
Developing Algorithmic Thinking With Alice

Stephen Cooper
Computer Science Dept., Saint Joseph's University

Philadelphia, PA 19131 USA

Wanda Dann
Computer Science Dept., Ithaca College

Ithaca, NY 14850 USA

and

Randy Pausch
Computer Science Dept., Carnegie Mellon University

Pittsburgh, PA 15213 USA

Abstract

Rapid change in information technology motivates a corresponding evolution in our definition of computer literacy.
One recent movement is toward Fluency with Information Technology, a key-concepts approach to computer literacy
that includes algorithmic thinking. Algorithmic thinking is used to describe one methodology for solving problems. We
introduce Alice, a 3-dimensional animation tool. Alice is an emerging technology that provides a learning environment
that may be helpful in developing algorithmic thinking. We present our instructional experience with Alice and
demonstrate a possible use of Alice to support the development of algorithmic thinking.

Keywords: Algorithmic thinking, emerging technology, problem solving, Alice

1. INTRODUCTION

The rapid pace at which information technology evolves
is often a catalyst for change in our definition of
computer literacy. In consideration of this fact, the
influential National Research Council's (NRC)
Committee on Information Technology Literacy recently
called for an educational focus on Fluency with
Information Technology (FITness).(Fluent 1999) The
concept of FITness goes well beyond the conventional
curricula for computer literacy. FITness is advised as a
lifelong learning process for all Americans and thus
spans all levels of academic institutions. FITness
demands a basic understanding of fundamental concepts
of information technology and communication as well as
skill in problem solving. While the NRC claims FITness
is a universal need, FITness concepts are of particular
importance to Information Systems students.
Information technology and communication concepts

and skills form a foundation for later mastery of the
Information Systems curriculum. The NRC committee
recommends a pedagogical approach that incorporates
ten key information technology concepts. In this paper,
we concentrate on one of the primary concepts of
importance to Information Systems educators:
algorithmic thinking.

A problem often faced by information systems educators
is that many students entering their first programming
courses are not prepared to think algorithmically. In
their high school and previous college studies, students
are generally exposed to numeric computation.
However, they often are not sufficiently able to develop
a formal step-wise algorithm for solving a given
problem. Skills have not been adequately gained in areas
such as word problem solving in mathematics and the
formal specification of a problem. Students may not
have learned how to 1) state a problem clearly, 2) break
the problem down into a number of well-defined smaller

problems, and 3) devise a step-by-step solution to solve
each of the sub-tasks. These three steps are critical for
developing programs in both imperative and object-
oriented languages. These skills are crucial to ensure
the student’s success in a first programming class. In
this paper, we present a software tool that might be used
by information systems educators to provide a learning
environment for developing algorithmic thinking. We
present preliminary observations from a pilot program
that is still in its early stages. The working hypothesis
of the pilot project is that the software may be a useful
tool for supporting the learner in acquiring skills in
problem solving and algorithmic thinking. While our
early data is promising, a definitive analysis will take
time. A follow-up to this paper will present the
quantitative results of pre and post tests (e.g., SAT-9 and
PSSA exam scores), interviews, and other
measurements.

What is Algorithmic Thinking?
Algorithmic thinking is considered to be one of the key
information technology concepts that enable people to
become FIT. The members of the NRC committee
define algorithmic thinking. They state that the "…
general concepts of algorithmic thinking, [include]
functional decomposition, repetition (iteration and/or
recursion), basic data organizations (record, array, list),
generalization and parameterization, algorithm vs.
program, top-down design, and refinement. Note also
that some types of algorithmic thinking do not
necessarily require the use or understanding of
sophisticated mathematics." (Fluent 1999)

Previous Work
This paper presents Alice as a tool for supporting the
development of algorithmic learning for the beginning
programmer. The use of animation as a tool to assist
students with learning to program is not a new idea
(Brown 1988, Naps 1986, Shu 1988, Stasko 1998). For
example, Shu (Shu 1988) (a researcher in visualization)
considers programming to require both parts of the
brain, and focuses on the need to involve the artistic half
– expressing the need to involve pictures in the process.
van Dam, (van Dam 2000) another strong proponent of
visualization and visual tools in learning to program,
points out that “60% of our neurons are located in the
visual cortex.”(van Dam 2000) Attempts in algorithm
animation, e.g. XTANGO (Stasko 1992) and BALSA,
(Brown 1988) have been developed with the idea of
incorporating visualization into the learning process.
Most of these attempts have been targeted at CS1
students and at students in higher levels.

