

Teaching Objects-first In Introductory Computer Science

Stephen Cooper*
Computer Science Dept.
Saint Joseph's University
Philadelphia, PA 19131
scooper@sju.edu

Wanda Dann*
Computer Science Dept.
Ithaca College
Ithaca, NY 14850
wpdann@ithaca.edu

Randy Pausch
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA 15213
pausch@cmu.edu

Abstract
An objects-first strategy for teaching introductory computer
science courses is receiving increased attention from CS
educators. In this paper, we discuss the challenge of the objects-
first strategy and present a new approach that attempts to meet this
challenge. The new approach is centered on the visualization of
objects and their behaviors using a 3D animation environment.
Statistical data as well as informal observations are summarized to
show evidence of student performance as a result of this approach.
A comparison is made of the pedagogical aspects of this new
approach with that of other relevant work.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education – Computer Science Education.

General Terms
Documentation, Design, Human Factors,

Keywords
Visualization, Animation, 3D, Objects-First, Pedagogy, CS1

1 Introduction
The ACM Computing Curricula 2001 (CC2001) report [8]
summarized four approaches to teaching introductory computer
science and recognized that the “programming-first” approach is
the most widely used approach in North America. The report
describes three implementation strategies for achieving a
programming-first approach: imperative-first, functional-first, and
objects-first. While the first two strategies have been utilized for
quite some time, it is the objects-first strategy that is presently
attracting much interest. Objects-first “emphasizes the principles
of object-oriented programming and design from the very
beginning…. [The strategy] begins immediately with the notions
of objects and inheritance….[and] then goes on to introduce more
traditional control structures, but always in the context of an
overarching focus on object-oriented design” [8, Chapter 7].
__
*This work was partially supported by NSF grant DUE-0126833

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE’03 February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002…$5.00.

The Challenge of Objects-first: The authors of CC2001 admit
that an objects-first strategy adds complexity to teaching and
learning introductory programming. Why is this so? The classic
instruction methodology for an introduction to programming is
to start with simple programs and gradually advance to complex
programming examples and projects. The classic approach allows
a somewhat gentle learning curve, providing time for the learner to
assimilate and build knowledge incrementally. An objects-first
strategy is intended to have students work immediately with
objects. This means students must dive right into classes and
objects, their encapsulation (public and private data, etc.) and
methods (the constructors, accessors, modifiers, helpers, etc.). All
this is in addition to mastering the usual concepts of types,
variables, values, and references, as well as with the often-
frustrating details of syntax. Now, add event-driven concepts to
support interactivity with GUIs! As argued by [11], learning to
program objects-first requires students grasp "many different
concepts, ideas, and skills…almost concurrently. Each of these
skills presents a different mental challenge."

The additional complexity of an objects-first strategy is
understood when considered in terms of the essential concepts to
be mastered. The functional-first strategy initially focuses on
functions, deferring a discussion of state until later. The
imperative-first strategy initially focuses on state, deferring a
discussion of functions until later. The objects-first strategy
requires an initial discussion of both state and functions. The
challenge of an objects-first strategy is to provide a way to help
novice programmers master both of these concepts at once.

2 Instructional Support Materials
In response to interest in an objects-first approach, several texts
and software tools have been published/developed that promote
this strategy (such as [1, 12]). Four recent software tools are
worthy of mention as using an objects-first approach: BlueJ [9],
Java Power Tools [11], Karel J. Robot [2], and various graphics
libraries. Interestingly, all these tools have a strong
visual/graphical component; to help the novice “see” what an
object actually is – to develop good intuitions about
objects/object-oriented programming.

