
Selecting the Appropriate Consistency Algorithm for CSPs
Using Machine Learning Classifiers

Daniel J. Geschwender, Shant Karakashian, Robert J. Woodward,
Berthe Y. Choueiry, Stephen D. Scott

Computer Science and Engineering, University of Nebraska-Lincoln, USA
{dgeschwe|shantk|rwoodwar|choueiry|sscott}@cse.unl.edu

Abstract

Computing the minimal network of a Constraint Satis-
faction Problem (CSP) is a useful and difficult task. Two
algorithms, PerTuple and AllSol, were proposed to this
end. The performances of these algorithms vary with the
problem instance. We use Machine Learning techniques
to build a classifier that predicts which of the two algo-
rithms is likely to be more effective.

Introduction
Constraint Processing is a flexible paradigm for modeling
and solving constrained combinatorial problems. A Con-
straint Satisfaction Problem (CSP) is defined by a set of
variables, their respective domains, and a set of constraints
over the variables. The constraints are relations, sets of tu-
ples, over the domains of the variables, restricting the al-
lowed combinations of values for variables. To solve a CSP,
all variables must be assigned values from their respective
domains such that all constraints are satisfied. A CSP can
have one, several, or no solutions. Determining if a CSP has
a solution is NP-complete in general. A significant portion
of the research on CSPs is devoted to consistency properties
and algorithms for enforcing them. The long-term goal of
our research is to design strategies for automatically choos-
ing the right level of consistency to enforce in a given context
and the appropriate algorithm for enforcing the chosen con-
sistency level. One such important consistency property is
constraint minimality, which guarantees that every tuple in a
constraint definition appears in a solution to the CSP (Mon-
tanari 1974). This property was shown to be important for
knowledge compilation (Gottlob 2012) and achieving higher
consistency levels (Karakashian, Woodward, and Choueiry
2013). Karakashian et al. proposed two algorithms, PerTuple
and AllSol, for computing the minimal network (2012). The
performances of the two algorithms widely vary depending
on the problem instance. We propose to use a classifier to se-
lect the appropriate algorithm to use given a set of problem
features (Xu et al. 2008). In this paper, we describe building
classifiers using three different learning algorithms trained
under different conditions and summarize our experimental
results, establishing the usefulness of our approach.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Computing the Minimal Constraint Network
In a minimal CSP, every tuple must appear in a solution to
the CSP. We consider two algorithms to this end: PerTu-
ple and AllSol (Karakashian et al. 2010; 2012). PerTuple
operates by iterating through every tuple of every relation
to extend this tuple to a consistent solution using backtrack
search. If a solution is found, all the tuples in the solution are
kept; otherwise, the original tuple is removed. PerTuple ter-
minates when every tuple has been checked. PerTuple may
execute as many searches as there are tuples in the problem.
In contrast, AllSol performs a single backtrack search, find-
ing all solutions in the problem. For every solution found, all
involved tuples are saved. AllSol terminates when the entire
search tree has been explored. When solutions are plentiful,
finding a first solution is easy and PerTuple quickly termi-
nates. In contrast, AllSol gets bogged down enumerating all
solutions. When solutions are sparse, both algorithms termi-
nate quickly by pruning much of the search tree. However,
around the phase transition (Cheeseman, Kanefsky, and Tay-
lor 1991), there are many “almost” solutions and backtrack
search is costly. Therefore, PerTuple’s multiple searches put
it at a disadvantage to AllSol’s single search.

Building a Classifier
Our CSP instances were taken from benchmarks from the
2008 CSP Solver Competition. Each benchmark has a set of
instances of similar structure. Each CSP from each bench-
mark is broken down into clusters using CSP tree decom-
position. Each cluster is a subproblem that is treated as
an independent CSP instance. This decomposition is per-
formed because it corresponds to the intended use of the two
algorithms (Karakashian, Woodward, and Choueiry 2013).
We ran both AllSol and PerTuple on every subproblem and
recorded their run times. For each CSP instance, we also
measured the values of 12 features assessing various as-
pects of the instance pertinent to the task (Karakashian et
al. 2012). Examples include: κ (predicts the phase transition
(Gent et al. 1996)), relLinkage (measures how likely a tuple
at the overlap of two relations is to appear in a solution), and
relPerVar (measures constrainedness). We build the input to
the learning algorithm from this data. We used three algo-
rithms from the Weka machine learning suite:1 J48, Multi-

1www.cs.waikato.ac.nz/ml/weka

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

1611

layerPerceptron, and NaiveBayes, chosen for their diversity.
We studied four setup strategies: a) considering the original
dataset; b) ignoring instances where the runtime difference
of AllSol and PerTuple is within 100 ms; c) weighing each
instance in the dataset with the runtime difference; and d) us-
ing a cost matrix (Xu et al. 2011).

Experiments
Our data was collected from five sets of benchmark prob-
lems (aim50, aim100, aim200, modRenault, and ware-
houses) with a total of 3592 data instances. AllSol outper-
formed PerTuple on 1130 instances and PerTuple outper-
formed AllSol on 2462. The average AllSol execution time
on all instances was 4928 ms with a standard deviation of
238499 ms. For PerTuple, the values were 699 ms and 1000
ms, respectively. Within the considered dataset, PerTuple
is generally fast and consistent while AllSol’s performance
varied by several minutes between instances.

