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ABSTRACT 
This paper explores the question as to whether there is a 
relationship between a student's spatial abilities and her 
achievement in learning to program. After noting that there does 
seem to be a correlation, the paper explores the impact of trying to 
improve a student's spatial abilities. The paper reports on a 
preliminary study involving high school students. The study 
results suggest a correlation exists between receiving training in 
spatial skills and improved student performance in introductory 
computing. While the sample size in the study is small, this 
improvement appears to occur for students of different 
races/ethnicities and across different socio-economic statuses.  

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
Computer Science Education 

General Terms 
Measurement, Human Factors. 

Keywords 
Introductory computer science; spatial skills; training. 

1. INTRODUCTION 
Strong spatial skills are a predictor of success in many 
engineering disciplines [38, 29]. Spatial abilities have been linked 
to higher-level thinking, reasoning, and the creative process [1, 5, 
34, 38]. But it is not clear exactly why and how spatial abilities 
lead to success. In conversations with many leading engineering 
educators, we have heard that the engineers think that spatial 
abilities may be linked to students' abilities to think at different 
levels of abstraction, an essential skill for engineers (and 
computer scientists) to develop. 

Within engineering, studies have shown that women and those 
from low socio-economic status (SES) backgrounds have lower 
spatial abilities [4, 25], and, not surprisingly, are under-
represented in many engineering disciplines. Fortunately, a good 
deal of work has been done, and students can be taught how to 
improve their spatial skills, which has been linked to improved 
retention within many engineering majors.   

There have been several studies within computer science 
classrooms suggesting that there is a link between a student's 
spatial abilities and the student's ability to learn to program [11. 
21, 22, 46]. We designed an experiment to see if we could 
replicate the results from these other studies. Beyond that, if we 
could replicate the correlation between spatial and programming 
abilities, we wanted to see what would happen if we tried to 
improve students' spatial abilities: Would the students have 
greater programming success? 

We ran a pair of two-week summer workshops for rising twelfth 
grade students, targeting women and under-represented 
minorities. Would we see any cognitive or affective differences 
if we exposed one group to spatial skills training while not 
teaching spatial skills to the other group?  

 

2. RELATED WORK 
2.1 Spatial Skills Differences Between Sexes 
Hyde [20] performed a meta-analysis on studies of males and 
females that occurred prior to 1974. In identifying 30 studies, she 
notes small but statistically significant differences between the 
visual-spatial abilities of males and females. Linn and Peterson 
[27] performed a meta-analysis of studies occurring from 1974-
1982. They found large gender differences (with males scoring 
much higher) on measures of mental rotation. Many other studies 
note spatial abilities differences between males and females, with 
females having lower spatial abilities. While there is a difference 
of opinion between whether these differences appear prior to or 
after puberty (for example, Maccoby and Jacklin [28] provide 
evidence of differences appearing in adolescence while 
Newcombe et. al. [33] suggest male-female differences exist prior 
to adolescence), all of these studies do confirm these differences 
by the time students are adolescents. 

2.2 Spatial Skills in Different Disciplines 
Many researchers have tried to understand the extent to which 
differences in spatial abilities impact students across a range of 
STEM disciplines. Smith [38] conducted research in spatial 
visualization, identifying numerous careers for which spatial skills 
play an important role. Norman [34] found that a person’s spatial 
skill level was the most significant predictor of success in his/her 
ability to interact with and take advantage of the computer 
interface in performing database manipulations. Barke [1] found 
that well developed spatial skills are essential for understanding 
basic and structural chemistry. Sorby [41] found that a person’s 
spatial skills are related to his/her ability to effectively learn to use 
computer aided design software.  

Some people might argue that with the multitude of data 
visualizations available today, the need for well-developed spatial 
skills has diminished, letting the computer do the visualizing. 
However, Cohen and Hegarty [5] found an individual’s ability to 
manipulate/understand computer-based visualization of complex 
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phenomena is correlated with her spatial skill level. In other 
words, students with poorly developed spatial skills do not 
understand the visualizations and do not really learn from them.  