BlueJ [9] provides an integrated environment in which
the user generally starts with a previously defined set of classes.
The project structure is presented graphically, in UML-like
fashion. The user can create objects and invoke methods on those
objects to illustrate their behavior. Java Power Tools (JPT) [11]
provides a comprehensive, interactive GUI, consisting of several
classes with which the student will work. Students interact with
the GUI, and learn about the behaviors of the GUI classes through
this interaction. Karel J. Robot [2] uses a microworld with a robot
to help students learn about objects. As in Karel [10], Robots are

added to a 2-D grid. Methods may be invoked on the robots to
move and turn them, and to have the robots handle beepers. Bruce
et al. [3] and Roberts [13] use graphics libraries in an object-first
approach. Here, there is some sort of canvas onto which objects
(e.g. 2-D shapes) are drawn. These objects may have methods
invoked on them and they react accordingly.

In the remainder of this paper, we present a new tactic
and software support for an objects-first strategy. The software
support for this new approach is a 3D animation tool. 3D
animation assists in providing stronger object visualization and a
flexible, meaningful context for helping students to “see” object-
oriented concepts. (A more detailed comparison of the above tools
with our approach is provided in a later section.)

3 Our Approach
Our motivation in researching and developing this new approach
is to meet the challenge of an objects-first approach. Our approach
meets the challenge by:

• Reducing the complexity of details that the novice
programmer must overcome

• Providing a design first approach to objects
• Visualizing objects in a meaningful context

In this approach, we use Alice, a 3D interactive, animation,
programming environment for building virtual worlds, designed
for novices. The Alice system, developed by a research group at
Carnegie Mellon under direction of one of the authors, is freely
available at www.alice.org. A brief description of the interface is
provided.

Figure 1. The Alice Interface

Alice provides an environment where students can use/modify 3D
objects and write programs to generate animations. A screen-
capture of the interface is shown in Figure 1. The interface
displays an object tree (upper left) of the objects in the current
world, the initial scene (upper center), a list of events in this world
(upper right), and a code editor (lower right). The overlapping
window tabs in the lower left allow for querying of properties,
dragging instructions into the code editor, and the use of sound.

Student Programs: A student adds 3D objects to a small
virtual world and arranges the position of each object in the world.
Each object encapsulates its own data (its private properties such
as height, width, and location) and has its own member methods.
While it is beyond the scope of this paper to discuss all the details,

a brief example is discussed below to illustrate some of the
principles. Interested readers may wish to read [4, 6, 7] for a more
complete description. Figure 2 contains an initial scene that
includes a frog (named kermit), a beetle (ladybug), a flower
(redFlower), and several other objects around a pond.

Figure 2. An initial scene in an Alice world

Once the virtual world is initialized, the program code is created
using a drag-and-drop smart editor. Using the mouse, an object is
mouse-clicked and dragged into the editor where drop-down
menus allow the student to select from primitive methods that
send a message to the object. A student can write his/her own
user-defined methods and functions, and these are automatically
added to the drop-down menus.

In this example, the task is for kermit to hop over to the
ladybug. The code is illustrated in Figure 3. It is interesting to note
that the built-in predicates (“Questions” in Alice-lingo) “is at least
m meters away from n”, “is within x meters of y”, and “is in front
of z” all return spacial information about the objects in question.
(Users may define their own, user-defined, questions, at both the
world-level as well as at the character-level.) The bigHop(number
n) and littleHop() methods are both character-level. In other
words, the basic frog class has been extended to create a frog that
knows how to make a small hop and how to hop over a large
object (receiving a parameter as to how high it must hop).

This example illustrates some important aspects of our
approach. The mechanism for generating code relies on visual
formatting rather than details of punctuation. The gain from this
no-type editing mechanism is a reduction in complexity. Students
are able to focus on the concepts of objects and encapsulation,
rather than dealing with the frustration of parentheses, commas,
and semicolons. We hasten to note that program structure is still
part of the visual display and the semantics of instructions are still
learned. A switch is used to display Java-like punctuation to
support a later transition to C++/Java syntax.

Three-dimensionality provides a sense of reality for
objects. In the 3D world, students may write methods from scratch
to make objects perform animated tasks. The animation task
provides a meaningful context for understanding classes, objects,
methods, and events.

