality. Say your Hail Mary 
now, because this is not going to be easy.

When the president and CEO of Intel, 
Paul S. Otellini, announced in 2004 that 
his company would dedicate “all of our 
future product designs to multicore envi-
ronments,” why did he label this “a key 
inflection point for the industry”? The 
answer is clear to anyone familiar with 
the many now-defunct companies that 
bet their futures on the transition from 
single-core computers to systems with 
multiple processors working in paral-
lel. Ardent, Convex, Encore, Floating 
Point Systems, Inmos, Kendall Square 
Research, MasPar, nCUBE, Sequent, 
Tandem, and Thinking Machines are just 
the most prominent names from a very 
long list of long-gone parallel hopefuls. 
Otellini was announcing that despite this 
sobering record, software applications in 
the future will run faster only if program-
mers can write parallel  programs for the 
kinds of multicore  microprocessors that 
Intel and other semiconductor compa-
nies have started shipping.

But why is parallel process-
ing so challenging? An anal-
ogy  helps here. Programming 
is in many ways like writ-
ing a news story. Potentially, 
10 reporters could complete a 
story 10 times as fast as a sin-
gle reporter could ever manage 
it. But they’d need to divide a 
task into 10 equally sized 
pieces; otherwise they couldn’t 
achieve a full tenfold speedup. 

C o m p l i c a t i o n s  w o u l d 
arise, however, if one part of 
the story couldn’t be written 
until the rest of it was done. 
The 10 reporters would also 
need to ensure that each bit 
of text was consistent with 

what came before and that the next 
section f lowed logically from it, with-
out repeating any material. Also, they 
would have to time their eff orts so that 
they fi nished simultaneously. After all, 
you can’t publish a story while you’re 
still waiting for a piece in the middle 
to be completed. These same issues—
load balancing, sequential dependen-
cies, and synchronization—challenge 
parallel programmers.

Researchers have been trying to 
tackle these problems since the 1960s. 
Many ideas have been tried, and just 
about as many have failed. One early 
vision was that the right computer lan-
guage would make parallel program-
ming straightforward. There have 
been hundreds—if not thousands—of 
attempts at developing such languages, 
including such long-gone examples 
as APL, Id, Linda, Occam, and SISAL. 
Some made parallel programming eas-
ier, but none has made it as fast, effi  cient, 
and fl exible as traditional sequential pro-
gramming. Nor has any become as popu-
lar as the languages invented primarily 
for sequential programming.

Another hope was that if you just 
designed the hardware properly, parallel 
programming would become easy. Many 
private investors have been seduced by 
this idea. And many people have tried to 
build the El Dorado of computer archi-
tecture, but no one has yet succeeded.

A third idea, also dating back to the 
1960s, is to write software that will auto-
matically parallelize existing sequential 
programs. History teaches that success 
here is inversely proportional to the 
number of cores. Depending on the pro-
gram, there will likely be some benefi t 
from trying to automatically parallelize 
it for two, four, or even eight cores. But 
most experts remain skeptical that the 
automatic parallelization of arbitrary 
sequential code is going to be benefi-
cial for 32, 64, or 128 cores, despite some 
recently published advances in this area. 

All in all, things look pretty bleak. 
Nevertheless, there has been progress 
in some communities. In general, par-
allelism can work when you can aff ord 
to assemble a crack team of Ph.D.-level 
programmers to tackle a problem with 
many different tasks that depend very 
little on one another. One example is 
the database systems that banks use 

for managing ATM transactions and 
airlines use for tracking reservations. 
Another example is Internet search-
ing. It’s much easier to parallelize pro-
grams that deal with lots of users doing 
pretty much the same thing rather than 
a single user doing something very com-
plicated. That’s because you can readily 
take advantage of the inherent task-level 
parallelism of the problem at hand.

Another success story is computer 
graphics. Animated movies or ones 
with lots of computer-generated spe-
cial eff ects exhibit task-level parallelism 
in that individual scenes can be com-
puted in parallel. Clever programmers 
have even found parallelism in comput-
ing each image. Indeed, the high-end 
graphics processing units (GPUs) used 
to accelerate games on a PC can con-

tain hundreds of processors, each tack-
ling just a small piece of the job of ren-
dering an image. Computer scientists 
apply the term “data-level parallelism” to 
such applications. They’re hard enough 
to program, but in general they’re eas-
ier than applications that don’t off er this 
inherent parallelism.

Scientif ic computing provides a 
third success story—weather prediction 
and car-crash simulations being two 
well-known examples. These are long- 
running programs that have lots of data-
level parallelism. The elite teams that 
create these programs are often combi-
nations of Ph.D. computer scientists and 
people with doctorates in the sciences 
relevant to the application. Desktop 
applications rarely have that much intel-
lectual horsepower behind them.h
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Standard algorithms for determining the value of pi 
rely on sequential calculations [top], 

but you could also use a parallel approach [bottom].

