
Making the Connection: Programming With Animated Small World

Wanda Dann
Computer Science Dept.

Ithaca College
Ithaca, NY 14850

wpdann@ithaca.edu

Stephen Cooper
Computer Science Dept.

Saint Joseph's
University

Philadelphia, PA 19131
scooper@sju.edu

Randy Pausch
Computer Science Dept.

Carnegie Mellon
University

Pittsburgh, PA 15213
pausch@cs.cmu.edu

Abstract
In learning to program, students must gain an
understanding of how their program works. They need to
make a connection between what they have written and
what the program actually does. Otherwise, students have
trouble figuring out what went wrong when things do not
work. One factor that contributes to making this
connection is an ability to visualize a program's state and
how it changes when the program is executed. In this
paper, w e present Alice, a 3-D interactive animation
environment. Alice provides a graphic visualization of a
program's state in an animated small world and thereby
supports the beginning programmer in learning to construct
and debug programs.

1 Introduction
Instructors of introductory programming classes are faced
with the challenge of helping students learn to design,
build, and debug computer programs. In a large class, the
challenge is often overwhelming, and teachers find
themselves questioning why some students experience such
a struggle in the process of learning to program. Many
factors may contribute to the situation. To say that some
students "do not know how to solve problems" is perhaps
too simplistic. Most students have likely achieved a certain
level of competency in mathematics and problem solving.
We contend that these students are not strong problem
solvers in the particular ways that are necessary for success
in computer programming. In this paper, we look at
visualization of program execution and program state as
fundamental concepts that are especially important for
learning to program. We propose using Alice, a 3-D
interactive animation environment, to help students
visualize program execution and program state.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ITiCSE 2000 7/00 Helsinki, Finland

2000 A C M 1 -58113 -207 -7 /00 /0007 . . . , $5 .00

Visualization of Execution and Program State: Soloway
[12] notes that the real difficulty for novice programmers
lies in "putting the pieces together", i.e. in figuring out
what constructs to use and how to coordinate those
constructs. We believe that beginning programmers not
only need to learn how to design an algorithm for solving a
problem but also how to translate the steps of the algorithm
into specific programming constructs. But, making the
connection between an algorithmic step and a specific
programming construct requires some concept of how the
computer executes that programming construct at runtime.

We have observed that many students have difficulty
visualizing the steps of the execution of a program, or the
current state at any given time. As a result, students have
trouble figuring out what went wrong when things do not
work. The source of confusion in building and debugging
programs, in all but the most trivial code, may be an
inadequate understanding of the program state during
program execution. The role played by an understanding
of the program state can be observed when students are
asked to draw labeled boxes in tracing a function. An
example is the swap function, commonly used to lay the
foundation for understanding array sorting, as illustrated in
Figure 1. We observed that calls to the swap function
become difficult for students to trace. As an aside, novice
programmers may stumble into the problem of interference
(when functions with reference parameters are incorrectly
invoked, see Reynolds [10]). Explaining the cause is
difficult without a firm notion of program state. Thus, we
argue that making the connection between steps in the
algorithm and specific programming constructs is, to a
significant exter~t, dependent on the student's notion of the
program's state/environment and how the state changes
when that program construct is executed.

As opposed to traditional, text-oriented programming
languages, a 3-D virtual world has the advantage that some
state (like object position and color) is intrinsic in the
"natural" way to view the data itself. Students see the state
and how it changes over time. Additionally, 3-D worlds,
are more realistic than their 2-D counterparts and seem to
encourage student exploration and curiosity in creating
variants of existing worlds and making novel worlds of
their own.

41

void swap (int& x,

{ int temp;

temp = x;

x = y;

y = temp;
}

int& y)

main

ary

i m

3

J 1

[0] [1] [2] [3] [4] [5]

swap
m !

I

temp ? x[
I

\

\
y I\1

Figure 1. Trace of swap(arylil,aryljl)

Related Work: A work that resembles Alice is LOGO,
created by Papert[8] at MIT. LOGO uses an egocentric
coordinate system and turtle graphics to provide a friendly
programming environment for children to learn about
geometry and related mathematical concepts. However,
Papert discovered two troubling concepts, for beginning
programmers using LOGO: variables and debugging.