Figure 3. The code to have kermit hop over to the ladybug

4 Observations
We have been teaching and researching this new objects-first
approach in an introduction to programming course for the past 3
years. One of the authors uses this approach in a ½ semester
course that students take concurrently with CS1. Another author
uses this approach as part of a course that students take before
CS1. While early quantitative results are discussed in the next
section, we present more informal observations in this section.

Strengths: We have seen that students develop:

• A strong sense of design. In our approach, we use
storyboarding and pseudocode to develop designs. This may be
influenced by the nature of our open-ended assignments.
However, we see students in later classes writing down their
thoughts about an assignment on paper first, before going to the
computer.

• A contextualization for objects, classes, and object-oriented
programming. We believe that this is one of the big “wins” for
our approach. Everything in the student’s virtual world is an
object! Exercises and lab projects set up scenes where objects
fly, hop, swim, and interact in highly imaginative movie-like
simulations and games.

• An appreciation of trial and error. Students learn to "try
out" individual animation instructions as well as their user-
defined methods. Each animation instruction causes a visible
change in the animation. Students learn to relate individual
instructions, and methods to the animated action on the screen
[7]. This direct relationship can be used to support development
of debugging skills.

• An incremental construction approach, both for character
(class)-level as well as world-level methods. Students do not
write the whole program first. They program incrementally,
one method at a time, testing out each piece.

• A firm sense of objects. The strong visual environment
helps here.

• Good intuitions concerning encapsulation. Some state
information can be modified by invoking methods on an object.
For example, an object's position can be changed by invoking a
move method. But the actual spatial coordinates that represent
the object's position cannot be directly accessed.

• The concept of methods as a means of requesting an object
to do something. The way to make an object perform a task is
to send the object a message.

• A strong sense of inheritance, as students write code to
create more powerful classes.

• An ability to collaborate. Students work on building the
characters individually and then combine them to build virtual
worlds and animations in group projects.

• An understanding of Boolean types. Students are
prevented, by the smart-editor, from dragging incorrect data-
type expressions into if statements and loops, for example.

• A sense of the program state. This is of particular
importance, as mentioned earlier in this paper. This topic is
discussed at length in [7].

• An intuitive sense of behaviors and event-driven
programming.

One other observation is that it is possible to have students
either create their programs from scratch or to build virtual worlds
with characters which already have many specialized methods pre-
defined. This latter case allows students to experiment with
modifying existing classes/programs.

Weakness: A strength of our approach is also a source of
weakness. Students do not develop a detailed sense of syntax,
even with the C++/Java syntax switch turned on, as they only drag
the statements/expressions into the code window. They do not get
the opportunity to experience such errors as mismatched braces,
missing semicolons, etc. Our experience with students making the
transition from Alice to C++/ Java is that students quickly master
the syntax.

5 Results
Table 1 illustrates the results of students at Ithaca College and
Saint Joseph’s University who took a course using our proposed
approach during the 2001-2002 school year. The weakest 21 CS
majors (defined as those CS students who were not ready for
calculus and who had no previous programming experience) were
invited to take a course using our approach, either concurrent with,
or preliminary to CS1. 11 of the 21 students took the course,

while 10 did not. (Some students who did not take the course had
scheduling conflicts.)

Statistics All Test Control
Students 49 11 10
Mean 2.49 2.8 1.3
Median 2.75 3 1.25
Variance 1.62 0.75 1.22

Table 1: Students taking Alice, 2001-2002

The results show that the 11 students who took the Alice-based
course did better in CS1 than the total group, and significantly
better than the 10 students who were of a similar background. Not
only did the control group perform better in CS1, the lower
variance indicates that a smaller percentage of those students
performed poorly in CS1. Perhaps the most telling statistic is the
percentage of students who continued on to CS2, the next
computer science class. 65% of all the students who took CS1
continued on to CS2. Of the students in the test group (who took
our course with Alice), 91% continued on to CS2. Only 10% of
the control group enrolled in CS2. A larger group of students is
being studied (in much more detail) this current (2002-2003)
academic year, as part of an NSF supported study.