Start
with 1

Add
(–1/3)

Add
(1/5)

Add
(–1/7)

Add
(–1)n/(2n+1)

Pi =
4 x result

A SEQUENTIAL APPROACH

Count number of times the point lies within the circle

Pi = 4 x (number within circle)/(total number of trials)

Generate ran-
dom points on 

a large  number 
of squares 

(x-y pairs in the 
range –1 to +1)

Calculate 
whether the 

point falls 
within the circle 

(Is x2 + y2 < 1?)

+1

+1
–1

–1

Yes Yes No Yes No

A PARALLEL APPROACH

E A y AS S p I
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Given this stark landscape, you might 
not expect this latest foray into parallel 
computing to be greeted by success. But 
there are reasons for optimism. First 
off, the whole computer industry is now 
working on the problem. Also, the shift to 
parallelism is starting small and growing 
slowly. Programmers can cut their teeth 
on dual- and quad-core processors right 
now, rather than jumping to 128 cores in 
one fell swoop. 

One of the biggest factors, though, 
is the degree of motivation. In the past, 
programmers could just wait for tran-
sistors to get smaller and faster, allowing 
microprocessors to become more power-
ful. So programs would run faster with-
out any new programming effort, which 
was a big disincentive to anyone tempted 
to pioneer ways to write par-
allel code. The La-Z-Boy era of 
program performance is now 
officially over, so program-
mers who care about perfor-
mance must get up off their 
recliners and start making 
their programs parallel.

Another potential reason 
for success is the synergy 
between many-core processing 
and software as a service, 
or cloud computing as it is 
often called. Google Search, 
Hotmail, and Salesforce are 
some here-and-now exam-
ples of  such ser v ices,  i n 
which the application you 
need runs in a remote data 
center rather than on your 
own computer. These services are pop-
ular because they reduce the hassle to 
both users and providers. The user 
needs only a browser and needn’t fool 
with software installation, upgrades, 
and patches. Software providers are 
happy, too, because their applications 
run only inside a data center where 
they control the environment. This has 
allowed their developers to improve 
their software much faster than can 
prog ra m mers w r it i ng t rad it iona l 

“shrink-wrap” applications, which must 
run on a host of different computers 
with many combinations of hardware 
and software installed. 

E x p er t  prog r a m mer s ca n t a ke 
advantage of the task-level parallel-
ism inherent in cloud computing. To 

service millions of users, these pro-
grammers divvy up the work to run on 
thousands of computers. Because their 
software already uses many processors, 
it’s easy for the people mounting such 
operations to embrace many-core chips. 
Indeed, these cloud-computing provid-
ers see many-core as a welcome way to 
reduce costs rather than as a disruptive 
technology. So expect the coming pro-
liferation of many-core processors to 
boost today’s rapidly growing zeal for 
cloud computing.

Despite these reasons for hope, 
the odds are still against the micropro-
cessor industry squarely completing its 
risky Hail Mary pass and finding some 
all-encompassing way to convert every 

piece of software to run on many paral-
lel processors. I and other researchers at 
the main centers of parallel-computing 
research—including Georgia Tech, the 
University of Illinois, Rice University, 
S t a n fo r d ,  a nd  t he  Un ive r s it y  of 
California, Berkeley—certainly don’t 
expect that to happen. So rather than 
working on general programming lan-
guages or computer designs, we are 
instead trying to create a few impor-
tant applications that can take advan-
tage of many-core microprocessors. 
Although none of these groups is likely 
to develop the ultimate killer app, that’s 
not the intention. Rather, we hope that 
the hardware and software we invent 
will contain some of the key innovations 
needed to make parallel programming 

straightforward. If we’re successful, 
this work should help to usher in what-
ever application ultimately wins the 

“killer” distinction. 
For example, my colleagues and I at 

Berkeley’s parallel computing laboratory—
the Par Lab—have decided to pursue just a 
few target applications. One is speech rec-
ognition, or perhaps I should say speech 
understanding. Our hope is to improve 
speech-recognition software dramatically 
so that a computer can recognize words 
spoken in crowded, noisy, and reverber-
ant environments. That would surpass 
today’s crude speech-recognition software 
and allow such things as real-time meet-
ing transcription. Such software exists 
now, but those programs generate a frus-
tratingly large number of mistakes.

One problem we’re facing 
in this effort is that micropro-
cessors with large numbers of 
cores are not yet being manu-
factured. So we have nothing to 
run our experimental software 
on. And a prototype many-core 
microprocessor would take 
years to design and millions of 
dollars to fabricate. We could, in 
principle, emulate such chips in 
software. But software running 
at the level of detail needed to 
evaluate a 128-core design could 
take days to simulate a few sec-
onds, which means that itera-
tions between hardware and 
software improvements would 
be excruciatingly slow.