Many programming language packages now include some
sort of debugging utility. Debuggers allow the programmer
to examine the program state (the values of the variables)
any time during the program's execution. But, novice
programmers tend to struggle with using debuggers. They
do not know where to set breakpoints or which variables to
examine. The debugger intrinsically adds a layer of
complexity, which can make things worse, not better.

GROK [5] was designed as a data visualizer to help
students more easily view their data transformation during
program execution. However, it is only designed to work
for Pascal programs and does not handle sophisticated data
structures (such as linked lists or records).
The use of animation to show program execution is not a
new idea [3,7,9]. Algorithm animation (e.g. XTANGO
[13], BALSA [4], and program visualization [7]) has been
developed with the idea of incorporating visualization into
the learning process. The instructor programs the algorithm
animation. The student just runs the program, observing the
animation of the algorithm when using different inputs.
Thus, algorithm animation packages generally do not help
students in the visualization of their own programs.

One of the most successful educational simulation software
packages has been Karel, The Robot [9]. Karel was used to
prepare students for success in learning Pascal. Students
were able to view the entire world (environment) of Karel,
and watch how the world changed as their programs
executed. Over the last decade, curricula for CS1 have
made a transition to C and then to object oriented
languages. In response, Karel has undergone several
updates, the latest being Karel++ [3]. Karel++ introduces
a C++ like syntax for the Karel robot along with a
significant level of code complexity over that required in
the original Karel.

Turing's World [2] and JFLAP[ll] , are both state
simulators used to demonstrate state and transitions in
finite automata and other abstract machines. Students can
easily watch the state change as their "programs" are run.
However, these packages are designed to demonstrate state
transitions for more advanced programmers, not for novice
programmers. Toontaik [6], is a 2-D virtual reality
package designed to introduce elementary students to the
world of computers.
We believe that Alice can be used to follow in the tradition
of LOGO and Karel. By using the 3-D, animated
environment students can create their own virtual worlds.
Alice allows students to view the state of their world as
their program executes.

2 What is Alice?
Alice98 (www.alice.org) is a 3-D Interactive Graphics
Programming Environment for Windows built by the Stage
3 Research Group at Carnegie Mellon University under the
direction of Randy Pausch. A goal of the Alice project is to
make it easy for novices to develop interesting 3-D graphic
animations. Alice98 is a full scripting and prototyping
environment for 3-D object behavior.

3-D models of objects (e.g., animals and vehicles) populate
a virtual world in Alice. Alice has an object oriented
flavor. By writing simple scripts, Alice users can control
object appearance and behavior. Each action is animated
smoothly over a specified duration. (This replaces the
traditional animation methodology, where the animator
prepares many frames and uses a frame animator to view a
succession of frames in rapid sequence.) Alice is built on
top of the Python language (www.python.org) and uses
many of Python's features.

Users interested in using Alice may download the free
program from www.alice.org. Users who would like
additional information may wish to look at the authors'
textbook (www.ithaca.edu/-wpdann/alice 1298).

3 Experiences with using Alice
We have used Al ice as an instructional tool for two
summer sessions at Ithaca College. High school students
were enrolled in a special Summer College program. Our
observations of students working with Alice are the basis of

42

many of the viewpoints presented in this paper. The true
success of our approach will not be fully known until these
students enter college and their performance can be
compared with students who did not work with Alice. A
first course in visual programming, using Alice, will be
offered next year at Ithaca College. Discussions have begun
about doing the same at St. Joseph's University.

4 An Introduction to State in Alice

While Alice was not originally designed as a teaching tool
for novice programmers, it serves this role quite
effectively. Its high visual content allows students to
immediately see how their animated programs run.
Perhaps one of the most valuable features of Alice is that
the animated virtual world is the program state. In other
words, the program's state is immediately and always
visible to the user. There are no variables, per se, in Alice.
The absence of variables in Alice follows in the SELF [14]
and ACTORS [1] model. The program's state is composed
of each of the objects that populate a virtual world, together
with information about those objects (such as the object's
position in the world, its orientation in the world, and its
color, parts, size, and child objects). The objects
themselves contain all state information generally needed.

