
From Control to Scheduling: An Elastic Execution
Model

Madhur Behl, Willy Bernal, Truong Nghiem, Miroslav Pajic and Rahul Mangharam
Dept. of Electrical and Systems Engineering

University of Pennsylvania
{mbehl, willyg, nghiem, pajic, rahulm}@seas.upenn.edu

Abstract—We present an elastic execution model for scheduling
control systems while maintaining an acceptable level of service.
Scheduling allows for coordination, composition and optimization
across multiple interacting and non-interacting control systems.
Unlike traditional real-time scheduling theory, where the execu-
tion time, and hence the schedule, are a function of the system
variables only, elastic execution time models found in Cyber-
Physical Systems are a function of the physical variables and
the dynamics of the system that is being controlled. A task-set is
constructed by extracting the temporal parameters of a system
from its dynamics. We then provide the conditions for feasibility,
optimality and admissibility for a set of tasks. One application
will be to implement an ‘energy-router’, which coordinates the
electrical demand from multiple control systems to minimize the
peak-to-average ratio of energy consumption in buildings. Our
work is a step towards developing scheduling theory for cyber-
physical systems.

I. INTRODUCTION

Cyber Physical Systems (CPS) are the next generation of
real-time and embedded systems where control, communica-
tion and computation are tightly coupled with the underlying
physical substrates. CPS operate within the constraints of their
environment and must maintain safety and efficacy of the
physical processes. In traditional, computing system-centric
real-time systems, a set of tasks are scheduled to use the
available resources efficiently while ensuring critical tasks
always meet their deadlines. We now ask the question: Can
traditional scheduling algorithms and task models be extended
to Cyber-Physical Systems? If so, then how well does the
system perform within the context of its environment? In CPS,
in addition to the computing and communication constraints,
the timeliness requirements of the tasks are a function of the
physical process dynamics and the operating environment.

There is a fundamental difference between how traditional
real-time theory treats timing constraints of a system and the
timings restrictions that exist in a cyber physical system. In
traditional real-time scheduling theory, the concept of periods,
release times, execution time and deadlines of tasks is well
specified as system-centric functional and timing requirements.
Often some of these parameters are assumed to be fixed while
carrying out a feasibility analysis of a given set of tasks. For
instance, many scheduling algorithms for scheduling periodic
and aperiodic tasks assume an upper bound on the execution
time of a task. This can be estimated using a worst-case

execution time analysis, among other techniques. Thus, given
an upper bound on the execution time of a task, one can
derive the demand-bound function for the task set, prove the
schedulability of the task set and provide an admission control
policy such that all tasks meet their deadlines.

In a cyber physical system, the execution time is a function
of the system dynamics and the environment. Not only do
the control and scheduling decisions influence the physi-
cal parameters of the system but the physical parameters
can also influence the scheduling parameters. The fact that
scheduling parameters are no longer determined by system
specifications alone, suggests that we cannot use traditional
real time scheduling algorithms to schedule such systems. Our
goal is to explore alternate task execution models to better
address generic CPS scheduling problems. To illustrate the
models, we later focus on the problem of coordinating multiple
energy sinks in a building to provide for a more energy-
efficient operation with a minimal peak-to-average ratio. In
order to achieve this goal we define task models and the set
of conditions for which this class of cyber physical systems
is schedulable.

The elastic execution should not be confused with elastic
scheduling, in which task utilization can be changed by
varying the period of the tasks. In our model, the execution
time is a function of the response time and initial conditions
of the control task, which further might be a function of more
physical parameters such as human occupancy, weather and
the price of energy.

The goal is to develop an ‘energy-router’ for buildings
to provide a switching schedule for the HVAC (Heating,
Ventilation and Air Conditioning) and refrigeration systems
in a building based on their current states. The energy-
router models the building as a hierarchy of control loops
and implements an elastic execution scheduling model that
optimizes user comfort and reduces the Peak to Average
Ratio (PAR) of energy consumed. The US Department of
Energy (DoE) estimates that 73% of the electricity usage is
consumed by commercial buildings and residential housing
[1]. HVAC systems account for 50% of the total energy budget
in buildings [2]. Energy pricing is based on peak demand as
there is no way to efficiently store and buffer energy. Thus
spikes in energy demand can lead to brownouts and unstability
across the power grid.