Gender and SES Differences in Spatial Skills: There is evidence 
to suggest that the 3-D spatial visualization skills of women lag 
significantly behind those of males. Theories for the cause of 
these differences include the belief that spatial ability is related to 
a male sex hormone [18], or that environmental factors are the 
primary reasons for male-female differences in spatial skill levels 
[8]. There are conflicting opinions as to whether differences on 
spatial performance between genders are linked to differences in 
mathematics performance. Tartre suggests that this may be the 
case [45], while Fennema and Sherman found that while there 
were few sex-related cognitive differences in mathematical 
abilities between males and females, there were differences in 
spatial visualization abilities between male and female students 
[9]. Fennema and Sherman’s observations were echoed by 
Lindberg et al. [26], who did a meta-analysis of studies involving 
a much larger student population. Gender differences in 3-D 
spatial skills are likely due to a combination of several factors.  

There has been little research on the differences in spatial abilities 
by race, but what has been done seems to confirm that there is a 
difference. Study [44] studied minority students at a historically 
black college. As part of her study on the impact of spatial skills 
training to improve retention, she noted that minority students' 
spatial skills were initially significantly behind those of students 
from a non-minority school.  

Levine et al [25] found that the spatial skills for students from low 
SES groups were significantly lower than the skills for students 
from middle or high SES groups. Furthermore, there were no 
gender differences for students in low-SES groups, but there were 
significant gender differences for students from middle and high 
SES groups. However, spatial skills for the low SES group males 
were significantly lower than those for the females from the 
middle and high SES groups. Casey et al [4] also found significant 
differences in spatial skills, favoring students from middle or high 
SES groups. In the US, as under-represented minorities make up a 
significant portion of the students from the low SES groups, 
poorly developed spatial skills for these students could have 
serious implications for broadening participation in STEM.  

There is a good deal of evidence to suggest that sketching 3-D 
objects is a significant factor in the development of these skills [2, 
10, 31, 39, 40]. Gimmestad (now Baartmans) [13] conducted a 
study at Michigan Technological University and found significant 
gender differences in spatial abilities as measured by the Purdue 
Spatial Visualization Test: Rotations (PSVT:R) [14]. She also 
found a person’s score on the PSVT:R was the most significant 
predictor of success in an engineering graphics course, of eleven 
variables tested. Design graphics courses are often among the first 
courses in which many first-year engineering students enroll. 
Students who have poorly developed spatial skills, particularly 
women, may become discouraged and drop out of engineering 
altogether if they struggle in their very first “engineering” course. 
In 1991, Baartmans [39] conducted a pilot study course for 
improving spatial skills. The results from her pilot study were 
promising and led to what has turned out to be a sustained journey 
in improving 3-D spatial skills for engineering students. In a 
longitudinal study conducted in 2000 [42], Sorby found that for 
students who initially demonstrated poorly developed spatial 
skills, enrollment in a spatial skills course improved student 
success in graphics courses by a half-letter grade (approximately 5 

points in a 100 point system), and improved retention in their 
engineering majors.  

2.3 Spatial Skills in Computing 
Several researchers have explored the relationship between spatial 
skills and student programming ability/success. Fincher et al. [11] 
ran a study with 177 participants from eleven post-secondary 
educational institutions in Australia, New Zealand, and Scotland. 
They found a "small positive correlation" between scores in a 
spatial visualization task and programming marks, though 
attributed programming success to higher IQ components rather 
than to spatial skills. Jones and Burnett [21] conducted a study 
with 24 participants from a Masters course in the UK. They found 
participants with high spatial abilities completed code 
comprehension exercises faster than those with lower spatial 
abilities, along with a strong relation "between spatial ability and 
results in programming modules." A later study of 49 students 
[22] found a correlation between mental rotation skills and 
programming success. Mayer et al. [30] found, running a study 
with 57 college students in a course in Basic, "success in learning 
Basic was related to general intellectual ability, especially logical 
reasoning and spatial ability." Fisher, Cox, and Zhao [12], in a 
study with 30 undergraduate and graduate students with 
experience in Java, found “programmers use equivalently risky 
strategies for program comprehension and spatial cognition.” 
Furthermore, they argued that “similar cognitive skills are used 
for spatial cognition and program comprehension/development.” 
Webb [46] ran a study with 35 students aged 11 and 14, and found 
“spatial ability was the best predictor of knowledge of basic 
commands; and a combination of spatial ability and field 
independence best predicted scores on generated graphics 
programs” after learning Logo for one week. 

