
28 NA • IEEE SpEctrum • july 2010 spectrum.ieee.org spectrum.ieee.org

t H E

W I t H

t r O u B l E

m u l t I -

c O r E

cHipmAKers Are BusY DesigNiNg
microprocessors tHAt most
progrAmmers cAN’t HANDLe
BY DAVID PATTERSON

h
a

r
r

y
 c

a
m

p
b

e
ll

07.MulticoreProgramming.NA.indd 28 6/15/10 12:05 PM

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 15,2010 at 22:55:52 UTC from IEEE Xplore. Restrictions apply.

spectrum.ieee.org july 2010 • IEEE Spectrum • NA 29spectrum.ieee.org

h
a

r
r

y
 c

a
m

p
b

e
ll

07.MulticoreProgramming.NA.indd 29 6/15/10 12:05 PM

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 15,2010 at 22:55:52 UTC from IEEE Xplore. Restrictions apply.

30 NA • iEEE Spectrum • july 2010 spectrum.ieee.org spectrum.ieee.org

Clara, Calif. That is, from here on out,
chip designers will concentrate on how
to gang together lots of cores, just as the
previous generation of microprocessor
engineers thought about the circuitry
they were creating at the level of indi-
vidual transistors.

The trick will be to invent ways for
programmers to write applications that
exploit the increasing number of proces-
sors found on each chip without stretch-
ing the time needed to develop software or
lowering its quality. Say your Hail Mary
now, because this is not going to be easy.

When the president and CEO of Intel,
Paul S. Otellini, announced in 2004 that
his company would dedicate “all of our
future product designs to multicore envi-
ronments,” why did he label this “a key
inflection point for the industry”? The
answer is clear to anyone familiar with
the many now-defunct companies that
bet their futures on the transition from
single-core computers to systems with
multiple processors working in paral-
lel. Ardent, Convex, Encore, Floating
Point Systems, Inmos, Kendall Square
Research, MasPar, nCUBE, Sequent,
Tandem, and Thinking Machines are just
the most prominent names from a very
long list of long-gone parallel hopefuls.
Otellini was announcing that despite this
sobering record, software applications in
the future will run faster only if program-
mers can write parallel programs for the
kinds of multicore microprocessors that
Intel and other semiconductor compa-
nies have started shipping.

But why is parallel process-
ing so challenging? An anal-
ogy helps here. Programming
is in many ways like writ-
ing a news story. Potentially,
10 reporters could complete a
story 10 times as fast as a sin-
gle reporter could ever manage
it. But they’d need to divide a
task into 10 equally sized
pieces; otherwise they couldn’t
achieve a full tenfold speedup.

C o m p l i c a t i o n s w o u l d
arise, however, if one part of
the story couldn’t be written
until the rest of it was done.
The 10 reporters would also
need to ensure that each bit
of text was consistent with

what came before and that the next
section f lowed logically from it, with-
out repeating any material. Also, they
would have to time their efforts so that
they finished simultaneously. After all,
you can’t publish a story while you’re
still waiting for a piece in the middle
to be completed. These same issues—
load balancing, sequential dependen-
cies, and synchronization—challenge
parallel programmers.

Researchers have been trying to
tackle these problems since the 1960s.
Many ideas have been tried, and just
about as many have failed. One early
vision was that the right computer lan-
guage would make parallel program-
ming straightforward. There have
been hundreds—if not thousands—of
attempts at developing such languages,
including such long-gone examples
as APL, Id, Linda, Occam, and SISAL.
Some made parallel programming eas-
ier, but none has made it as fast, efficient,
and flexible as traditional sequential pro-
gramming. Nor has any become as popu-
lar as the languages invented primarily
for sequential programming.

Another hope was that if you just
designed the hardware properly, parallel
programming would become easy. Many
private investors have been seduced by
this idea. And many people have tried to
build the El Dorado of computer archi-
tecture, but no one has yet succeeded.

