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Abstract

In Constraint Processing, no single consistency algorithm always
outperforms all others, but the problem type and characteristics often
determine the most appropriate algorithm. Our goal is to understand
and determine what problem features lead to better performance of
one algorithm over another. As a first step in that direction, we utilize
an algorithm configurator to set the parameters of a random problem
generator. The configurator is set to maximize the ratio between the
execution times of two particular algorithms for computing the min-
imal constraints. Experimentally, we generated instances that ran
1000 times faster for one algorithm over the other. The parameters
returned by the configurator give insight into what makes one algo-
rithm outperform the other.
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1 Introduction

Constraint Processing is an expressive and powerful framework for modeling
and solving constrained combinatorial problems. Solving a Constraint Sat-
isfaction Problem (CSP) is in general NP-complete, and it is often solved
through search and/or constraint propagation. Many search strategies and
propagation algorithms exist, each with their strengths and effectiveness. An
important research direction is the selection of the appropriate algorithms to
employ in solving a given problem instance. As a step in that direction, we
consider the inverse question: we investigate what problems are particularly
suited to the strengths of a given algorithm. By investigating what type of
problems an algorithm performs best on, we may improve our abilities to
select the right algorithm for in the appropriate context.

In this paper, we demonstrate the utility of algorithm configuration in
the random generation of CSP instances. By taking a suitably parameter-
ized random CSP generator, we use an algorithm configurator to tune the
parameters such that a given algorithm performs favorably on the generated
instance. With this technique we generated instances that run over 1000
times faster on one algorithm than another. We also see what parameters
are responsible for this performance difference.

This paper is organized as follows. Section 2 discusses background of
CSPs and algorithm configuration. Section 3 details the consistency algo-
rithms used in this paper. Section 4 explains the method used to configure
the CSP generator. Section 5 describes our experimental setup and Sec-
tion 6 analyzes our results. Finally, in Section 7 we conclude and give ideas
for future research.

2 Background

A Constraints Satisfaction Problem (CSP) is defined by a set of variables,
their respective domains, and a set of constraints over the variables restrict-
ing the combinations of values that can be assigned to the variables at the
same time. A solution to a CSP assigns all variables a value from their re-
spective domains such that no constraint is violated. Determining whether a
solution exists is in general NP-complete. A constraint is defined by its scope
and relation. The scope of a constraint is the set of variables that it covers.
The arity of a constraint is the cardinality of its scope. The relation is a set

3



of tuples of domain values from variables in the scope. These tuples specify
the allowed combinations of domain values (i.e., supports). The tightness of
a constraint is the ratio of forbidden tuples (i.e., conflicts) to all possible tu-
ples. As tightness increases, the problem becomes more constrained and the
number of solutions decreases. As constraint tightness decreases, the prob-
lem becomes under-constrained and the number of solutions increases. At
either extreme, the problems are relatively easy to solve. Difficult problems
are found at the phase transition located between over and under-constrained
problems [Cheeseman et al., 1991]. In that region, it is not immediately ap-
parent when a solution is at hand, and the cost of problem solving sharply
increases.

A local consistency property guarantees that the values of all combina-
tions of a given number of CSP variables (alternatively, the tuples of all
combinations of a given size of relations) are consistent with the constraints
that apply to them. This condition is necessary but not sufficient for the
values (or the tuples) to appear in a solution to the CSP. A propagation al-
gorithm, which enforces a given consistency property, typically proceeds by
deleting inconsistent domain values (or relation tuples). Some consistency
properties are stronger than others. The corresponding algorithms result
in greater amounts of pruning, often at the expense of an increased cost.
Strategies for selecting the right property to enforce in a given context and
the most appropriate algorithm for the chosen property are at the center of
active research [Chmeiss and Sais, 2004; Epstein et al., 2005; Régin, 2005;
Stergiou, 2009; Balafrej et al., 2013].

Algorithm configuration is an optimization technique used to improve the
performance of a target algorithm on a particular set of instances by tun-
ing the algorithm’s input parameters. Algorithm configuration is typically
used to reduce the runtime of the target algorithm, and it can also be used
to improve the algorithm’s solution quality. Various configuration strategies
are used to build configurations, including racing procedures [Birattari et al.,
2002], local search [Hutter et al., 2009], and model-based optimization [Hut-
ter et al., 2011]. Algorithm configuration is most effective when as much as
possible of the internals of the algorithm are exposed as parameters, increas-
ing the flexibility of the configuration. This approach is particularly useful
in that it allows for detailed automated exploration of the parameter space.
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3 Consistency Algorithms Considered

The two algorithms considered in our configuration are PerTuple and All-
Sol [Karakashian et al., 2010; 2012; Karakashian, 2013]. Both algorithms
enforce constraint minimality, which guarantees that every tuple in every re-
lation can be extended to a full solution to the CSP [Montanari, 1974], Fig-
ure 1. The importance of minimality was established for knowledge compila-
tion [Gottlob, 2012] and achieving higher levels of consistency [Karakashian
et al., 2013]. In particular, we are interested in applying AllSol and PerTuple
locally to the clusters of a tree decomposition [Geschwender et al., 2013].

