
 1

CMOS VLSI Design
Lab 2: Datapath Design and Verification

In this lab, you will begin designing an 8-bit MIPS processor. You will first review and
simulate a Verilog model of the overall processor. You will learn about datapath design
by assembling and connecting wordslices into an ALU. As with all labs, read the whole
writeup thoroughly before starting to avoid surprises.

I. Verilog Model RTL Simulation

In the lab2 directory find mips.sv and memfile.dat. Make a subdirectory in your
directory. Copy these files into your subdirectory and rename them, adding your initials.
mips.sv is System Verilog RTL for the 8-bit MIPS processer and memfile.dat contains
test vectors. The processor is detailed in Chapter 1 of CMOS VLSI. The testbench for
the processor is different from the previous lab.

Instead of testbench applying and asserting vectors, the external memory module
exmemory loads a test program stored in memfile.dat. The program tests basic
functionality of the processor and, if successful, writes a 7 to memory address 0x4C.
testbench checks that the processor wrote the success value. The program is shown
below; study it to see what it does.

mipstest.asm
9/16/03 David Harris David_Harris@hmc.edu

Test MIPS instructions. Assumes little-endian memory was
initialized as:
word 16: 3
word 17: 5
word 18: 12

main: #Assembly Code effect Machine Code
 lb $2, 68($0) # initialize $2 = 5 80020044
 lb $7, 64($0) # initialize $7 = 3 80070040
 lb $3, 69($7) # initialize $3 = 12 80e30045
 or $4, $7, $2 # $4 <= 3 or 5 = 7 00e22025
 and $5, $3, $4 # $5 <= 12 and 7 = 4 00642824
 add $5, $5, $4 # $5 <= 4 + 7 = 11 00a42820
 beq $5, $7, end # shouldn’t be taken 10a70008
 slt $6, $3, $4 # $6 <= 12 < 7 = 0 0064302a
 beq $6, $0, around # should be taken 10c00001
 lb $5, 0($0) # shouldn’t happen 80050000
around:slt $6, $7, $2 # $6 <= 3 < 5 = 1 00e2302a
 add $7, $6, $5 # $7 <= 1 + 11 = 12 00c53820
 sub $7, $7, $2 # $7 <= 12 - 5 = 7 00e23822
 j end # should be taken 0800000f
 lb $7, 0($0) # shouldn’t happen 80070000
end: sb $7, 71($2) # write adr 76 <= 7 a0470047
 .dw 3 00000003
 .dw 5 00000005
 .dw 12 0000000c

 2

Read through the testbench and exmemory modules and memfile.dat to see how the
RTL works. Compile and simulate it by invoking sim-nc mips.sv. You should see
Simulation completed successfully if the RTL is working. You may wish
to run the simulation with the GUI (sim-ncg) and watch the top level signals to observe
the processor executing the program.

II. Library Organization

The MIPS processor uses an assortment of libraries: muddlib10, wordlib8, and
mips8. muddlib10 is the 2010 release of a simple standard cell library from Harvey
Mudd College. wordlib8 contains 8-bit wordslices used in the MIPS datapath and
potentially other datapaths. mips8 contains cells unique to the 8-bit MIPS processor.

Copy these libraries to your own directory so you have your own working versions to
edit. From your cadence directory, enter

cp –r /courses/e158/10/lab2/muddlib10 .
cp –r /courses/e158/10/lab2/wordlib8 .
cp –r /courses/e158/10/lab2/mips8 .

Add these libraries to your library path by choosing Edit • Library Path in the Library
Manager window. In a blank row at the bottom of the Library Path Editor, enter

muddlib10 muddlib10

Do the same with wordlib8 and mips8. Use File • Save As… to save the new path in
your cds.lib file (you could have also made these changes by editing the file directly).
You should now be able to scroll down and see the new libraries in the Library Manager.

III. Wordslices

The Verilog and schematic contain functional units organized as 8-bit wordslices. This is
a convenient way to group cells together. Wordslices can be connected with busses,
which is much simpler than drawing eight separate wires. To see how a wordslice is
created, open the 8-bit flopenr_1x_8 (flip-flops with enable and reset) schematic in
wordlib8z. Observe that it is formed from an array of eight flip-flops named
flopenr_dp_1x <7:0> without having to draw each one. This part of the cell is called
the datapath. Inputs and outputs (d<7:0> and q<7:0>) are connected to 8-bit busses. For
clarity, the busses are drawn with wide wires. Note that Cadence uses angle brackets (<
>) rather than square brackets ([]) to represent busses and arrays.

Datapath cells can factor out the inverters from select, clock, and enable signals because
it is more efficient to place one inverter at the top of the datapath than one in each bit cell.
These inverters are placed in a zipper at the top of the wordslice so that they can drive the

 3

entire slice. flopenr_1x_8 also has a zipper, made of inverters and buffers factored out
of the individual one-bit flopenr_1x cells. In this cell, there is an inverter and buffer to
drive the enable signal, an inverter to drive reset, and a pair of inverters and buffers to
drive the two-phase clocks. The gates in the zipper are typically 4x normal size so that
they can drive the entire wordslice in a timely fashion.