A third idea, also dating back to the
1960s, is to write software that will auto-
matically parallelize existing sequential
programs. History teaches that success
here is inversely proportional to the
number of cores. Depending on the pro-
gram, there will likely be some benefit
from trying to automatically parallelize
it for two, four, or even eight cores. But
most experts remain skeptical that the
automatic parallelization of arbitrary
sequential code is going to be benefi-
cial for 32, 64, or 128 cores, despite some
recently published advances in this area.

All in all, things look pretty bleak.
Nevertheless, there has been progress
in some communities. In general, par-
allelism can work when you can afford
to assemble a crack team of Ph.D.-level
programmers to tackle a problem with
many different tasks that depend very
little on one another. One example is
the database systems that banks use

In 1975, future Hall of Famer Roger Staubach had the football
but little else in a playoff game against the Minnesota Vikings.
Behind by four points at midfield with 24 seconds to go, the
Dallas Cowboys quarterback closed his eyes, threw the ball as
hard as he could, and said a Hail Mary. (For you soccer fans,
this would be like David Beckham taking a shot on goal from
midfield late in injury time.)

His prayer was answered. Staubach’s
receiver collided with a Viking defender
just as the ball arrived but nevertheless
managed to pin the football against his
leg, scoring the touchdown that took the
Cowboys to the Super Bowl. (Imagine
Beckham’s long ball beating the goalie.)
Ever since that game, a desperate pass
with little chance of success has been
labeled a Hail Mary.

Thirty years later, the semiconductor
industry threw the equivalent of a Hail
Mary pass when it switched from mak-
ing microprocessors run faster to putting
more of them on a chip—doing so with-
out any clear notion of how such devices
would in general be programmed. The
hope is that someone will be able to fig-
ure out how to do that, but at the moment,
the ball is still in the air.

Why take such a gamble? In short,
because there wasn’t much of an alter-
native.

For decades, microprocessor design-
ers used the burgeoning number of tran-
sistors that could be squeezed onto each
chip to boost computational horsepower.
They did this by creating microprocessors
that could carry out several operations at
once—for example, fetching the
next instruction from memory
while the current one was being
executed. And chipmakers con-
tinually upped microprocessor
clock rates, something the
diminishing size of transistors
readily allowed.

But around 2003, chipmak-
ers found they could no longer
reduce the operating voltage as
sharply as they had in the past
as they strived to make transis-
tors smaller and faster. That in
turn caused the amount of waste
heat that had to be dissipated
from each square millimeter
of silicon to go up. Eventually
designers hit what they call the

power wall, the limit on the amount of
power a microprocessor chip could rea-
sonably dissipate. After all, a laptop that
burned your lap would be a tough sell.

Designers now accept that although
transistors will still get smaller and
more numerous on each chip, they aren’t
going to operate faster than they do today.
(Indeed, peak clock speeds are lower now
than they were five years ago.) And if you
tried to incorporate all those transistors
into one giant microprocessor, you might
well end up with a device that couldn’t
compute any faster than the chip it was
replacing, which explains the shift to
assembling them into multiple micro-
processor cores instead. Although each
core may have modest computational
abilities, you’ll have many of them at
your disposal.

Such novel chips are called multicore
microprocessors—or sometimes many-
core microprocessors when a large
number of cores are involved—to distin-
guish them from traditional single-core
designs. In a sense, the core has become
the new transistor, to borrow a phrase
from Chris Rowen, president and chief
technology officer of Tensilica, in Santa

h
a

r
r

y
 c

a
m

p
b

e
ll

07.MulticoreProgramming.NA.indd 30 6/15/10 12:05 PM

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 15,2010 at 22:55:52 UTC from IEEE Xplore. Restrictions apply.

 spectrum.ieee.org july 2010 • IEEE SpEctrum • NA 31 spectrum.ieee.org

Clara, Calif. That is, from here on out,
chip designers will concentrate on how
to gang together lots of cores, just as the
previous generation of microprocessor
engineers thought about the circuitry
they were creating at the level of indi-
vidual transistors.

The trick will be to invent ways for
programmers to write applications that
exploit the increasing number of proces-
sors found on each chip without stretch-
ing the time needed to develop software or
lowering its quality. Say your Hail Mary
now, because this is not going to be easy.