Figure 1. Different stages involved from going towards scheduling from
control systems

For example, consider a residential building, whose occu-
pants are watching live coverage of the Superbowl from their
homes. During commercial breaks, a large number of viewers
will tend to open their refrigerators to grab a beverage. On
doing so, the compressor of the refrigerator kicks in and causes
a small spike in the power consumption of that house. But if a
large number of residents do the same thing, these small spikes
accumulate and cause a considerably large voltage spike for
the particular building. Considering that hundreds of thousand
of viewers are watching the game in a city and millions across
the nation,this often leads to a huge spike in the voltage level
for a short duration. In this duration, the power companies
need to meet the massive demand in order to prevent an
brownout. The correlation between human behavior and the
environment can easily drive an uncoordinated system towards
instability.

In general, given a set of control loops that control a system
or a process, our goal is to find a schedule for the controllers
such that we always operate within the acceptable region of
performance while minimizing resources consumed by the
system. This idea is depicted in Fig. 1, where the first step
is to form a state-time profile for the system being controlled,
as shown in Fig. 1(a). The temporal parameters are extracted
from the profiles to form a set of tasks (Fig. 1(b)). For a
given set of tasks, we check conditions for schedulability and
if the task set is schedulable then we form a feasible schedule
using some scheduling policy (Fig. 1(c)). Lastly, as shown in
Fig. 1(d), we execute our scheduling algorithm using a finite
horizon dynamic programming or predictive algorithms while

minimizing a resource/performance parameter.
The rest of the paper is structured in the following manner.

In Section 2, we formulate how temporal parameters can be
extracted from the systems dynamics. We provide the analysis
for the linear case in Section 3. Section 4 describes the
application of the elastic execution model to optimize energy
consumption for a building. Section 5 concludes this initial
work with a roadmap of our future work.

II. TASK MODEL

In order to create a schedule for the dynamic systems that
are being controlled, we first abstract the timing requirements
of multiple control systems as a set of tasks. The temporal
parameters of a task can be extracted from the state-time
profile of the system being controlled. In this paper we
only consider systems which have linear or exponential time
profiles. Each task has a state that grows or decays linearly
or exponentially based on the system dynamics. For example,
in the case of a room’s temperature, the profile is most likely
to be exponential. Each system can be viewed as one task.
Every task has an upper and lower threshold value for the
state. These thresholds correspond to the deadband of states
between which the system should operate at any time. A task
Ti is said to be feasible iff the state of the task at any time is in
between the thresholds. We want to find a switching schedule
for a set of tasks such that all tasks remain feasible subject
to the condition that at most one task will remain on at any
time.

To define a feasible schedule, we need a notion of deadlines
of the tasks. The deadline of the task di,l is defined as the
maximum time up to which the task can remain OFF after
which it will fall below its lower threshold , and likewise if

Figure 2. Extraction of temporal parameters from system dynamics



the task was already ON, then it has a deadline di,u which
corresponds to the maximum time it can remain ON, after
which it will exceed the upper threshold and become non-
feasible. The deadlines can be calculated with the knowledge
of the growth and decay rates for the tasks. An example of
how this can be done is shown in Figure 2. For part (a) we
consider a system with a linear profile, with a decay rate of
m1 and a growth rate of m2. When the task is at its initial
state, it can have two deadlines based on if remains ON or
OFF from this point onwards. These deadlines are depicted in
the figure as d0,j

i and so on. We also define the execution time
ei of a task as the duration for which the tasks remains ON.
As can be seen from the figure, the execution time is not fixed
and is a function of when we switch on the task and is therefor
a function of the response time and the initial conditions. Part
(b) of the figure shows similar analysis for a system with
exponential growth and decay rates. We observe that the slope
of the system response, and hence the effective execution time,
depends on the response time and initial conditions.

Once we have have extracted the temporal parameters of a
system we can look at the constraints that these parameters
must satisfy in order for the tasks to be schedulable. In this
paper we provide the analysis for the simple case of systems
with linear profiles like the one shown in figure 2.