The authors have a textbook (to be published by
Prentice-Hall for Fall 2003). An early draft is available at
www.ithaca.edu/wpdann/alice2002/alicebook.html The URL for
the solutions is available by contacting the authors. And, a set of
lecture notes and sample virtual worlds is available at:
http://www.sju.edu/~scooper/fall02csc1301/alice.html

6 Comparison with other tools
In this section we explore what we consider to be our relative
strengths and weaknesses as compared to other object-first tools
mentioned earlier. It is important to note that, as we have not seen
studies detailing actual effectiveness of many of the other tools,
we are hesitant to state too strongly the degree to which we think
such tools do or do not work.

Events: JPT makes heavy use of GUIs, and both JPT and Bruce’s
ObjectDraw library rely on event-driven programming. Kölling
and Rosenberg [9] state that building GUIs is “very time
intensive”, and argue that the GUI code is an “example that has
very idiosyncratic characteristics that are not common to OO in
general.” Culwin [5] argues “the design of an effective GUI
requires a wider range of skills than those of software
implementation…. Even if an optimal interface is not sought at
this stage it must be emphasized to students…that there is much
more to the construction of a GUI than the collecting together of a
few widgets and placing it in front of the user.” While we might
not go as far as these criticisms, it is clear that event handling does
add a layer of complexity. In our approach, the use of events is
optional and is accomplished through the use of several powerful
primitives. This makes the presentation of events and event
handling quite simple. We disagree with the statement “it is not
possible to do Objects-first” without also doing GUI First!”[11],
as both our approach and some of the graphics libraries do
accomplish an object-first approach without the use of a GUI
(though adding events generally makes virtual worlds much more
fun for the students).

Modifying existing code: BlueJ and JPT depend on starting
with programs that consist of previously written code. Bruce is
concerned “these approaches will leave students feeling they have
no understanding of how to write complete programs.” The BlueJ
and JPT authors maintain that, due to complexity of object-
oriented design, it is favorable for novices to start with
partially/completely developed projects and to modify them. Our
approach allows the instructor to choose to use partially developed
programs in introductory worlds. But, we generally have students
build virtual worlds from scratch.

Use of the tool throughout the CS1 course: Each of these
tools, with the exception of Karel J. Robot, is (or at least seems to
be) capable of being used throughout the CS1 course. We have
designed lecture materials to be used as an initial introduction to
object-oriented programming, occupying the first 3-6 weeks of a
CS1 course. It would be possible to intersperse the teaching of
Alice with the teaching of, say, Java, throughout the semester.

Complexity of syntax: The use of graphics libraries is likely
the most complex approach. Even though libraries are provided,
students still must write Java/C++ programs from scratch,
mastering a non-trivial amount of syntax (regardless whether they
understand the semantics of what they are writing). Then they
need to understand the particulars of the graphics library. Karel J.
Robot has a fair bit of Java that needs to be mastered before being
able to write a program. The BlueJ and JPT approaches are
somewhat simpler, as students only modify existing code. Yet, it
is still necessary to write correct Java code, and certain errors
(such as missing brackets or trying to place code in the wrong
location, or invoking a method with a bad parameter) can lead to
errors in the code provided to the student -- and the student may
not know how to start debugging code that he/she did not write.

Concurrency: As Culwin writes [5], “if an early introduction of
GUIs is advocated within an object first approach, the importance
of concurrency cannot be avoided.” Alice supports concurrency,
providing primitives for performing actions simultaneously.

Examples: This is a challenge for all objects-first approaches.
Developing a large collection of examples (whether to be used as
instructional aids, assignments or exam questions) is a time-
consuming task that must be solved if these tools, together with
their associated approach are to be successful. One product of our
research efforts is a resource of examples, exercises, and projects
with solutions. It does need to be made larger, which we are doing
each semester.