∀ m-1 relations 

..… 
∀	  tuple	  

∀	  rela)on	  

Figure 1: Minimality: every tuple in every relation extends to a full solution

PerTuple loops over all tuples of every relation of the CSP. For each tuple,
it performs a backtrack search to find the first solution in which the tuple
appears. If no solution is found involving the tuple, the tuple is removed
from the relation. If a solution is found, all tuples involved in the solution are
saved. PerTuple terminates after having removed or saved every tuple. The
number of search processes executed by PerTuple is linear in the total number
of tuples in the relations. Intuitively, PerTuple should perform well when each
search can be quickly completed, that is, instances that are small or instances
that are large but located away from the phase transition. In contrast, AllSol
executes a single backtrack search to enumerate all the solutions. For every
solution identified, the involved tuples are saved. AllSol terminates after
exploring the entire search tree. Tuples not appearing in a solution are
removed. AllSol only performs a single but exhaustive backtrack search.
Thus, AllSol should outperform PerTuple in large problems that are around
or above the phase transition where most of the search space is explored
anyway. The situations is depicted in Figures 2 and 3. The backtrack search
utilized by both AllSol and PerTuple operates on the dual CSP and uses
both forward checking and dynamic variable ordering.
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Figure 2: PerTuple performs a new
solution search for every tuple

Figure 3: AllSol performs a single
exhaustive solution search

The performance of the two algorithms vary widely in practice: Indeed,
one algorithm may finish reasonably fast while the other fails to terminate
in a given time threshold. This performance difference makes the algorithms
ideal candidates for our configuration experiment. We previously explored a
portfolio approach to automatically choose one of the two algorithms based
on problem features [Geschwender et al., 2013]. While we achieved some
success, we found a flagrant imbalance in our test cases: PerTuple was dis-
proportionately over-represented in our tests on benchmark instances. By
configuring a random CSP generator, we are able to specifically generate
instances that significantly favor AllSol over PerTuple.

4 Configuration of RBGenerator

We use an algorithm configurator that guides a random CSP generator in
order to generate instances on which we execute PerTuple and AllSol to test
their performances. After comparing their performances on the generated
instances, the configurator selects new parameters for the CSP generator in
order to influence the performances. Figure 4 shows the various components
of the configuration system.

4.1 RBGenerator

We use the random CSP generator RBGenerator [Xu et al., 2007]. This
generator is based on the model RB, which allows for easy generation of
hard satisfiable instances at the phase transition. RBGenerator uses the
following parameters:

1. k ≥ 2 denotes the arity of the constraints

6



Result 
Input 

parameters 

SMAC: Sequential Model-based Algorithm Configuration  

User-Defined Algorithm Wrapper 

RBGenerator 
Random  

seed 

Random 
CSP  

instance 

AllSol 

PerTuple 

log10(
AllSol time

PerTuple time
)

User-Defined Parameter Space Parameter Space Response Model 

Instance 
list 

Figure 4: Operation of the configurator

2. n denotes the number of variables

3. α determines the domain size d = nα of each variable

4. r determines the number m = r · n · ln(n) of constraints

5. δ determines the constraint tightness, t = pcr+
δ

1000
, where pcr = 1−e−αr

is the location of the phase transition

6. forced indicates whether or not instances are forced satisfiable

7. merged indicates whether or not constraints of similar scopes are joined

A strength of the RBGenerator is that it guarantees an asymptotic phase
transition under certain parameter conditions. When an asymptotic phase
transition exists, the threshold can be exactly determined. In addition, the
parameters it provides give a lot of flexibility to the configuration process.
Adjusting the arity through k allows some control over the structure of the
constraints. The impact of problem size can be determined by indepen-
dently manipulating the parameters for variables (n) and domain size (α).
Constrainedness of the problem can be controlled by the parameters r and
δ. While r is fairly straightforward in controlling the number of constraints,
δ is particularly useful in that it allows control over the problem’s position
in relation to the phase transition. It can specifically create problems at
the transition, or push above or below by a given amount. forced is useful
in that it allows a guarantee that even highly constrained problems have at
least a single solution. merged allows for consolidation of the constraints if
there is overlap.
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4.2 Sequential Model-based Algorithm Configuration