When the programmer issues a command to cause an object
to move, she immediately sees the object move through the
virtual world. This visualizes the change in the object's
(and program's) state. The highly visual feedback allows
the student to relate the program "piece" (issuing a
command to change the state of an object) to the animation
action (in which the state change is displayed on screen).

Alice provides several built-in action commands that
change the state of an object. In general, actions can be
subdivided into two categories: those that tell an object to
perform a motion and those that change the physical nature
of an object. Motion commands include moving objects
within the world (e.g. Move, Turn, Roll, and PointAt).
Commands that change the physical nature of objects
include object destruction (e.g. Destroy), dynamic object
creation (e.g., AddOhject), object resizing (e.g. Resize),
and making objects visible/invisible (e.g. Hide and Show).
While it is beyond the scope of this paper to discuss all of
Alice's action commands (the commands listed above are a

Figure 2. Turning backwards

subset), we describe here two action commands to illustrate
details.

Turn: Turning is allowed in 4 directions: Forward, Back,
Right, and Left. In the Turn command, it is only necessary
to specify the object to be turned, the direction, and how
much it is to be turned. Figure 2 illustrates turning along
one of the rotational axes. Explaining the necessary
changes to the helicopter's rotational orientation is hard to
do. But as the student sees the helicopter turn backwards, it
becomes easy to see the change in state.

Resize: Resizing is done to allow an object to be made
larger or smaller (either the whole object, or just along 1
dimension. While it is difficult to describe the state changes
that occur as a result of resizing an object, the student can
see the object change size, and intuitively knows the state
must have changed.

Alice also provides passive commands that change the
state of an object. The most significant of these commands
are BecomeParentOf and BecomeChildOf. The result of
an object being a parent of another object is that when the
parent object moves or turns, so too does the child object.
The only immediate change that occurs after issuing such a
command is the object tree hierarchy change. However, as
soon as an action command is issued for the parent object,
the child object will move as well. This is different in that
(1) it is instant, not animated, and (2) it really is not a
visible change of state. It is detected later, when a side
effect of moving the parent is that child object also moves.

The net result is that the student does not have a difficult
time visualizing the internal state of her world. As more
complicated programming constructs are encountered, the
student is able to focus on learning and understanding the
concept without having to deal with variables and the
internal state of the program. With no variables, what she
sees is what her world really is!

Expanding the State - Allowing variables: Since the
objects do not, in general, track their own histories, it may
be helpful to use variables to track such information. While
there are no variables, per se, in Alice, there are two ways
to introduce variables. The first approach is by using
Python variables. Since Alice is constructed on top of
Python (www.python.org), it is perfectly legal to introduce
Python variables into an Alice program. In general, writing
Python code within an Alice program does not generate any
problems. We do not recommend this approach because we
view the lack of explicit variables in Alice as a desirable
property to maintain.

A second approach is to make use of the objects,
themselves. Each object has member methods that allow
the object itself to store and retrieve a value. This approach
can be used when widgets are introduced as part of event-
driven programming. It is often useful to track how many
times a button has been pressed or whether or not a
particular radio button has been selected.

43

5 Putting the Pieces Together
Alice provides mechanisms for decision statements,
repetition (including recursion), functions, and procedures.
As students progress, they learn new programming
constructs and how to put the pieces together. As examples,
we discuss the implementation of procedures and recursion.

Procedures (implemented as named instructions):
Instructions in Alice are often grouped together. A group
of instructions may be run either consecutively
(DoInOrder) or as simultaneous threads (DoTogether) or
as a combination of both. The programmer may give a
name to a group of commands. Named instructions behave
like procedures by performing side effects and not
returning a value. While in traditional programming
languages, it may not be clear why a group of statements
should be blocked into a function/procedure, in Alice it
makes intuitive sense. By collecting the 10-20 Move and
Turn instructions it takes to make a bunny hop and then
naming this entire sequence of instructions Hop, it becomes
clear to the student that

DolnOrder(
Hop, Hop)

causes the bunny to hop twice. Again, the absence of
variables (and not having to trace internal state) allows the
student to focus on visualizing the fimctionality of the
procedure construct. This lets the student see if her Hop
procedure makes a rabbit hop. While one could argue that
a similar Hop procedure could be written in Pascal or C,
the key difference is that visualization helps in making all
named instructions in Alice conceptually simple to write.