III. ANALYSIS FOR LINEAR TASKS

Consider a set of n linear tasks {Ti}. Each task Ti has a state
variable xi ∈ R. At any time, each task can be in one of two
modes: ON (or scheduled) or OFF. In ON mode, the dynamics
of Ti is given by the differential equation dxi

dt = −ai where
ai > 0 is the downward slope (or discharge rate) of Ti. In OFF
mode, the dynamics of Ti is given by the differential equation
dxi

dt = bi where bi > 0 is the upward slope (or charge rate) of
task Ti. At any time, only one task can be scheduled (being
charged) as we assume a finite power supply. The stability
constraint requires that the state variable xi of task Ti must
stay within a range [li, hi], that is li ≤ xi ≤ hi at all time.
Time starts at t = 0 and the initial value of xi is xi(0) = x0,i,
where li ≤ x0,i ≤ hi.

A. Infeasibility result

At time t ≥ 0, let ton,i, 0 ≤ ton,i ≤ t, be the total time
since the beginning that Ti is on. Then the total time since
the beginning that Ti is off is toff,i = t− ton,i. The resource
constraint requires that

n∑
i=1

ton,i ≤ t. (1)

The state value of task Ti at time t can be computed as

xi(t) = x0,i − aitoff,i + biton,i = x0,i − ait+ (ai + bi)ton,i.

Define new variable x̂i = xi−x0,i

ai+bi
we have that

x̂i(t) = − ai
ai + bi

t+ ton,i = −dit+ ton,i (2)

in which di = ai

ai+bi
> 0. The stability constraint requires that

l̂i ≤ x̂i ≤ ĥi where l̂i = li−x0,i

ai+bi
and ĥi = hi−x0,i

ai+bi
.

Taking the sum of all x̂i(t) gives

x̂(t) =
n∑
i=1

x̂i(t) = −
n∑
i=1

dit+
n∑
i=1

ton,i (3)

with the constraint that l̂ =
∑n
i=1 l̂i ≤ x̂(t) ≤ ĥ =

∑n
i=1 ĥi.

Using (1) we obtain the following inequality

x̂(t) ≤

(
1−

n∑
i=1

di

)
t = (1− d)t (4)

in which d =
∑n
i=1 di > 0. Inequality (4) is very important

since it gives us the condition on the schedulability of the set
of tasks.

Theorem III.1. If d > 1, the set of tasks is not schedulable
(by any scheduling policy).

Proof: If d > 1 then 1−d < 0. By inequality (4), x̂(t) is
bounded above by a strictly decreasing function (1− d)t. By
time l̂/(1− d) ≥ 0 at the latest, x̂(t) will violate the stability
condition.

Particularly, in the case n = 2, if a1 > b1 (i.e., discharge
rate is faster than charge rate) and b2

a2
< a1

b1
then d > 1 and

the tasks are not schedulable.

B. Feasibility result

In this section, we present feasibility result for a set of
linear tasks on an ideal platform where there is no technical
constraint on when a task can be scheduled. Hence, on this
platform, a task can be switched ON and OFF arbitrarily fast
or slow as long as it satisfies the stability constraint.

A feasibility condition on the initial states x0,i is stated in
Proposition III.2, which is very straightforward.

Proposition III.2. If there are two different tasks Ti and Tj ,
i 6= j, such that x0,i = li and x0,j = lj then the set of tasks
is not schedulable.

If more than one task starts at their lower thresholds then
there exists no valid schedule because at least one task will
violate its stability constraint regardless of the schedule.

We proceed with the main feasibility theorem.

Theorem III.3. Given a set of tasks {Ti}i=1...n. If di is
rational for all i = 1 . . . n,

∑n
i=1 di ≤ 1, and at most one task

starts at its lower threshold then the set of tasks is schedulable
on an ideal platform.

Proof: We can assume that at the beginning, all tasks do
not start at their thresholds, i.e., li < x0,i < hi for i = 1 . . . n.
Indeed, if there are tasks starting at their thresholds, among
which at most one can start at its lower threshold, we can
always schedule the tasks for a short period of time τ > 0 so
that li < xi(τ) < hi, i = 1 . . . n.

For each task Ti, since di is rational, it can be written
as di = mi

ni
where mi, ni ∈ N. Let N be a common



multiple of all ni, for i = 1 . . . n, we can write di = Mi

N
for some Mi ∈ N. We will discretize time with period
∆T > 0 and design a periodic schedule for the set of tasks
on the discrete-time platform. The schedule is specified by an
ordering sequence ρ = (ρ1, . . . , ρN )ω of length N , where each
ρk ∈ {0, 1, . . . , n} indicates which task is ON during interval
k, and the superscript ω means that the sequence is repeated
indefinitely. If ρk = 0 then all tasks will be OFF at the start
and during interval k, otherwise task Tρk

will be ON and all
the other tasks will be OFF. Note that the ordering sequence
ρ and the time period ∆T are decoupled and independent of
each other.