To tune the parameters fed into RBGenerator, we use of the algorithm con-
figurator SMAC (Sequential Model-based Algorithm Configuration) [Hutter
et al., 2011]. We give SMAC a description of the input parameters and ac-
ceptable ranges for them as well as a default parameter configuration. We
also give it a list of instances to use for configuration. In this case, the list of
instances is a set of 30 random seeds for the RBGenerator. Finally, we give
SMAC a custom algorithm wrapper that handles the execution of RBGen-
erator, PerTuple, and AllSol. SMAC takes an initial default configuration,
performs an algorithm execution, and determines its performance based on
the wrapper output. Then, it iteratively repeats the process, selecting new
configurations and evaluating them. Internally, SMAC maintains a continu-
ally developing regression model of the parameter space. This model is based
around a random forest classifier. New configurations are selected using the
regression model and attempt to balance exploration and exploitation. The
parameter exploration is also tied to the random seed that is provided to
SMAC on launch.

4.3 Algorithm Wrapper

The algorithm wrapper encapsulates several programs to be run together.
Initially, RBGenerator runs with the parameters provided by SMAC, which
generates a CSP instance on which the two consistency algorithms for enforc-
ing minimality are executed. The execution times of PerTuple and AllSol are
recorded. These values are compared by taking the base-10 logarithm of their
ratio. The numerator and denominator of the ratio determines which algo-
rithm is being optimized for. Taking the logarithm ensures that equal weights
are given to fractional values when the results are averaged in SMAC’s model.

5 Experiment Setup

In our experiments, we evaluate how well SMAC is able to generate instances
that favor a given algorithm. To this end, we test two cases: those where
SMAC is allowed to adjust all parameters (denoted adjustable size), and
where SMAC has a restricted set of parameters (denoted fixed size). For
the restricted set of parameters, we fix n to 16 and α to 1, i.e. 16 variables
each with a domain size of 16. Thus we only allow SMAC to control the
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constraints and not the size of the CSP. Table 1 lists the parameter ranges
and defaults that were used on both tests. For both fixed and adjustable, we
generate instances favoring PerTuple and instances favoring AllSol (for a total
of four tests). Each test is performed with ten different configuration runs,
each with a different SMAC configuration seed. This results in ten different
paths through the parameter space and a better picture of the effects of the
configuration.

Table 1: Parameter ranges and defaults
Adjustable Size Fixed Size

Parameter Range Default Parameter Range Default

k [2,10] 3 k [2,10] 3
n [2,20] 10 n [16,16] 16
α [0.1,10.0] 1.0 α [1.0,1.0] 1.0
r [0.1,10.0] 1.0 r [0.1,10.0] 1.0
δ [-1000,1000] 10 δ [-1000,1000] 10

forced {y,n} n forced {y,n} n
merged {y,n} n merged {y,n} n

During the course of one configuration run, RBGenerator will generate
numerous instances, SMAC will iteratively build a regression model of the
parameter space, and the parameters will be fine-tuned. Initially, all runs
will begin with the default parameter settings. The configuration seed affects
where the parameters will go next. With each new set of parameters, up to 30
new instances, each with a different instance seeds, are built by RBGenerator
and tested. After each set of runs, SMAC’s regression model integrates the
new results and selects a new parameter configuration that is expected to do
well.

In some cases, the parameters selected may be invalid and cause a crash.
For example, certain values of α, r, and δ in combination may be invalid
because they result in tightness above one or below zero. Crashed runs are
ignored and new parameter values are selected.

To prevent the algorithm wrapper from stalling during configuration, we
set time limits on its components. RBGenerator is allowed to run for five
minute to generate a CSP instance. PerTuple and AllSol are allowed to run
for 20 minutes each while they enforce minimality on the CSP. If RBGener-
ator exceeds its time limit, the entire run is considered crashed. If PerTuple
and AllSol exceed their time limit, their runtime is reported as 20 minutes.
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Restricting the time limit allows for comparison between runs that terminate
and those that do not.

SMAC is allowed to run configuration runs for four days. After that
point, it takes the best configuration and validates the results by running on
all 30 RBGenerator instance seeds.

We run all our tests on a computer cluster of 7232 Intel Xeon cores in 452
nodes. Each configuration run was allocated a single core of an Intel Xeon
E5-2670 2.60GHz processors and given 3 GB memory.