Recursion: Alice provides support for generalized
recursion through the SetAiarm command. While the
concept of recursion may seem quite alarming, it really
need not be.

clef Chase():
if Fish.DistanceTo(cat) > 2:

DolnOrder(
Fish.PointAt (cat),
Fish.Move (Forward, 1),
Alice.SelAlarm (2, do(Chase)))

This code checks whether the Fish is close enough to the
cat. If not, the Fish moves in the direction of the cat and the
alarm is set to repeat the whole process. Note that the time
must be set so that the alarm does not "go off" (and repeat
the whole process) until after 2 seconds. By default, each
instruction takes 1 second to run. So, 2 seconds are needed
before the function should be recursively called.
The key concept with respect to recursion is that the delay
makes the recursion temporarily visible. The motion must
be completed and the state must change before the
recursive call can be made again.

6 Conclusions
Alice provides a new instructional tool for learning
problem solving in the particular way used in

programming. The absence of variables, combined with
high visual content, provides a good environment for
helping students understand the state of their programs and
the state of their virtual worlds. Students were comfortable
populating their virtual worlds with objects, and in
invoking methods on those objects. Students were able to
watch what went wrong in their programs and easily debug
and correct them.

References

[1] Agha, G., ACTORS: ,4 Model of Concurrent
Computation in Distributed Systems, Cambridge, MA:
MIT Press, 1986.

[2] Barwise, J. and Etchemendy, J., Turing~ World 3.0,
Stanford, CA:CSLI Publications, 1993.

[3] Bergin, J., Stehlik, M., Roberts, J., and Pattis, R.,
Karel++, .4 Gentle Introduction to the Art of Object-
Oriented Programming. New York: Wiley, 1997.

[4] Brown, M.H., Algorithm Visualization. Cambridge,
MA: M.I.T. Press, 1988.

[5] Dann, W. Dynamic, Generic Visualization in a
Programming Language Environment. Ph.D. Thesis,
Syracuse University, 1997.

[6] Kahn, K., ToonTalk - An Animated Programming
Environment for Children, ~n Proceedings of the
National Educational Computing Conference, (June,
1995).

[7] Naps, T.L. Chair, Working Group on Visualization. An
Overview of visualization: its use and design, in
Proceedings of the Conference on Integrating
Technology into Computer Science Education.
Barcelona, Spain, (June 1996), 192-200.

[8] Papert, S., MindStorms: Children, Computers, and
Powerful Ideas. New York: Basic Books, 1980.

[9] Pattis, R., Karel the Robot. New York: Wiley, 1981.
[10] Reynolds,J.C., The Craft of Programming. Englewood

Cliffs, NJ: Prentice HaU International, 1981.
[11] Rodger, S.H. Integrating Animations Into Courses. in

Proceedings of the Conference on Integrating
Technology into Computer Science Education,
Barcelona, Spain (June 1996) 72-74.

[12] Soloway, E.M. Learning to Program = Learning to
Construct Mechanisms and Explanations.
Communications of the ,4CM, 29 (1986), 850-858.

[13] Stasko, J.T. Animating Algorithms with XTANGO.
SIGACTNews, 23 (1992), 67-71.

[14] Ungar, D. and Smith, J., SELF: The Power of
Simplicity, OOPSL,4 87, Conference Proceedings,
published as SIGPLAN Notices,22,12,(1987), 227-241.

Acknowledgement

Alice and the Stage3 Research Group are sponsored by
DARPA, NSF, Intel, Chevron, Advanced Network &
Services, Inc., Microsoft Research, PIXAR, and NASA.

44