It is important to note that while we were able to find several 
studies exploring the relationship between spatial and 
programming abilities (and providing evidence that a correlation 
exists), we were unable to find any studies where the researchers 
attempted to improve student spatial abilities as part of the study, 
as a means to hopefully improve programming ability. 

 

3. METHODOLOGY 

3.1 Procedure 
In this study, the target students were rising high school seniors 
who had minimal previous experience in computer science. 
(Rising high school seniors are those students about to enter 12th 
grade, the last year of secondary school. Most are 17 years old.) 
We have been working with several high schools in Oakland and 
San Jose, as well as throughout the San Francisco Bay Area. High 
school math and science teachers from select schools were invited 
to ask their strong math and science students to apply to spend 
two weeks in an introductory computing workshop at Stanford 
University. We ran two workshops consecutively in summer 
2014. The first workshop was the control group, and the second 
was the treatment group.  

Both groups met from 9 to 5 each day for two weeks. We covered 
approximately half of Stanford's introductory computing class (for 
majors). The first two days introduced programming using Alice, 
while the remaining days covered programming using Java. In 
addition to computing lectures and labs, each group had 3-4 
invited speakers from industry and academia visit (who spoke 
about different aspects of computing). Each day at lunch, 3-5 
college interns, recent alumni working in Silicon Valley, and/or 
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graduate students joined the high school students to discuss 
different computing career options. Each group had a field trip to 
a local technology company. 

To mitigate covariant factors, both groups were given a 45 minute 
activity that was separate from the daily planned lecture schedule. 
For the control group, each day began with a review of the 
previous day’s material led by one of the student teaching 
assistants for 45 minutes. These sessions consisted of group 
problem-solving exercises where the teaching assistant guided 
students through coding tasks targeting specific concepts. This is 
similar to what is done by Stanford's undergraduate teaching 
assistants in weekly sessions as part of Stanford's CS1 course. 

Similarly, for the treatment group, one of the student teaching 
assistants led a 45 minute presentation/activity on developing 
spatial skills. While the content presented was different for each 
group (computer science material vs. spatial skills material), the 
activity flow for both was the same. In particular, rather than 
working on computers, the activities, for both the control and 
treatment groups, involved presentations on a white board 
followed by pencil and paper exercises. The rest of the day for 
both groups was spent with short lectures and longer laboratory 
periods where the students worked individually and in pairs on 
various programming activities. 

Spatial skills: The spatial skills development sessions were held 
immediately after breakfast and before starting the day’s computer 
science lesson. During each session, the topic was presented with 
a slideshow. The 5-7 minute slideshow demonstration introduced 
the topic by defining terms and showing examples related to the 
topic. After the demonstration, students completed worksheets 
that included sketching, matching, and measuring. Students 
typically completed the exercises individually and confirmed 
answers with one another upon completion; a few students also 
assisted their tablemates (students were arranged in pairs, with a 
table holding three student pairs) in answering the more difficult 
worksheet questions. Students completed the majority of the 
exercises on the worksheets. Students used building blocks to 
assist in completing the worksheets. Often, students built physical 
models of the worksheets’ exercises using the blocks to sketch 
and measure from. These blocks were simple Lego-like cubes. At 
the end of each session, the workshop assistants collected all 
worksheets, pencils, and blocks. A researcher graded all 
worksheets immediately after the workshop ended. Graded 
worksheets were not returned to the participants. Students also 
completed Alice world exercises that taught double rotations and 
revolutions of objects. These exercises used animations of objects 
to further reinforce these more difficult topics.  