When the president and CEO of Intel,
Paul S. Otellini, announced in 2004 that
his company would dedicate “all of our
future product designs to multicore envi-
ronments,” why did he label this “a key
inflection point for the industry”? The
answer is clear to anyone familiar with
the many now-defunct companies that
bet their futures on the transition from
single-core computers to systems with
multiple processors working in paral-
lel. Ardent, Convex, Encore, Floating
Point Systems, Inmos, Kendall Square
Research, MasPar, nCUBE, Sequent,
Tandem, and Thinking Machines are just
the most prominent names from a very
long list of long-gone parallel hopefuls.
Otellini was announcing that despite this
sobering record, software applications in
the future will run faster only if program-
mers can write parallel programs for the
kinds of multicore microprocessors that
Intel and other semiconductor compa-
nies have started shipping.

But why is parallel process-
ing so challenging? An anal-
ogy helps here. Programming
is in many ways like writ-
ing a news story. Potentially,
10 reporters could complete a
story 10 times as fast as a sin-
gle reporter could ever manage
it. But they’d need to divide a
task into 10 equally sized
pieces; otherwise they couldn’t
achieve a full tenfold speedup.

C o m p l i c a t i o n s w o u l d
arise, however, if one part of
the story couldn’t be written
until the rest of it was done.
The 10 reporters would also
need to ensure that each bit
of text was consistent with

what came before and that the next
section f lowed logically from it, with-
out repeating any material. Also, they
would have to time their eff orts so that
they fi nished simultaneously. After all,
you can’t publish a story while you’re
still waiting for a piece in the middle
to be completed. These same issues—
load balancing, sequential dependen-
cies, and synchronization—challenge
parallel programmers.

Researchers have been trying to
tackle these problems since the 1960s.
Many ideas have been tried, and just
about as many have failed. One early
vision was that the right computer lan-
guage would make parallel program-
ming straightforward. There have
been hundreds—if not thousands—of
attempts at developing such languages,
including such long-gone examples
as APL, Id, Linda, Occam, and SISAL.
Some made parallel programming eas-
ier, but none has made it as fast, effi cient,
and fl exible as traditional sequential pro-
gramming. Nor has any become as popu-
lar as the languages invented primarily
for sequential programming.

Another hope was that if you just
designed the hardware properly, parallel
programming would become easy. Many
private investors have been seduced by
this idea. And many people have tried to
build the El Dorado of computer archi-
tecture, but no one has yet succeeded.

A third idea, also dating back to the
1960s, is to write software that will auto-
matically parallelize existing sequential
programs. History teaches that success
here is inversely proportional to the
number of cores. Depending on the pro-
gram, there will likely be some benefi t
from trying to automatically parallelize
it for two, four, or even eight cores. But
most experts remain skeptical that the
automatic parallelization of arbitrary
sequential code is going to be benefi-
cial for 32, 64, or 128 cores, despite some
recently published advances in this area.

All in all, things look pretty bleak.
Nevertheless, there has been progress
in some communities. In general, par-
allelism can work when you can aff ord
to assemble a crack team of Ph.D.-level
programmers to tackle a problem with
many different tasks that depend very
little on one another. One example is
the database systems that banks use

for managing ATM transactions and
airlines use for tracking reservations.
Another example is Internet search-
ing. It’s much easier to parallelize pro-
grams that deal with lots of users doing
pretty much the same thing rather than
a single user doing something very com-
plicated. That’s because you can readily
take advantage of the inherent task-level
parallelism of the problem at hand.

Another success story is computer
graphics. Animated movies or ones
with lots of computer-generated spe-
cial eff ects exhibit task-level parallelism
in that individual scenes can be com-
puted in parallel. Clever programmers
have even found parallelism in comput-
ing each image. Indeed, the high-end
graphics processing units (GPUs) used
to accelerate games on a PC can con-

tain hundreds of processors, each tack-
ling just a small piece of the job of ren-
dering an image. Computer scientists
apply the term “data-level parallelism” to
such applications. They’re hard enough
to program, but in general they’re eas-
ier than applications that don’t off er this
inherent parallelism.