We can, however, skirt this 
roadblock by using field-programmable 
gate arrays (FPGAs) to simulate future 
computers. FPGAs are integrated cir-
cuits that contain large collections of 
circuit components that can be wired 
together on the f ly using a special lan-
guage to describe the desired hardware 
configuration. And they can be rewired 
as many times as needed. So they offer 
the best of both worlds, having the flex-
ibility of software but also the ability to 
run 250 times as fast as software simula-
tors. This prospect inspired the Research 
Accelerator for Multiple Processors 
(RAMP) project, a collaboration of 
nearly a dozen universities and com-
panies, to create and share a common 
infrastructure to accelerate research in 
many‑core designs. h
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Continued on page 52
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How many RAMP con-
figurations and specialized 
programming environments 
will be needed is still any-
one’s guess. In 2004, Phillip 
Colella of Lawrence Berkeley 
National Laboratory claimed 
that seven numerical meth-
ods would dominate scien-
tific computing for the next 
decade. Starting with that 
claim, he, I, and a small group 
of other Berkeley computer 
scientists spent two years 
evaluating how well these 
seven techniques would work 
in other fields of endeavor. 
We ended up expanding the 
list to 12 general methods. 
Think of these as fundamen-
tal computational patterns, 
ones that are as different as 
the various motifs found in, 
say, Persian carpets—trees, 
spirals, paisley, and so forth.

Some of the 12 computa-
tional motifs are embarrass-
ingly parallel. Take, for exam-
ple, what are called Monte 
Carlo methods, which exam-
ine many independent ran-
dom trials of some physical 
process to determine a more 
general result. You can do a 
lot with this approach. You 
could, for instance, deter-
mine the value of pi. Just com-
pute what happens when you 
throw darts at a square board. 
If the darts hit random points 
on the square, what fraction 
of them fall within the larg-
est circle you can draw on the 
board? Calculate that num-
ber for enough darts and 
you’ll know the area of the 
circle. Dividing by the radius 
squared then gives you a 
value for pi.

Other motifs can be a lot 
harder to carry out in paral-
lel, such as the common prob-
lem of sequencing through a 
series of well-defined states, 
where the rules for tran-
sitioning from one state to 
another depend on the values 
of various external inputs. A 

sequential computer calcu-
lates which state to assume 
next based on which state it is 
in and the inputs presented at 
that moment. Having multi-
ple cores available doesn’t do 
much to speed up that process, 
so the only opportunity to run 
through the sequence of states 
faster is to figure out ahead of 
time the state transitions that 
might be coming up. But that 
requires the computer to guess 
which state it might soon find 
itself in and how the inputs 
might change in the meantime. 
And when you guess wrong, it 
takes so much time to recover 
that you’ll go even slower 
than you would have without 
any guessing. The hope is that 
you’ll guess correctly most of 
the time, so that on average 
you come out ahead. Figuring 
out how to program such spec-
ulation about state transitions 
is tricky, to say the least.

In 1995, I made some public 
predictions of what micropro-
cessors would be like in the 
year 2020. I naively expected 
that the information technol-
ogy community would dis-
cover how to do parallel pro-
gramming before chipmakers 
started shipping what I then 
called “micromultiproces-
sors.” From the perspective 
of 2010, I now see three pos-
sibilities for 2020.

The first is that we drop 
the ball. That is, the practi-
cal number of cores per chip 
hits a ceiling, and the per-
formance of microproces-
sors stops increasing. Such 
a n outcome w i l l  have a 
broad impact on the infor-
mation technology industry. 
Microprocessors will likely 
still get cheaper every year, 
and so will the products that 
contain them. But they won’t 
pack in more computational 
oomph. Consider netbooks 
as the first step down this 
cost-reduction path. Such 

an evolution will only accel-
erate the shift to cloud com-
puting, because the servers 
that are doing the real work 
will be able to take advantage 
of the parallelism of many-
core microprocessors, even if 
desktops and handheld com-
puters cannot. 

Another possibility is that 
a select few of us will be able to 
catch today’s risky Hail Mary 
pass. Perhaps only multi
media apps such as video 
games can exploit data-level 
parallelism and take advan-
tage of the increasing num-
ber of cores. In that case, the 
microprocessors of 2020 may 
look more like the GPUs from 
Nvidia, Advanced Micro 
Devices, and Intel than the 
traditional microprocessors 
of today. That is, the GPU will 
be promoted from a sideshow 
to the main event. It’s unclear 
whether such applications by 
themselves will be able to sus-
tain the growth of the infor-
mation technology industry 
as a whole.