Spatial Skills Curriculum: The curriculum of the daily spatial 
skills training workshops was adapted from Sorby’s workbook 
[43] and curriculum. It focused on the teaching of mental 
rotations. Topics covered included: 

 Isometric drawings (2 days): These drawings depict a 3-D 
object on a 2-D sheet of paper. An isometric view is the view 
looking down a diagonal of a cube that is part of the object. 
 Orthographic drawings (1 day): These drawings depict “the 
faces of the object straight on or parallel to the viewing plane,” 
including top, side, and front views [43]. 
 Single and double rotations of objects (3 days): This 
transformation includes turning an object about a straight line, or 
axis of rotation. 
 Reflections and symmetry of objects (1 day): The reflection 
transformation happens when an object is reflected across an 

entire plane. An object is symmetrical if a plane can cut the object 
into two halves that are mirror images of each other. 
 Surfaces and solids of revolution (1 day): These shapes are 
“created by revolving a set of 2-D curves about a coordinate axis” 
[43]. 
Other topics included in this workbook but excluded from our 
curriculum include combining solid objects, inclined and curved 
surfaces, paper folding, cutting planes, and cross sections. These 
topics were excluded due primarily to time limitations. 

3.2 Data Measures 

3.2.1 Assessment Instruments 
Four instruments were used. The first instrument was a collection 
of demographic information about the students. The second 
instrument included eight Likert scale questions we created 
concerning student confidence towards learning computing as 
well as gender roles concerning computing. The Revised Purdue 
Spatial Visualization Test (Revised PSVT:R) [49] was used to 
assess the spatial skills ability of participants. This test measures 
the ability to complete mental rotations, a crucial indicator of 
spatial ability. The fourth instrument was an adapted version of 
the AP Computer Science Test administered in 2009 [6]. The AP 
tests are administered by the College Board, and most colleges in 
the US give college credit for high performance by high school 
students who are subsequently admitted to their college. It drew 
sixteen multiple choice questions from the official AP test.  

3.2.2 Data Collection 
All appropriate human subject procedures were followed in this 
study. Both the treatment and control groups completed the 
demographic instrument (as a pre-test), the attitudes instrument 
(as both a pre-test and as a post-test), the spatial skills instrument 
(as a pre- and post-test), and the AP CS test (as a pre- and post-
test). The pre-tests were given on the first day of the workshop. 
The post-tests were given on the last (tenth) day of the workshop. 
For the control group, we erroneously did not provide a time limit 
for the Revised PSVT:R exam. (Students should have been given 
20 minutes to complete the exam.) To be consistent, we did not 
provide a time limit for the treatment group. Most students took 
20-25 minutes to complete the spatial skills test. Likewise, we did 
not provide a time limit for completing the 16 AP CS multiple 
choice questions. Most students completed this exam within 20 
minutes. Students completed all instruments online. 

3.2.3 Data Analysis 
One of the challenges of this project was working with a small 
sample size (19 students per workshop, 38 students in total) due to 
the limitations imposed on our resources. A small sample size 
would be skewed by the presence of outliers, and could invalidate 
the assumption of a t-test that the variables are normally 
distributed. Thus, small sample sizes bring up the need for non-
parametric tests, which make no assumptions about the 
probability distributions of variables. 

Student’s t-tests were used to analyze the aggregate CS, spatial, 
and attitude data for each session, and non-parametric Mann-
Whitney and Kruskal-Wallis tests were used to analyze the 
categorical data, divided by socio-economic status (SES) and 
race/ethnicity. We did not divide students by gender; since the 
workshop was geared towards females, each session only had two 
males. While our sample size for each session (n=17 to 19) was 
relatively small, the Shapiro-Wilk normality test [37] showed that 
the aggregate datasets followed normal distributions at an alpha 
level of 0.01. When each session was further divided into SES and 
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SES students in the control group did not improve in their CS 
content knowledge as much as their higher SES counterparts by 
the end of the workshop; in fact, the lower SES students’ raw 
scores decreased slightly, which we attribute to random guessing. 
For the treatment group, however, low-SES students’ CS deltas 
were positive and large enough to create a non-significant 
difference in CS deltas between them and their higher SES peers. 
This meant that on average, there were not significant differences 
between the learning gains from lower SES students in the 
treatment group and their higher SES counterparts. For spatial 
deltas, there were no significant differences within either the 
control or treatment group. In the table below, we show the results 
of performing a Mann-Whitney U-test between the two 
categories. The mean scores are shown, and the mean ranks are 
shown in parentheses. The U-statistics, also shown, are used to 
compute the p-values. 