6 Results

In all four cases, the configurator is able to find parameter settings that cause
the desired algorithm to significantly outperform the other. Table 2 shows
the results of the configuration in each of the four tests, across all ten seeds.
The column iters. reports the number of iterations of SMAC before stopping
(four days). The seven parameters are listed in the next columns. The

tightness, calculated by 1− e−α
r + δ

1000
, is given in next column. Consistent

indicates whether or not the instances had solutions. Speedup indicates
how many times one algorithm runs faster than the other (running time of
slower algorithm over that of faster algorithm). The reported speedup for
each configuration seed is the average speedup across 30 different instances
generated with 30 different instance seeds. We also provide the coefficient of
variation (CoV), which is the ratio of the standard deviation to the mean.
A CoV value of less than 50% indicates that the variance across instance
seeds is low. Consequently, the results are more dependent on the parameter
configuration than on the random variation between the 30 instances.

The maximum speedup found is bolded for each of the four tests. All four
tests realize a speedup of at least 100 times, enough to definitively show there
are classes of problems heavily suited to either algorithms. However, when
configuring for PerTuple, we achieve speedups of over 1000 times. This fact
may indicate that PerTuple has a stronger affinity for a particular problem
class than AllSol. It is also worth noting that the fixed and adjustable prob-
lem size causes little change in the achieved speedup. Adjustable problem
size parameters allow discovery of only marginally better configurations.

Note that some of the configuration seeds led to configurations with no
speedup (indicated by ‘n/a’), either because of crashes or timeouts. This lack
of progress is the result of particular seeds yielding flawed initial parameters.
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By continuing to select parameters causing crashes and timeouts, SMAC has
no useful data on which to build its model. On those seeds, SMAC continues
to blindly select new parameters that cause crashes and timeouts.

Figures 5 and 6 show the improvements over the course of the configura-
tion. Configuring for AllSol tends to see smaller improvements being made,
while PerTuple makes fewer, large improvements. AllSol configuration also
tends to find improvements early on. In all cases, there is significant variation
between seeds. However, configuration runs of AllSol with fixed problem size
all converge by the end.

The parameter settings obtained by the configuration processes give in-
sight into what problems each algorithm works well on. Two parameters in
particular seem correlated with the algorithm speedups: r and δ. When con-
figuring for AllSol, r is set at an average of around eight (8) and δ is a large
positive value around 600. For PerTuple, r is generally lower, around three
(3), and δ a large negative value around -200. There are exceptions to this,
such as adjustable-PerTuple-7 or fixed-PerTuple-15, but those exceptions are
almost all poor speedups or crashed runs.

Figure 7 shows the effect of both r and δ on the performance of the
algorithms. The data shown here includes the intermediate configurations
tested on the way to the final configurations. Figure 8 shows the combined
effect of the parameters.

All of the AllSol configurations of fixed problem size end up with ex-
tremely similar parameter configurations as was hinted at by the convergence
of their speedups. By restricting the parameters, fewer paths through the pa-
rameter space provide viable speedups. Thus, the configuration runs tended
to converge.

The r parameter sets the number of constraints while δ influences the
number of allowed tuples for constraints. Thus, a configuration with a small
r and negative δ yields significantly under-constrained problems, while a con-
figuration with a large value of r and positive δ produces a highly constrained
problem. Not only are we able to produce problems favoring both algorithms,
we can also determine what makes them ‘favorable.’

For real-world problems, the phase transition is not explicitly defined and
not all constraints are necessarily of uniform tightness. However, the kappa
parameter, introduced by Gent et al., is a measure of the constrainedness of a
problem and can approximate the phase transition [1996]. Thus our findings
have applicability to real-world instances.
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Figure 7: Effects of r and δ

Figure 8: Combined effects of r and δ
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7 Conclusions & Future Work

In our work, we have confirmed that pockets of CSPs exist that favor both
PerTuple and AllSol. We have also identified the parameters leading to this
situation and generated such problems. The parameter settings important
to this algorithm choice are the parameters that control the number and
tightness of constraints. Highly constrained problems favor AllSol and under-
constrained problems favor PerTuple, consistent with our intuitions of the
algorithms.

Our use of algorithm configuration for the understanding of the perfor-
mance of consistency algorithms is at an early stage but shows great promise.
An obvious research direction is to apply this approach to other consistency
algorithms to ensure it generalizes. Any two algorithms for enforcing the
same consistency (e.g., AC3.1 and AC4) could be dropped into this frame-
work to identify a niche of problems where one excelled over the other. It
would also be possible to compare algorithms for enforcing different consis-
tencies. This task is accomplished by running the propagation algorithm
followed by search and comparing the total time. Making use of a CSP
generator with a greater number of parameters may also prove interesting.
RBGenerator provides a sufficient number for this task, but having even more
parameters provides even more flexibility to the configurator. Finally, this
work has application to algorithm selection for CSPs by providing insight
into what features of a problem cause one algorithm to outperform another.
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