Choose any ∆T > 0, for example ∆T = 1 sec. Consider
the sequence ρ of N numbers. We assign to each ρk, k =
1 . . . N , an integer between 0 and n so that for each integer
i ∈ {1, . . . , n}, the number of times it appears in ρ is exactly
Mi. Because

∑n
i=1 di ≤ 1,

∑n
i=1Mi ≤ N . It follows that we

can always construct ρ to satisfy the above condition.
The state of task Ti at instant tk = k∆T , k = 0, 1, . . . , N ,

can be computed as

xi(tk) = xi,0 + non∆T bi − (k − non)∆Tai

= xi,0 + ∆T [nonbi − (k − non)ai]

where non is the number of time intervals from the beginning
until step k during which Ti is ON. If the same schedule ρ is
used but a different time period ∆′T > 0 is chosen, the new
states at instant t′k = k∆′T can be written as:

x′i(t
′
k) = xi,0 + ∆′T [nonbi − (k − non)ai] .

We then have the equation:

x′i(t
′
k) = x0,i +

∆′T
∆T

(xi(tk)− x0,i).

For each k = 1, 2, . . . , N − 1, define ∆T,k as follows:
• If li ≤ xi(tk) ≤ hi then ∆T,k = +∞;
• If xi(tk) < li then ∆T,k = ∆T

li−x0,i

xi(tk)−x0,i
where ∆T,k >

0 because x0,i > li;
• If xi(tk) > hi then ∆T,k = ∆T

hi−x0,i

xi(tk)−x0,i
where ∆T,k >

0 because x0,i < hi.
Let ∆?

T = min {∆T,1, . . . ,∆T,N−1} > 0. If the same
schedule ρ is used with time period ∆?

T , which yields states
x?i (t

?
k) where t?k = k∆?

T , it is straightforward to show that:
• At the end of the sequence ρ, x?i (t

?
N ) = xi,0 +

∆T [Mibi − (N −Mi)ai] = xi,0;
• For all k = 0, 1, . . . , N , li ≤ x?i (t?k) ≤ hi.

Thus, for all 0 ≤ t ≤ N∆?
T , xi(t) stays within the stability

region, and it goes back to the initial state at the end of the
sequence ρ. It follows that ρ with time period ∆?

T is a valid
schedule for the set of tasks.

IV. CASE STUDY: ENERGY ROUTER

A primary design goal for energy-efficient buildings is the
fine-grained coordination of energy demand so as to minimize
the peak power consumption while maintaining acceptable

functionality and comfort. As explained earlier with our su-
perbowl example, when major appliances in buildings are all
switched on at the same time, it causes spikes in the power
consumptions which results in exorbitant electricity bills.
Electricity producing companies do not charge by average
amount of power consumed but by the peak energy usage in
short 15-30 minute spans. Just as most commercial buildings
have an IP router for managing data traffic, our algorithms
can be easily incorporated within an “energy router” meant
for coordinating and constraining energy demands to maintain
a minimum Peak-to-Average Ratio (PAR) at fine time steps.

V. ROADMAP

So far we have established feasibility conditions for a set
of linear tasks. As future work we want to formulate theory
which provides constraints on initial conditions. We also want
to develop tighter constraints on schedulability of the system.
Some of the theorems that we want to formulate are:

1) Critical Instant Theorem: Given a set of feasible tasks,
they are schedulable by the scheduling policy S, iff
every task is schedulable at its critical instant. We can
have another theorem that defines when a critical instant
of a task occurs.

2) Optimality: For a certain set of tasks then it is schedula-
ble by scheduling policy S if and only if it has a feasible
schedule.

3) Acceptability test: For a feasible set of tasks, being
scheduled according to scheduling policy S, we can add
another task Tk in that schedule iff that task satisfies the
acceptability criteria.

4) Develop a scheduling algorithm that can schedule a set
of feasible tasks.

5) Provide utilization/performance bounds for the above
algorithm.

6) Schedule with respect to additional constraints on oper-
ational efficiency of the system being scheduled.

REFERENCES

[1] Department of Energy, Buildings Energy Data Book,
Department of Energy, March 2009.

[2] F. W. Payne. Energy management control system hand-
book. Fairmont Press, 1984.