One of the most successful program simulation software
packages, used for program visualization, has been
Karel, The Robot (Pattis 1981). The Karel software has
been used as a gentle introduction to programming at
both high school and college levels for many years.
Karel is well-known for setting the stage, preparing
students for success in learning Pascal and in learning to

solve problems. Karel is a programmable software
robot. The robot executes a sequence of commands that
the user has written as part of a program, moving about
on a two-dimensional grid. As students attempt to have
Karel implement their algorithms, they see Karel carry
out their instructions on screen. There is a direct, and
easily observable, link between each instruction of the
student's algorithm and what the Karel robot does during
program execution. We believe that Alice can be used
to follow Karel’s tradition with a 3-D, animated
environment where students can create their own virtual
worlds.

Instructional Experience
We used Alice as an instructional tool for two summer
sessions at Ithaca College in a special Summer College
program. The goal of the course was to provide an
opportunity for students to learn the fundamental
concepts of problem solving. Our observations of
students working with Alice are the basis of viewpoints
presented in this paper. The authors’ textbook for
programming in Alice (a draft copy may be found at
www.ithaca.edu/wpdann/alice1298) is a reflection of
experiences gained from working with these students.
The true success of our approach will not be fully
known until these students enter college and their
performance in other problem solving classes (such as in
mathematics and in computer science) can be compared
with comparable students who did not work with Alice.
A first course in visual programming using Alice will be
offered in this upcoming fall semester at Ithaca College
for full time college students. Discussions have begun
about doing the same at Saint Joseph’s University.

What is Alice?
Alice (www.alice.org) is a 3D animation tool that
provides for the creation of interactive, animated 3D
worlds. Alice is a 3D Interactive Graphics Programming
Environment built by the Stage 3 Research Group at
Carnegie Mellon University under the direction of
Randy Pausch (Pausch 1995). The Alice application is
freely available and may be downloaded from the Alice
web site. The goal of the Alice project is to make it easy
to develop interesting 3D environments and to explore
the new medium of interactive 3D graphics.

Alice is primarily a scripting and prototyping
environment that allows the user to build virtual worlds
and write simple programs to animate objects (e.g.,
animals and vehicles) in those worlds. Objects in Alice
can move, spin, change color, make sounds, react to the
mouse and keyboard, and more. By writing simple
scripts, Alice users can control object appearance and
behavior. During script execution, objects may respond
to user input via mouse and keyboard. Each action is
animated smoothly over a specified duration. In the rest
of this paper, we will describe the Alice programming
environment, and then propose how Alice may also be
used to assist in supporting the development of
algorithmic thinking for novice programmers.

2. CREATING ANIMATIONS IN ALICE

Populating a Virtual World
An Alice animation begins with an opening scene,
created by populating a virtual world with objects.
Hundreds of pre-made 3D objects are available for
selection from the Alice archives. A 3D object can also
be constructed using third party commercial tools. The
latest version of Alice incorporates a 3D modeling
program, Teddy, built by Takeo Igarashi (Igarashi 1999)
at the University of Tokyo. Teddy allows the
programmer to create primitive 3D objects in a manner
as easy as using a 2D paint and drawing application.

 Figure 1. Alice Interface

Animation
Once the opening scene is set up, the next step is to plan
and write a program for animating interactions between
the objects and each other and between the objects and
the virtual world in which they reside. Alice defines an
assortment of built-in actions. In general, actions can be
subdivided into two categories: those that tell an object
to perform a motion and those that change the physical
nature of an object. Motion actions include moving
objects within the world (e.g. Move), rotating them
about their 3D axes (e.g. Turn and Roll), and pointing
at other objects (e.g. PointAt). Commands that change
the physical nature of objects include object destruction
(Destroy), dynamic object creation (e.g., AddObject),
object resizing (Resize), and making objects
visible/invisible (e.g. Hide and Show). While it is
beyond the scope of this paper to detail Alice’s actions
(the actions listed above are a subset), we will illustrate
some of the actions in the next section on developing
algorithmic thinking with Alice.