Table 4. Differences by SES 

Control Lower Middle + 
Upper 

U p

CS Δ -1.56 (5.5) 2.56 (13.5) 4.5 p<0.001

CS ID* Δ -0.78 (5.3) 3.00 (13.7) 3.0 p<0.001

Spatial Δ 1.20 (10.7) 0.56 (9.2) 38.0 0.28

Treatment Lower Middle + 
Upper 

U p

CS Δ 0.57 (8.4) 1.40 (9.5) 30.5 0.33

CS ID* Δ 0.57 (8.1) 1.09 (9.60) 29.0 0.28

Spatial Δ 2.38 (9.6) 2.82 (10.3) 41.0 0.40

 

This data analysis suggests that the spatial skills training helped 
the low-SES students, so that their CS knowledge gain was not 
distinguishable from the middle/high-SES students. In other 
words, in the group given spatial skills training, the lower SES 
students improved just as much as the higher SES students did in 
CS. This was not true in the control group, where there was a 
statistically significant distinction between the high-SES and low-
SES students in terms of improvement in CS. Coupled with the 
results in Table 3, which shows that there was a statistically 
significant CS learning gain for the treatment group, this suggests 
that spatial skills training benefitted students from all SES levels. 

4.3.2 Race/Ethnicity 
In the control group we found a significant difference in CS 
deltas, with Hispanic students having the lowest CS delta 
(p<0.01). Since a Kruskal-Wallis test does not say anything about 
where the difference occurs, in order to determine which pairs of 
groups differ, we performed a Mann-Whitney U-test and then 
used a Bonferroni correction. Running a Mann-Whitney U-test 
and then using a Bonferroni correction showed that the significant 
differences were between Hispanic and Asian/Caucasian students.  

But, in the treatment group, there was no significant difference. 
For spatial deltas, there was no significant difference within either 
the control or treatment group. We show the results of performing 
a Kruskal-Wallis test between the three categories, showing the 
mean scores, mean ranks in parentheses, and p-values. 

One interpretation of this data analysis suggests that the spatial 
skills training especially helped the Hispanic students, so that their 
CS knowledge gain was not distinguishable from the other 
students. An alternate interpretation is that Hispanic students did 
better at the same time that Asian and Caucasian students did 

comparatively (as compared to the control group) less well. At a 
minimum, a larger study seems warranted. 

Table 5. Deltas by race/ethnicity 

Control Hispanic African 
American 

Asian + 
Caucasian p 

CS Δ -1.63 (5.3) 0.33 (9.8) 3.00 (14.2) p<0.01

CS ID* Δ -0.88 (5.8) 0.00 (8.2) 2.86 (14.4) p<0.01

Spatial Δ 1.00 (10.2) 1.67 (11.7) 0.43 (9.0) 0.78

Treatment Hispanic African 
American 

Asian + 
Caucasian p 

CS Δ 1.20 (9.1) -0.67 (6.5) 1.56 (9.5) 0.62

CS ID* Δ 0.80 (8.7) 0.00 (7.0) 0.80 (9.2) 0.69

Spatial Δ 1.80 (8.9) 4.00 (12.5) 2.50 (8.7) 0.59

4.4 Attitudes 
Students rated their attitudes before and after the workshop on 
three categories: perceived programming experience, confidence 
in their ability to learn programming, and notions about gender 
performance in CS. Gains in perceived programming experience 
and confidence in their ability to learn programming were 
significant for both groups (p<0.05), which is not often the case 
for students receiving their first programming course [32]. In both 
control and treatment groups, students scored high (24.1 and 23.2 
out of 25, respectively) on notions about gender performance to 
begin with, so there was no significant change in gender scores. 

Lower SES students reported lower confidence before and after 
the workshop than middle and upper SES students in the treatment 
group. In the control group, lower SES students reported higher 
perceived programming skills at the end of the workshop 
(p<0.05). African American and Hispanic students reported higher 
perceived programming skills than Asian/Caucasian students at 
the end of the workshop in the treatment group (p<0.05). 

 

5. ANALYSIS AND CONCLUSION 
5.1 Student Learning 
Despite the fact that the treatment workshop contained less CS 
content (replacing the first 45 minutes of CS review with spatial 
skills training for eight of the ten days of the workshop), students 
in the treatment section did better on the CS instrument as well as 
performing better on the spatial skills instrument at the end of the 
workshop. The students also had greater gains with respect to 
their confidence and their perceived programming experience. 
Note that we are not claiming causation, but rather an interesting 
correlation. 