Scientif ic computing provides a
third success story—weather prediction
and car-crash simulations being two
well-known examples. These are long-
running programs that have lots of data-
level parallelism. The elite teams that
create these programs are often combi-
nations of Ph.D. computer scientists and
people with doctorates in the sciences
relevant to the application. Desktop
applications rarely have that much intel-
lectual horsepower behind them.h

a
r

r
y

 c
a

m
p

b
e

ll

Standard algorithms for determining the value of pi
rely on sequential calculations [top],

but you could also use a parallel approach [bottom].

Start
with 1

Add
(–1/3)

Add
(1/5)

Add
(–1/7)

Add
(–1)n/(2n+1)

Pi =
4 x result

A SEQUENTIAL APPROACH

Count number of times the point lies within the circle

Pi = 4 x (number within circle)/(total number of trials)

Generate ran-
dom points on

a large number
of squares

(x-y pairs in the
range –1 to +1)

Calculate
whether the

point falls
within the circle

(Is x2 + y2 < 1?)

+1

+1
–1

–1

Yes Yes No Yes No

A PARALLEL APPROACH

E A y AS S p I

07.MulticoreProgramming.NA.indd 31 6/15/10 12:05 PM

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 15,2010 at 22:55:52 UTC from IEEE Xplore. Restrictions apply.

32 NA • iEEE Spectrum • july 2010 spectrum.ieee.org

Given this stark landscape, you might
not expect this latest foray into parallel
computing to be greeted by success. But
there are reasons for optimism. First
off, the whole computer industry is now
working on the problem. Also, the shift to
parallelism is starting small and growing
slowly. Programmers can cut their teeth
on dual- and quad-core processors right
now, rather than jumping to 128 cores in
one fell swoop.

One of the biggest factors, though,
is the degree of motivation. In the past,
programmers could just wait for tran-
sistors to get smaller and faster, allowing
microprocessors to become more power-
ful. So programs would run faster with-
out any new programming effort, which
was a big disincentive to anyone tempted
to pioneer ways to write par-
allel code. The La-Z-Boy era of
program performance is now
officially over, so program-
mers who care about perfor-
mance must get up off their
recliners and start making
their programs parallel.

Another potential reason
for success is the synergy
between many-core processing
and software as a service,
or cloud computing as it is
often called. Google Search,
Hotmail, and Salesforce are
some here-and-now exam-
ples of such ser v ices, i n
which the application you
need runs in a remote data
center rather than on your
own computer. These services are pop-
ular because they reduce the hassle to
both users and providers. The user
needs only a browser and needn’t fool
with software installation, upgrades,
and patches. Software providers are
happy, too, because their applications
run only inside a data center where
they control the environment. This has
allowed their developers to improve
their software much faster than can
prog ra m mers w r it i ng t rad it iona l

“shrink-wrap” applications, which must
run on a host of different computers
with many combinations of hardware
and software installed.

E x p er t prog r a m mer s ca n t a ke
advantage of the task-level parallel-
ism inherent in cloud computing. To

service millions of users, these pro-
grammers divvy up the work to run on
thousands of computers. Because their
software already uses many processors,
it’s easy for the people mounting such
operations to embrace many-core chips.
Indeed, these cloud-computing provid-
ers see many-core as a welcome way to
reduce costs rather than as a disruptive
technology. So expect the coming pro-
liferation of many-core processors to
boost today’s rapidly growing zeal for
cloud computing.