3. ALICE AS A TOOL FOR ALGORITHMIC
THINKING

As an illustration of using Alice to support the
development of algorithmic thinking, the following is a
sample lesson we have used with students in our classes.
Of note is the fact that this problem is used early in the
course and we use some trial and error as part of the
process of learning how to develop an algorithm. Our
first step is to clearly state the problem.

The problem: Imagine a world that looks something like
the one shown in Figure 2. In this animation, we want
the snowman to move forward to the stool. We try
several ideas in thinking through a solution to this
problem. It is important to help the student understand
that part of the problem solving process involves coming
up with an idea and trying it out. We are not
discouraged with failures…that is part of the learning
process. Once we have solved part of the problem, we
may get an idea of how to go about solving more of it.
Over time, our ideas gradually evolve to more complex,
more effective, methods of solving the problem.

The solution - approach 1: Since we do not know how
far away the snowman is, we can issue several
snowman.Move(forward) commands. The
snowman eventually runs into, and then through, the
stool, say after 5 snowman.Move(forward)
commands. The results are displayed in Figure 3.

Figure 2. Initial Scene for Sample Lesson

The snowman moves right through the stool, as if the
stool weren't even there! Having one figure move
through another and appear on the other side with no
damage is not considered good animation technique --
unless some special effect is desired in a ghost story.

So, what can be done? Well, the student can observe the
animation and note that the snowman should have
stopped after 4 moves. Then, a program can be written
as follows:

Figure 3. Snowman Intersects Stool

snowmove =
snowman.Move(forward, 1)
loop(snowmove, 4)

Running the program then produces the output shown in
Figure 4.

Figure 4. Snowman Meets Stool

As the students work with this problem, they realize that
others in the classroom are setting their loops to
different numbers of repetitions. The obvious reason is
that the distance the snowman is from the stool in the
opening scene effects the number of times the move
must be repeated. So, we consider what if the snowman
is only two units away from the stool? Or what if it is 27
units away?

The problem is refined: No matter how far the snowman
is from the stool, we want the snowman to move to the
stool and stop before intersecting the stool.

The solution - approach 2: At this point, Alice's
DistanceTo command is discussed in terms of returning
the distance (how far away) one object is from another,.
An algorithm is planned:

1. Issue the DistanceTo command to find
out the distance.

2. Loop the appropriate number of times to
move the snowman close to the stool.

The program code is entered and tested with the
snowman in various positions, facing the stool.

snowmove =
snowman.Move(Forward, 1)
loop(snowmove,
snowman.DistanceTo(stool) - 1)

We set up the loop so that it executes
snowman.DistanceTo(stool) -1 times,
because if we looped
snowman.DistanceTo(stool) times, the
snowman would run into the stool!

4. OBSERVATIONS

As stated in section 1, a definitive study is underway.
From our preliminary experimentation using Alice with
Novice programmers, however, we have a few
observations. In particular, Alice has several features
that make it suitable for new programmers.

Immediate feedback: Students are immediately able to
see how their animated programs run. Most
programming languages either require users to first
compile their programs, and/or require them to issue
some sort of output statement to see the results of their
programs. The highly visual feedback allows the student
to relate the program “piece” to the animation action.
We believe the immediate feedback may lead to an
understanding of the actual functioning of different
programming language constructs.

Enjoyment: The students we have observed found Alice
extremely fun to use. They enjoyed building 3D
animated worlds. They tended to spend significantly
more time than was expected (as part of the
assignments) in their efforts to build “realistic” animated
sequences. For example, in order to make a bunny hop
it is necessary to sequentially and simultaneously move
several different parts of the bunny's body. The more
time students spend in the animation, the more realistic
the animation becomes.

State: It is, in general, not necessary to use traditional
variables when writing programs in Alice. The only
objects (variables) are those objects with which the
students populate their worlds. Students can
immediately “see” the results of changing their objects
as the objects move around and interact with each other
in their worlds. Additionally, eliminating the use of
variables allows the students to spend more time
focussing on their comprehension of various
programming constructs.