The most optimistic out-
come, of course, is that some-
one figures out how to make 
dependable parallel software 
that works efficiently as the 
number of cores increases. 
That will provide the much-

ABCPL 
ActorScript 
Ada
Afnix
Alef
Alice
APL
Axum
C*
Chapel

There’s no lack of languages designed to support 
parallel processing—this is just a selection of them. 

Still, they don’t make parallel programming easy 
or straightforward.

The Trouble With Multicore
Continued from page 32
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sequential computer calcu-
lates which state to assume 
next based on which state it is 
in and the inputs presented at 
that moment. Having multi-
ple cores available doesn’t do 
much to speed up that process, 
so the only opportunity to run 
through the sequence of states 
faster is to fi gure out ahead of 
time the state transitions that 
might be coming up. But that 
requires the computer to guess 
which state it might soon fi nd 
itself in and how the inputs 
might change in the meantime. 
And when you guess wrong, it 
takes so much time to recover 
that you’ll go even slower 
than you would have without 
any guessing. The hope is that 
you’ll guess correctly most of 
the time, so that on average 
you come out ahead. Figuring 
out how to program such spec-
ulation about state transitions 
is tricky, to say the least.

in 1995, I made some public 
predictions of what micropro-
cessors would be like in the 
year 2020. I naively expected 
that the information technol-
ogy community would dis-
cover how to do parallel pro-
gramming before chipmakers 
started shipping what I then 
called “micromultiproces-
sors.” From the perspective 
of 2010, I now see three pos-
sibilities for 2020.

The first is that we drop 
the ball. That is, the practi-
cal number of cores per chip 
hits a ceiling, and the per-
formance of microproces-
sors stops increasing. Such 
a n outcome w i l l  have a 
broad impact on the infor-
mation technology industry. 
Microprocessors will likely 
still get cheaper every year, 
and so will the products that 
contain them. But they won’t 
pack in more computational 
oomph. Consider netbooks 
as the first step down this 
cost-reduction path. Such 

an evolution will only accel-
erate the shift to cloud com-
puting, because the servers 
that are doing the real work 
will be able to take advantage 
of the parallelism of many-
core microprocessors, even if 
desktops and handheld com-
puters cannot. 

Another possibility is that 
a select few of us will be able to 
catch today’s risky Hail Mary 
pass. Perhaps only multi-
media apps such as video 
games can exploit data-level 
parallelism and take advan-
tage of the increasing num-
ber of cores. In that case, the 
microprocessors of 2020 may 
look more like the GPUs from 
Nvidia, Advanced Micro 
Devices, and Intel than the 
traditional microprocessors 
of today. That is, the GPU will 
be promoted from a sideshow 
to the main event. It’s unclear 
whether such applications by 
themselves will be able to sus-
tain the growth of the infor-
mation technology industry 
as a whole.

The most optimistic out-
come, of course, is that some-
one fi gures out how to make 
dependable parallel software 
that works efficiently as the 
number of cores increases. 
That will provide the much-

needed foundation for build-
ing the microprocessor hard-
ware of the next 30 years. 
Even if the routine doubling 
every year or two of the num-
ber of transistors per chip 
were to stop—the dreaded 
end of Moore’s Law—innova-
tive packaging might allow 
economical systems to be 
created from multiple chips, 
sustaining the performance 
gains that consumers have 
long enjoyed.

Although I’m rooting for 
this outcome—and many 
colleagues and I are work-
ing hard to realize it—I have 
to admit that this third sce-
nario is probably not the 
most likely one. Just as global 
climate change will disad-
vantage some nations more 
than others, what happens to 
the microprocessor industry 
will probably be uneven in its 
effect. Some companies will 
succumb to the inability of 
microprocessors to advance 
in the way they have in the 
past. Others will benefi t from 
the change in the new playing 
fi eld of computing. 

No matter how the ball 
bounces, it’s going to be fun 
to watch, at least for the fans. 
The next decade is going to 
be interesting. �

ABCPL 
ActorScript 
Ada
Afnix
Alef
Alice
APL
Axum
C*
Chapel

Cilk
Clojure
Curry 
DAPPLE
E
Eiff el
Emerald
Erlang
Fork
Glenda

Go
Id
Janus
JoCaml
Join Java
Joule
Joyce
LabView
Limbo
Linda

Millipede
MultiLisp
Modula-3
Nimrod
Occam
Orc
Oz
Pict
Polaris
Reia

SALSA
Scala
SISAL
SR
Stackless
SuperPascal
VHDL
XC 
Zounds
ZPL

there’s no lack of languages designed to support 
parallel processing—this is just a selection of them. 

Still, they don’t make parallel programming easy 
or straightforward.

D O y O u

A KS p E

m u l t I c O r E ?

The Trouble With Multicore
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