Despite these reasons for hope,
the odds are still against the micropro-
cessor industry squarely completing its
risky Hail Mary pass and finding some
all-encompassing way to convert every

piece of software to run on many paral-
lel processors. I and other researchers at
the main centers of parallel-computing
research—including Georgia Tech, the
University of Illinois, Rice University,
S t a n fo r d , a nd t he Un ive r s it y of
California, Berkeley—certainly don’t
expect that to happen. So rather than
working on general programming lan-
guages or computer designs, we are
instead trying to create a few impor-
tant applications that can take advan-
tage of many-core microprocessors.
Although none of these groups is likely
to develop the ultimate killer app, that’s
not the intention. Rather, we hope that
the hardware and software we invent
will contain some of the key innovations
needed to make parallel programming

straightforward. If we’re successful,
this work should help to usher in what-
ever application ultimately wins the

“killer” distinction.
For example, my colleagues and I at

Berkeley’s parallel computing laboratory—
the Par Lab—have decided to pursue just a
few target applications. One is speech rec-
ognition, or perhaps I should say speech
understanding. Our hope is to improve
speech-recognition software dramatically
so that a computer can recognize words
spoken in crowded, noisy, and reverber-
ant environments. That would surpass
today’s crude speech-recognition software
and allow such things as real-time meet-
ing transcription. Such software exists
now, but those programs generate a frus-
tratingly large number of mistakes.

One problem we’re facing
in this effort is that micropro-
cessors with large numbers of
cores are not yet being manu-
factured. So we have nothing to
run our experimental software
on. And a prototype many-core
microprocessor would take
years to design and millions of
dollars to fabricate. We could, in
principle, emulate such chips in
software. But software running
at the level of detail needed to
evaluate a 128-core design could
take days to simulate a few sec-
onds, which means that itera-
tions between hardware and
software improvements would
be excruciatingly slow.

We can, however, skirt this
roadblock by using field-programmable
gate arrays (FPGAs) to simulate future
computers. FPGAs are integrated cir-
cuits that contain large collections of
circuit components that can be wired
together on the f ly using a special lan-
guage to describe the desired hardware
configuration. And they can be rewired
as many times as needed. So they offer
the best of both worlds, having the flex-
ibility of software but also the ability to
run 250 times as fast as software simula-
tors. This prospect inspired the Research
Accelerator for Multiple Processors
(RAMP) project, a collaboration of
nearly a dozen universities and com-
panies, to create and share a common
infrastructure to accelerate research in
many‑core designs. h

a
r

r
y

 c
a

m
p

b
e

ll

Continued on page 52

07.MulticoreProgramming.NA.indd 32 6/15/10 12:05 PM

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 15,2010 at 22:55:52 UTC from IEEE Xplore. Restrictions apply.

spectrum.ieee.org52 NA • iEEE Spectrum • july 2010 spectrum.ieee.org

How many RAMP con-
figurations and specialized
programming environments
will be needed is still any-
one’s guess. In 2004, Phillip
Colella of Lawrence Berkeley
National Laboratory claimed
that seven numerical meth-
ods would dominate scien-
tific computing for the next
decade. Starting with that
claim, he, I, and a small group
of other Berkeley computer
scientists spent two years
evaluating how well these
seven techniques would work
in other fields of endeavor.
We ended up expanding the
list to 12 general methods.
Think of these as fundamen-
tal computational patterns,
ones that are as different as
the various motifs found in,
say, Persian carpets—trees,
spirals, paisley, and so forth.

Some of the 12 computa-
tional motifs are embarrass-
ingly parallel. Take, for exam-
ple, what are called Monte
Carlo methods, which exam-
ine many independent ran-
dom trials of some physical
process to determine a more
general result. You can do a
lot with this approach. You
could, for instance, deter-
mine the value of pi. Just com-
pute what happens when you
throw darts at a square board.
If the darts hit random points
on the square, what fraction
of them fall within the larg-
est circle you can draw on the
board? Calculate that num-
ber for enough darts and
you’ll know the area of the
circle. Dividing by the radius
squared then gives you a
value for pi.

Other motifs can be a lot
harder to carry out in paral-
lel, such as the common prob-
lem of sequencing through a
series of well-defined states,
where the rules for tran-
sitioning from one state to
another depend on the values
of various external inputs. A

sequential computer calcu-
lates which state to assume
next based on which state it is
in and the inputs presented at
that moment. Having multi-
ple cores available doesn’t do
much to speed up that process,
so the only opportunity to run
through the sequence of states
faster is to figure out ahead of
time the state transitions that
might be coming up. But that
requires the computer to guess
which state it might soon find
itself in and how the inputs
might change in the meantime.
And when you guess wrong, it
takes so much time to recover
that you’ll go even slower
than you would have without
any guessing. The hope is that
you’ll guess correctly most of
the time, so that on average
you come out ahead. Figuring
out how to program such spec-
ulation about state transitions
is tricky, to say the least.