7 Conclusions
The authors strongly believe that, as long as object-oriented
languages are the popular language of choice in CS1, the objects-
first approach is the best way to help students master the
complexities of object-oriented programming. We believe that
other tools mentioned here are quite useful in teaching objects-
first. (We have used most of them ourselves.) We have been
particularly impressed with the results we have seen so far with
the approach we have presented here – we have been able to
significantly reduce the attrition of our most at-risk majors. The
current NSF study will examine the effectiveness of our proposed
approach in greater detail, and with larger numbers of students.
Additionally, we hope to gain feedback from some of the
additional institutions that are using our materials and our
approach.

References
[1] Arnow, D. and Weiss, G. Introduction to programming

using Java: an object-oriented approach, Java 2 update.
Addison-Wesley, 2001.

[2] Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. Karel
J. Robot a gentle introduction to the art of object
oriented programming in Java. Unpublished
manuscript, available [August 31, 2002] from:
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++Java
Edition.html

 [3] Bruce, K., Danyluk, A., & Murtagh, T. A library to
support a graphics-based object-first approach to CS 1.
In Proceedings of the 32nd SIGCSE technical
symposium on Computer Science Education (Charlotte,
North Carolina, February, 2001), 6-10.

[4] Cooper, S., Dann, W., & Pausch, R. Using animated 3d
graphics to prepare novices for CS1. Computer Science
Education Journal, to appear.

[5] Culwin, F. Object imperatives! In Proceedings of the
30th SIGCSE technical symposium on Computer
Science Education (New Orleans, Louisiana, March,
1999), 31-36.

[6] Dann, W., Cooper, S., & Pausch, R. Using visualization
to teach novices recursion. In Proceedings of the 6th
annual conference on Innovation and Technology in
Computer Science Education (Canterbury, England,
June, 2001), 109-112.

[7] Dann, W., Cooper, S., & Pausch, R. Making the
connection: programming with animated small worlds.
In Proceedings of the 5th annual conference on
Innovation and Technology in Computer Science
Education (Helsinki, Finland, July, 2000), 41-44.

[8] Joint Task Force on Computing Curricula. Computing
Curricula 2001 Computer Science. Journal of
Educational Resources in Computing (JERIC), 1 (3es),
Fall 2001.

[9] Kölling, M. & Rosenberg, J., Guidelines for teaching
object orientation with Java. In Proceedings of the 6th
annual conference on Innovation and Technology in
Computer Science Education (Canterbury, England,
June, 2001), 33-36.

[10] Pattis, R., Roberts, J, & Stehlik, M. Karel the robot: a
gentle introduction to the art of programming, 2nd
Edition. John Wiley & Sons, 1994.

[11] Proulx, V., Raab, R., & Rasala, R. Objects from the
beginning – with GUIs. In Proceedings of the 7th
annual conference on Innovation and Technology in
Computer Science Education (Århus, Denmark, June,
2002), 65-69.

[12] Riley, D. The object of Java: Bluej edition. Addison-
Wesley, 2002.

[13] Roberts, E. & Picard, A. Designing a Java graphics
library for CS1. In Proceedings of the 3rd annual
conference on Innovation and Technology in Computer
Science Education (Dublin, Ireland, July, 1998), 213-
218.

	Randy Pausch
	1 Introduction
	The Challenge of Objects-first: The authors of CC2001 admit that an objects-first strategy adds complexity to teaching and learning introductory programming. Why is this so? The classic instruction methodology for an introduction to programming is
	2 Instructional Support Materials
	
	
	
	
	3 Our Approach

	Figure 1. The Alice Interface
	Figure 2. An initial scene in an Alice world
	F
	Figure 3. The code to have kermit hop over to the ladybug
	5 Results

	Statistics
	
	
	6 Comparison with other tools

	7 Conclusions
	References