Also, look at the 8-bit adder8 schematic, which is constructed from 8 full adders. Notice
how the comma notation is used for the carry in and carry out signals in the schematic.
This is much easier to draw than 8 separate full adders chained together.

The ALU includes an AND, OR, adder, and SLT. Your first step is to design a wordslice
for an 8-bit AND that will be used in the ALU unit. Later in this lab you will design an
8-bit OR and hook the two up to the ALU, and then the ALU to the datapath. The two
cells you will create do not have zippers because there are no circuits to factor out.

Create a new schematic called and2_1x_8 in wordlib8. When it is all done, it should
look like the one below. Unless otherwise stated, use 1x cells in wordslices.

First instantiate an and2_ 1x from muddlib10. Choose Edit • Properties • Object…
and change the Instance Name to and2_1x<7:0> to create 8 copies. Create the input pins
(a<7:0> and b<:0>) and output pins (y<7:0>). Choose Add • Wire (wide) and draw
busses between the pins and the gate. Check and save and ensure you have no errors.

Next, create a symbol for the gate. The easiest approach is to use the Library Manager to
copy the symbol from the and2_1x in muddlib10 to the and2_1x_8 in wordlib8.
Ignore any complaints about the prop.xx file. Edit the new symbol. Use Edit • Properties
• Object to select each of the three pins and modify its name by adding <7:0> (e.g.
changing a to a<7:0>). (Make sure you are editing the pin and not just the label next to
the pin.) Move the label to an attractive location. Also edit the properties of each of the
lines and modify the width to wide. When you are done, the symbol should look like the
one below. Check and save.

 4

Once the schematic is finished, create the layout for the and2_1x_8. Press ‘i’ to add an
instance. Browse to select the and2_1x layout from muddlib10. In the ‘Mosaic’ area,
change the number of rows to 8 then click somewhere else in the window, ‘View’ for
example, to make the change register. The ‘Names’ field should have automatically
changed from ‘I0’ to ‘M0’. Then change the delta Y to 33 so that each row is spaced 110
λ (33 μm) apart. Now place the instance the same way you would have placed a single
cell. There should now be eight copies of the and2_1x layout that are all part of a single
instance. Use Options • Display and set the Stop Levels so that you can see the contents
of the wordslice.

Next create the pins. Select metal2 in the LSW. Open the create pin window (hotkey
‘ctrl-p’) and under Terminal Names enter ‘a<0:7>’. Note that the order is reversed from
usual (<7:0>) because we will be placing bit 0 at the bottom. Select something else in the
window to make the change register; for instance make sure the I/O type is input and that
‘Display Pin Names’ is checked. The boxes next to ‘X Pitch’ and ‘Y Pitch’ should no
longer be grayed out. Change the Y Pitch to 33. Make sure metal2 is selected and draw
the pin over the ‘a’ pin on the bottom and2_1x gate. When you are placing the pin name
it should display as ‘a<0:7>’ and once you’ve placed it you should see the name change
to just ‘a<0>’. Look at the other and gates and you should see that the pins ‘a<1>’
through a<7> were automatically placed over the other ‘a’ pins.

Place the b and y pins. Make sure all the settings are correct before placing the pins.
Immediately check that the pins were placed correctly because if they were not, or the I/O
direction was wrong or the wrong metal was used, the easiest way to get rid of the pins is
to ‘undo’ (hotkey ‘u’). Otherwise you will have to manually delete each pin.

Now place a metal1 gnd! pin in the bottom row over the entire ground wire. Since
ground is not a bus you will not be able to use the Y Pitch in the Create Pin. Instead you
will make seven copies of the gnd! pin. Go to the CIW (command interpreter window)
which is the window that first opens when starting the Cadence tools. Go to Options ->
User Preferences and check the ‘Option Displayed When Commands Start’ box. You
may not always want that option checked, however it is necessary for this step. Click on
‘Apply’ or ‘OK’ and go back to the layout. Select the gnd! pin you just created. Now
copy the pin (hotkey ‘c’) and you should see a Copy window open. In the Copy window
make sure Snap Mode is set to ‘orthogonal’, change Rows to 7, set Delta Y to 33, and

 5

click Apply XY twice. The gnd! pin should have been copied onto the seven other and
gates. Next create the vdd! pins. When you are done the layout should look something
like the figure below.

Finally, as with any layout, run DRC, Extract, and LVS. The only difference with this
cell is that you will need to check the ‘Join Nets With Same Name’ box in both the DRC
and Extract windows so that the tools know you intend to connect gnd! and vdd! later on.
Be sure that you eventually do so before finishing your chip; in our case, we will provide
power and ground rings in Lab 4.

IV. OR Wordslice

Now that you know how to create a wordslice, design a schematic, symbol, and layout for
an 8-bit OR wordslice named or2_1x_8 using or2_1x cells. Verify that your design
passes DRC and LVS.

 6

V. ALU Assembly

Open the alu schematic in mips8. You’ll see named buses for the inputs and outputs of
the 8-bit AND/OR cells. Place and connect each. Check and save.