In 1995, I made some public
predictions of what micropro-
cessors would be like in the
year 2020. I naively expected
that the information technol-
ogy community would dis-
cover how to do parallel pro-
gramming before chipmakers
started shipping what I then
called “micromultiproces-
sors.” From the perspective
of 2010, I now see three pos-
sibilities for 2020.

The first is that we drop
the ball. That is, the practi-
cal number of cores per chip
hits a ceiling, and the per-
formance of microproces-
sors stops increasing. Such
a n outcome w i l l have a
broad impact on the infor-
mation technology industry.
Microprocessors will likely
still get cheaper every year,
and so will the products that
contain them. But they won’t
pack in more computational
oomph. Consider netbooks
as the first step down this
cost-reduction path. Such

an evolution will only accel-
erate the shift to cloud com-
puting, because the servers
that are doing the real work
will be able to take advantage
of the parallelism of many-
core microprocessors, even if
desktops and handheld com-
puters cannot.

Another possibility is that
a select few of us will be able to
catch today’s risky Hail Mary
pass. Perhaps only multi
media apps such as video
games can exploit data-level
parallelism and take advan-
tage of the increasing num-
ber of cores. In that case, the
microprocessors of 2020 may
look more like the GPUs from
Nvidia, Advanced Micro
Devices, and Intel than the
traditional microprocessors
of today. That is, the GPU will
be promoted from a sideshow
to the main event. It’s unclear
whether such applications by
themselves will be able to sus-
tain the growth of the infor-
mation technology industry
as a whole.

The most optimistic out-
come, of course, is that some-
one figures out how to make
dependable parallel software
that works efficiently as the
number of cores increases.
That will provide the much-

ABCPL
ActorScript
Ada
Afnix
Alef
Alice
APL
Axum
C*
Chapel

There’s no lack of languages designed to support
parallel processing—this is just a selection of them.

Still, they don’t make parallel programming easy
or straightforward.

The Trouble With Multicore
Continued from page 32

07.MulticoreProgramming.NA.indd 52 6/15/10 12:05 PM

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 15,2010 at 22:55:52 UTC from IEEE Xplore. Restrictions apply.

july 2010 • IEEE SpEctrum • NA 53 spectrum.ieee.org spectrum.ieee.org

sequential computer calcu-
lates which state to assume
next based on which state it is
in and the inputs presented at
that moment. Having multi-
ple cores available doesn’t do
much to speed up that process,
so the only opportunity to run
through the sequence of states
faster is to fi gure out ahead of
time the state transitions that
might be coming up. But that
requires the computer to guess
which state it might soon fi nd
itself in and how the inputs
might change in the meantime.
And when you guess wrong, it
takes so much time to recover
that you’ll go even slower
than you would have without
any guessing. The hope is that
you’ll guess correctly most of
the time, so that on average
you come out ahead. Figuring
out how to program such spec-
ulation about state transitions
is tricky, to say the least.

in 1995, I made some public
predictions of what micropro-
cessors would be like in the
year 2020. I naively expected
that the information technol-
ogy community would dis-
cover how to do parallel pro-
gramming before chipmakers
started shipping what I then
called “micromultiproces-
sors.” From the perspective
of 2010, I now see three pos-
sibilities for 2020.

The first is that we drop
the ball. That is, the practi-
cal number of cores per chip
hits a ceiling, and the per-
formance of microproces-
sors stops increasing. Such
a n outcome w i l l have a
broad impact on the infor-
mation technology industry.
Microprocessors will likely
still get cheaper every year,
and so will the products that
contain them. But they won’t
pack in more computational
oomph. Consider netbooks
as the first step down this
cost-reduction path. Such

an evolution will only accel-
erate the shift to cloud com-
puting, because the servers
that are doing the real work
will be able to take advantage
of the parallelism of many-
core microprocessors, even if
desktops and handheld com-
puters cannot.