First, we ran each individual benchmark and the com-
bined dataset through the three Weka algorithms to generate
classifiers, using 10-fold cross validation. Classifiers were
evaluated based on their weighted average F-measure. For
the combined data set, J48 achieved a .726 F-measure, Mul-
tilayerPerceptron was .726, and NaiveBayes was .728. Re-
sults varied between individual benchmarks, from a .463 F-
measure on the aim50 benchmark to .993 on warehouses.

We ran the second experiment on the combined dataset,
see Table 1. In an attempt to improve the classifier, we ig-
nored all instances where the runtimes of the two algorithms
differed by less than 100 ms. The F-measure of J48 in-
creased to .917. Next, instead of ignoring the instances with
a time difference of less than 100 ms, we put those instances
into a third class (see 3 classes in Table 1). Here, J48 reached
.936 F-measure. However, this value is misleading because
of the large size of this new class. Further, it is easy to clas-
sify properly but is almost meaningless as it will result in
no significant time savings. The classes we care about are
AllSol and PerTuple, for which the F-measure was .501.

Table 1: Weighted avg. F-measure of the three algorithms.
J48 MP NB

All instances .726 .726 .728
δt ≥100ms .917 .880 .900
3 classes .936 .941 .871
PerTuple+AllSol .501 .547 .433

Ignoring the data instances with small runtime differences
helped to emphasize the more important data instances. To
further emphasize the most meaningful data instances, we
considered weighted datasets (third experiment) and cost-
sensitive modifications (fourth experiment) to the J48 clas-
sifier. In both experiments, we considered the complete
datasets classified into two classes (AllSol and PerTuple). In
the third experiment, each instance was given a weight equal
to the difference in execution times of the algorithms. There-
fore, an instance with a difference of 100000 ms is given
proportionally more importance than an instance with a dif-
ference of 10 ms. In the fourth experiment, we created a cost
matrix for cost-sensitive classification. A correct classifica-

tion costs 0. On our data set, classifying an AllSol instance
as a PerTuple instance yielded an average time loss of 59
ms, whereas the converse yielded 6196 ms.

Table 2: Performance of J48 on four strategies.
Strategy F-measure Time saved Time lost

% ms ms
All instances .727 99.87% 15,301,950 19,350
δt ≥100ms .729 99.90% 15,306,510 14,790
Weighted .743 99.96% 15,314,980 6,320
Cost .557 99.57% 15,255,190 66,110

The resulting F-measures for J48 are shown in Table 2.
The accuracy on the weighted set gives the percent of po-
tential time savings that was actually obtained. While not
achieving perfect F-measures, all four classifiers saved over
99% of the time possible to save. All the significant in-
stances were properly classified, only the more trivial in-
stances were incorrect. The classifier trained on the weighted
dataset marginally achieved the best F-measure and time
savings. The classifier trained with the cost matrix had the
worst performance. Indeed, the cost matrix takes into ac-
count the average cost of a misclassification, however, the
standard deviation of the execution time is so high that the
average is not particularly relevant. We conclude that J48
with the weighted dataset seems to be the most promising.

Conclusion and Future Work
Using the wrong algorithm to compute the minimal network
of a CSP can be a costly error. We use machine learning
techniques to predict the ‘better’ algorithm to apply, and em-
pirically show that our approach is feasible and promising.
Our goal is to use the classifier dynamically during search
to select the appropriate algorithm, and, beyond minimality,
the most advantageous consistency property to enforce.
Acknowledgments: Supported by NSF Grant No. RI-111795. Ex-
periments conducted at UNL’s Holland Computing Center.

References
Cheeseman, P.; Kanefsky, B.; and Taylor, W. 1991. Where the
Really Hard Problems Are. In Proc. IJCAI 91, 331–337.
Gent, I.; MacIntyre, E.; Prosser, P.; and Walsh, T. 1996. The Con-
strainedness of Search. In Proc. of AAAI 96, 246–252.
Gottlob, G. 2012. On Minimal Constraint Networks. Artificial
Intelligence 191-192(0):42 – 60.
Karakashian, S.; Woodward, R.; Reeson, C.; Choueiry, B. Y.; and
Bessiere, C. 2010. A First Practical Algorithm for High Levels of
Relational Consistency. In Proc. of AAAI 10, 101–107.
Karakashian, S.; Woodward, R. J.; Choueiry, B. Y.; and Scott, S. D.
2012. Algorithms for the Minimal Network of a CSP and a Classi-
fier for Choosing Between Them. TR-UNL-CSE-2012-0007.
Karakashian, S.; Woodward, R.; and Choueiry, B. Y. 2013. Im-
proving the Performance of Consistency Algorithms by Localizing
and Bolstering Propagation in a Tree Decomposition. In Proc. of
AAAI 2013, 8 pages.
Montanari, U. 1974. Networks of Constraints: Fundamental Prop-
erties and Applications to Picture Processing. Information sciences
7:95–132.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2008. Satzilla:
portfolio-based algorithm selection for sat. JAIR 32(1):565–606.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011.
Hydra-MIP: Automated Algorithm Configuration and Selection for
Mixed Integer Programming. In RCRA Workshop 2011, 16–30.

1612