Next, you will complete the alu layout. Change your display options so you can see all
of the cells. Study the layout until you can relate it to the schematic. You will see a space
in the middle for the AND/OR wordslices. Place the AND wordslice on the left and the
OR wordslice on the right.

The alu already has metal3 bitlines for a, b, andresult, and orresult in each of the 8
bitslices. It also has via2s conveniently located so that you can connect the inputs and
outputs of the and2_1x_8 and or2_1x_8 gates to the bitlines using vertical metal2 wires.
If you’ve placed your two wordslices properly, all you need to do is add six vertical
metal2 wires in each bitslice to connect the wordslices to the metal3. Even though a and
b might seem symmetric, be sure to connect the proper bitline to the proper input or LVS
will complain. If you add the six wires to the bottom bitslice, then use the copy
command to create 7 more rows of the same thing, you can do this with a minimum of
labor.

Verify the layout passes DRC and LVS.

VI. Datapath Assembly

Next, open the datapath schematic and layout. Study them and until you can identify
the parts and understand why the layout looks as it does. Compare the schematic to
Figure 1.53 of the textbook. Compare the datapath to the slice plan in Figure 1.68.
Observe how the datapath uses 8 horizontal metal3 tracks per bitslice for routing
(centered at 10, 20, …, 80 λ) corresponding to the 8 tracks shown in the slice plan.

The alu was already part of the datapath, so now that you have added the AND and OR
wordslices, the datapath should be complete. Make sure it passes DRC and LVS.

VII. Datapath Simulation

Our final goal is to simulate the datapath schematic and verify that it is correct. Because
generating a good set of test vectors for just the datapath would take a good deal of
thought, an easier strategy is to resimulate the entire chip with the datapath schematic
replacing the behavioral Verilog model of the datapath. If the entire chip works with the
schematic, then the datapath is likely correct.

Open the datapath schematic and generate a netlist in a new run directory such as
datapath_run1. Poke around the run directory. verilog.inpfiles contains a
list of all the modules involved in the datapath. Identify where the datapath schematic
has been netlisted (e.g. ihnl/cds41/netlist). Open this netlist in a text editor.

 7

Look at the structural Verilog that was produced by the netlister. Note the order of the
inputs and outputs in the module declaration.

Then copy mips.sv and memfile.dat from where you simulated them in the first
part of this lab. Our goal is to remove the versions of the datapath and its submodules
from mips.sv and replace them with the structural netlisted files.

Open mips.sv in a text editor. Comment out the modules from datapath through the
end of the file because we will be replacing them with the real datapath. Then look in the
mips module. It instantiates a controller and a datapath. We need to replace the datapath
instantiation with a new one that puts the ports in the correct order. An easy way to do
this is to comment out the old datapath instantiation. Copy the datapath module
declaration from the schematic netlist and paste it in, then comment it out as well. It will
server as a reference to get the order correct. Then type in a new datapath call that puts
the ports in the same order as they are expected in the netlist. Note that instr[5:0] must
be connected to funct and instr[31:26] must be connected to op to pass these fields to the
controller. When you are done, your mips module may look like the one below.

/* ORIGINAL datapath instantiation, wrong port order for netlist
 datapath dp(.ph1, .ph2, .reset, .memdata, .alusrca, .memtoreg, .iord, .pcen,
 .regwrite, .regdst, .pcsrc, .alusrcb, .irwrite, .alucontrol,
 .zero, .op, .funct, .adr, .writedata);*/

/* Datapath module declaration from ihnl/cds41/netlist

 module datapath (adr[7:0], instr[5:0], instr[31:26], writedata[7:0],
 zero, ALUControl[2:0], ALUSrcA, ALUSrcB[1:0], IRWrite[3:0], IorD,
 MemtoReg, PCEn, PCSrc[1:0], RegDst, RegWrite, memdata[7:0], ph1,
 ph2, reset);*/

/* New datapath instantiation with corrected port order */
 datapath dp(adr, funct, op, writedata, zero,
 alucontrol, alusrca, alusrcb, irwrite, iord, memtoreg,
 pcen, pcsrc, regdst, regwrite, memdata, ph1, ph2, reset);

Invoke the simulation with the following command:

sim-nc mips.sv –f verilog.inpfiles

mips.sv is the first file to read. The –f options asks NCVerilog to also load all the files
specified by verilog.inpfiles. If all goes well, you will get a “Simulation
completed successfully” message. If not, look for compilation errors and fix them (e.g. a
typo in your new datapath instantiation). If that doesn’t find the error, fire up sim-ncg,
add some key waveforms, and track down your error. It is often helpful to open two
simulations simultaneously, with one showing the expected results using the golden
behavioral Verilog module and the other showing the erroneous results with the actual
design.

 8

VIII. What to Turn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect your grade,

but will be helpful for calibrating the workload for the future.
2. A printout of your 8-bit AND wordslice schematic and layout.
3. A printout of your 8-bit OR wordslice schematic and layout.
4. A printout of your ALU schematic and layout
5. What is the verification status of your layout? Do and2_1x_8, or2_1x_8, alu, and

datapath all pass DRC and LVS? Does the datapath simulate correctly?