Another possibility is that
a select few of us will be able to
catch today’s risky Hail Mary
pass. Perhaps only multi-
media apps such as video
games can exploit data-level
parallelism and take advan-
tage of the increasing num-
ber of cores. In that case, the
microprocessors of 2020 may
look more like the GPUs from
Nvidia, Advanced Micro
Devices, and Intel than the
traditional microprocessors
of today. That is, the GPU will
be promoted from a sideshow
to the main event. It’s unclear
whether such applications by
themselves will be able to sus-
tain the growth of the infor-
mation technology industry
as a whole.

The most optimistic out-
come, of course, is that some-
one fi gures out how to make
dependable parallel software
that works efficiently as the
number of cores increases.
That will provide the much-

needed foundation for build-
ing the microprocessor hard-
ware of the next 30 years.
Even if the routine doubling
every year or two of the num-
ber of transistors per chip
were to stop—the dreaded
end of Moore’s Law—innova-
tive packaging might allow
economical systems to be
created from multiple chips,
sustaining the performance
gains that consumers have
long enjoyed.

Although I’m rooting for
this outcome—and many
colleagues and I are work-
ing hard to realize it—I have
to admit that this third sce-
nario is probably not the
most likely one. Just as global
climate change will disad-
vantage some nations more
than others, what happens to
the microprocessor industry
will probably be uneven in its
effect. Some companies will
succumb to the inability of
microprocessors to advance
in the way they have in the
past. Others will benefi t from
the change in the new playing
fi eld of computing.

No matter how the ball
bounces, it’s going to be fun
to watch, at least for the fans.
The next decade is going to
be interesting. �

ABCPL
ActorScript
Ada
Afnix
Alef
Alice
APL
Axum
C*
Chapel

Cilk
Clojure
Curry
DAPPLE
E
Eiff el
Emerald
Erlang
Fork
Glenda

Go
Id
Janus
JoCaml
Join Java
Joule
Joyce
LabView
Limbo
Linda

Millipede
MultiLisp
Modula-3
Nimrod
Occam
Orc
Oz
Pict
Polaris
Reia

SALSA
Scala
SISAL
SR
Stackless
SuperPascal
VHDL
XC
Zounds
ZPL

there’s no lack of languages designed to support
parallel processing—this is just a selection of them.

Still, they don’t make parallel programming easy
or straightforward.

D O y O u

A KS p E

m u l t I c O r E ?

The Trouble With Multicore
Continued from page 32

SPONSORS:

Where today’s
technology gurus

converge.
The brightest minds

discussing the biggest topics.

Sign up today!
www.spectrum.ieee.org/webinar

AVAILABLE ON DEMAND WEBINARS:

Agility Development of Safety Critical Systems
This webinar presents a workflow tailored for safety critical systems
development that produces the right set of work products at the
right time with the minimum cost and effort.
www.spectrum.ieee.org/webinar/1585822

Capture the Concept —
A First Look at COMSOL Multiphysics 4.0
Learn how to analyze quickly and efficiently all relevant aspects
of your design to bring it to life.
www.spectrum.ieee.org/webinar/1587987

Top 10 Clean Energy Business Opportunities —
Design, Prototype, and Deploy
Learn about 10 clean energy business opportunities that address
important industry needs in the smart grid, wind, solar, biomass,
and energy storage markets.
www.spectrum.ieee.org/webinar/1595736

Improving Hybrid Electric Vehicle Design
through Advanced Numerical Simulation
Learn how engineers are using comprehensive numerical simulation
to understand, utilize and optimize the tight interplay of physics
that occur at both the component and system level of HEVs.
www.spectrum.ieee.org/webinar/1579578

Calibre DRC Automated Waiver Technology
In this webinar, the Auto-Waiver approach for Calibre DRC is presented.
www.spectrum.ieee.org/webinar/1504908

07.MulticoreProgramming.NA.indd 53 6/15/10 12:05 PM

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on July 15,2010 at 22:55:52 UTC from IEEE Xplore. Restrictions apply.