5.2 Covariant Factors/Issues 
Several other factors may have accounted for the changes that we 
saw. The first was that the instructors for the two workshops were 
different. It may be the case that the treatment instructor explained 
the material more clearly to the students. That said, the lead 
author of this paper taught the control section. He has nearly 20 
years teaching experience at the college level, and has taught 
more than 1000 high and middle school students as part of more 
than 20 previous outreach efforts. The instructor for the treatment 
group has been teaching undergraduates for two years. This was 
his first time teaching a high school student group. It would have 
been better to have the same instructor teach both groups, but 
there is a non-trivial physical toll taken teaching a summer 
workshop for two weeks, eight hours a day.  
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Another possible factor was that the demographics of the student 
groups varied across the two workshops. The control group 
consisted of more students from lower SES backgrounds, and had 
more African American and Hispanic students.  

Additional concerns lie in only using standardized tests as 
instruments of measure. Standardized tests may favor certain 
income or race/ethnicity groups while negatively impacting others 
due to a variety of factors including stereotype threat, difference 
in standardized testing experience and coaching, among others.   

We did not use a validated (or even a well-established) attitudes 
instrument, such as Hoegh [19] or Wiebe [48] or McKlin [16]. 
This was done because the validated instruments are longer, and 
we were worried about "survey overload." Using a validated 
instrument would have given us greater confidence regarding the 
student attitude results.  

We did not set a time limit on the PSVT:R exam. It is not clear to us 
what the impact of a 20 minute time limit would have had. 

Using the multiple choice section of the AP CS exam tested student 
ability to interpret and trace code, rather than the ability to write 
code. The focus of the workshop was on having the students learn to 
write code. As noted above (in section 4.1), we could have chosen 
one or two of the free response questions from the AP CS exam. 
Asking students to write a method or program would have more 
closely matched what we were asking them to do during the 
workshop. However, it would have been harder to fairly grade those 
students whose responses were not perfectly correct, as the sample 
AP CS rubrics (or any rubric we could have developed to grade the 
free response questions) would have been dependent on having 
multiple graders agree upon interpretations. And we were concerned 
about this given our small sample size. 

Hattie [17] conducted a meta-analysis of more than 800 studies. He 
found several factors that influenced student achievement in 
schools. These included the home (and in particular, the role parents 
play), the school environment including the classroom climate and 
peer influences, the teacher, the curriculum, and the pedagogy used. 
Any of these factors could be at play in our setting.  

There has been a good deal of study as to how student attitudes are 
related to their successes and lack of successes in STEM. For 
example, in her meta-analysis, Weinburgh [47] found significant 
differences in attitudes towards science, with males having a 
significantly more positive view of science than females. And 
Gunderson et al. [15] explored the role that adults play in trying to 
understand why females have more negative attitudes towards math 
than males. We did not see particularly interesting attitudes 
differences (as noted above in section 4.4). However, we did not 
study this possible covariant factor at depth. 

Finally, we administered all exams online. Due to our error, 
students were not provided with scratch paper. This would likely 
have been useful for the AP CS exam, to allow students to trace on 
paper the sample code they were reading.  

5.3 Concluding Remarks 
We have much to learn about how best to teach students to improve 
spatial skills, and how best to incorporate spatial skills training into 
existing curricula/courses. The results from our pilot study are 
positive. Our results indicate that it may be possible to improve 
spatial skills in a short amount of time, which can be promising for 
students with low spatial skills. We recommend further exploring 
the relationship between spatial skills and programming, and how 
best to teach spatial skills to improve student programming abilities. 
If results of our pilot study can be replicated and expanded upon by 

others, it would seem worthwhile to investigate why this 
relationship seems to exist, to better understand the nature of 
students learning to program and to develop their spatial abilities. 

One of the most important areas for improvement would be to 
acquire a larger sample size of students, which would allow for 
more robust statistical analyses and avoid some of the roadblocks 
that we encountered. We also intend, in future interventions, to use 
a free response question from a previous AP CS exam to measure 
student CS content knowledge. We believe a free response question 
will better reflect the content covered during the workshop, where 
the focus is more on code writing than code reading. 
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