Collaborative learning: We have found that students
work well within small groups as they attempt to design
and implement their animated worlds. Making a motion
appear realistic often requires input from several
students, and the projects developed in small teams have
been significantly stronger than those developed
individually. Students take pride in their work and send
copies of Alice worlds to friends via email, or post them
on the web.

Natural language: The Alice language is fairly similar
to English. All instructions have an object (noun), an
action (verb), and optional parameters (the adjectives
and adverbs). An instruction such as
Bunny.Move(Forward, 1, Duration=3) is fairly clear
as to its intention. Namely, that the Bunny should move
a distance of one unit in the forward direction, and that
the movement should take three seconds to complete.

Objects: Alice has a strong object-oriented flavor. We
did not teach students about object-oriented
programming or its concepts, per se. However, students
are exposed to such concepts as information hiding (they
do not know how the bunny is moved forward one unit,
just that it occurs as a result of their action statement).
They also see a form of inheritance (by making a bunny
a child of a horse, moving the horse results in the bunny
moving as well). Perhaps most significantly, objects and
the actions (methods) performed on them are the key
component to creating animations!

5. CONCLUSION

Alice is an easy to learn and use 3D development
environment that allows the user to build virtual worlds
and animate objects within those worlds. We believe
that building animations with Alice provides a natural
set of problems to solve and an environment that
supports teaching and developing algorithmic thinking
in solving those problems. It is too early to draw
conclusions on any carryover effect from using Alice
with novice programmers. Additional work and follow-
up data collection and analysis are on-going.

6. ACKNOWLEDGEMENT

Alice and the Stage3 Research Group are sponsored by
DARPA, NSF, Intel, Chevron, Advanced Network &
Services, Inc., Microsoft Research, PIXAR, and NASA.
The Stage 3 Research Group includes Steve Audia,
Dennis Cosgrove, Adam Fass, Andrew Faulring, Cliff
Forlines, Caitlin Kelleher, Shawn Lawson, Daniel
Maynes-Aminzade, Jeff Pierce, Dan Moskowitz, Jason
Pratt, Dave Stern-Gottfried, and Desney Tan.

7. REFERENCES

Fluent With Information Technology by the National
Research Council., National Academy Press. June
1999. Also available electronically at:
http://www.nap.edu/html/beingfluent/

Brown, M.H., Algorithm Visualization. Cambridge,
MA: M.I.T. Press, 1988.

Igarashi, T., Matsuoka, S., and Tanaka, H., “Teddy: a
sketching interface for 3D freeform design.”
Proceedings of the SIGGRAPH 1999 Annual
Conference on Computer Graphics, Los Angeles,
Ca., (August 1999) 409 - 416.

Naps, T.L. Chair, “Working Group on Visualization. An
Overview of Visualization: its Use and Design”. in
Proceedings of the Conference on Integrating
Technology into Computer Science Education.
Barcelona, Spain,(June 1996), 192-200.

Pattis, R., Karel the Robot. New York: John Wiley &
Sons, 1981.

Pausch, R., Burnette, T., Capeheart, A.C., Conway, M.,
Cosgrove, D., DeLine, R., Durbin, J., Gossweiler,
R., Koga, S., White, J., “Alice: Rapid Prototyping
System for Virtual Reality”. IEEE Computer
Graphics and Applications, May 1995.

Rodger, S.H. “Integrating Animations Into Courses”. in
Proceedings of the Conference on Integrating
Technology into Computer Science Education,
Barcelona, Spain (June 1996) 72-74.

Shu, N.C., Visual Programming. New York: Van
Nostrand Reinhold Co, 1988.

Stasko, J.T., Dominque, J., Brown, M. and Price, B.,
eds. Software Visualization, Programming as a
Multimedia Experience. Cambridge:MIT Press,
1998.

Stasko, J.T. “Animating Algorithms with XTANGO”.
SIGACT News, 23 (1992), 67-71.

vanDam, Andries. Exploratories: From Algorithm
Animations and Interactive Illustrations to
Explorable Microworlds. Keynote Address.
SIGCSE Technical Symposium, Austin, Texas.,
March 8-12, 2000.

