
Fixed-Priority Multiprocessor Scheduling: Beyond Liu & Layland Utilization Bound

Nan Guan1, Martin Stigge1, Wang Yi1 and Ge Yu2

1 Uppsala University, Sweden
2 Northeastern University, China

Abstract

The increasing interests in multicores raise the question whether
utilization bounds for uni-processor scheduling can be generalized
to the multiprocessor setting. Recently, this has been shown for the
famous Liu and Layland utilization bound by applying novel task
splitting techniques. However, parametric utilization bounds that
can guarantee higher utilizations (up to 100%) for common classes
of systems are not yet known to be generalizable to multiproces-
sors as well. In this paper, we solve this open problem for most
parametric utilization bounds by proposing new partitioning-based
scheduling algorithms.

Besides the improved utilization bounds, another advantage of
our new algorithms is the significantly improved average-case per-
formance, since exact analysis, i.e., Response Time Analysis, in-
stead of the utilization bound threshold as in previous work, is used
to determine the maximal workload on each processor.

1 Introduction

Liu and Layland discovered the famous utilization bound
N(21/N − 1) for fixed-priority scheduling on uni-processors in the
1970’s [7]. Recently, we generalized this bound to multiprocessors
by a partitioning-based scheduling algorithm [3].

The Liu and Layland utilization bound (L&L bound for short) is
pessimistic: There are a significant number of task systems that ex-
ceed the L&L bound but are indeed schedulable. System resources
would be considerably under-utilized if one only relies on the L&L
bound in the system design.

However, if more information about the task system is available
in the design phase, it is possible to derive higher parametric uti-
lization bounds regarding known task parameters. A well-known
example of parametric utilization bounds is the 100% bound for
harmonic task sets [8]: If the total utilization of a harmonic task set
τ is no greater than 100%, then every task in τ can meet its deadline
under RMS on a uni-processor platform. Even if the whole task
system is not harmonic, one can still obtain a significantly higher
bound by exploring the “harmonic chains” in the system [4]. Gen-
erally, during the system design, it is usually possible to employ
higher utilization bounds with available task parameter informa-
tion, to better utilize the resources and decrease the system cost.
As will be introduced in Section 3, quite a few higher parametric
utilization bounds regarding different task parameter information
have been derived for uni-processor scheduling.

This naturally raises an interesting question: Can we gener-
alize these higher parametric utilization bounds derived for uni-
processor scheduling to multiprocessors? For example, given a
harmonic task system, can we guarantee the schedulability of the
task system on a multiprocessor platform of M processors, if the
utilization sum of all tasks in the system is no larger than M?

In this paper, we will address the above question by proposing a
new RMS-based partitioned scheduling algorithms (with task split-

ting). The new algorithm RM-TS/light generalizes all known para-
metric utilization bounds for RMS to multiprocessors, for a sub-
class of “light” task sets in which each task’s individual utilization
is at most Θ(τ)

1+Θ(τ) , where Θ(τ) denotes the L&L bound for task set
τ . Then we present the second algorithm RM-TS that works for
any task set, if the parametric utilization bound is under the thresh-
old 2Θ(τ)

1+Θ(τ)
1.

Generalizing the parametric utilization bounds from uni-
processors to multiprocessors is challenging, even with the insights
from our previous work generalizing the L&L bound to multipro-
cessor scheduling. The reason is that task splitting2 may “cre-
ate” new tasks that do not comply with the parameter properties of
the original task set, and thus invalidate the parametric utilization
bound specific to the original task set’s parameter properties. Sec-
tion 3 will discuss this problem in detail. In this paper, we use more
sophisticated proof techniques to solve this problem, and thereby,
generalize the parametric utilization bounds to multiprocessors.

Besides the improved utilization bounds, another advantage of
our new algorithms is the significantly improved average-case per-
formance. Although the algorithm in [3] can achieve the L&L
bound, it has the problem that it never utilizes more than the worst-
case bound. The new algorithms in this paper use exact analy-
sis, i.e., Response Time Analysis (RTA), instead of the utilization
bound threshold as in the algorithm of [3], to determine the maxi-
mal workload on each processor. Therefore, our new algorithm has
much better performance than the algorithm in [3].

2 Basic Concepts

We consider a multiprocessor platform consisting of M proces-
sors P = {P1, P2, ...PM}. A task set τ = {τ1, τ2, ..., τN} com-
plies with the L&L task model: Each task τi is a 2-tuple 〈Ci, Ti〉,
where Ci is the worst-case execution time and Ti is the minimal
inter-release separation (also called period). Ti is also τi’s relative
deadline. We use the RMS strategy to assign priorities: tasks with
shorter periods have higher priorities. Without loss of generality
we sort tasks in non-decreasing period order, and can therefore use
the task indices to represent task priorities, i.e., i < j implies that
τi has higher priority than τj . The utilization of each task τi is
defined as Ui = Ci/Ti, and the total utilization of task set τ is
U(τ) =

∑N
i=1 Ui. We further define the normalized utilization of a

task set τ on a multiprocessor platform with M processors:

UM (τ) =
∑
τi∈τ

Ui/M

Note that the subscript M in UM (τ) reminds us that the sum of all
tasks’ utilizations is divided by the number of processors M .

1Note that when Θ(τ)
.
= 69.3%, Θ(τ)

1+Θ(τ)

.
= 40.9% and 2Θ(τ)

1+Θ(τ)

.
= 81.8%

2Task splitting is needed to exceed the 50% utilization bound limitation of con-
ventional partitioned scheduling. Section 2 will introduce task splitting in detail.

1



2

1 τi1

τi2

3 τi3

r

r r+Ri
1

d
Ti -Ri

1-Ri
2

Ti Ri
1

r

Ri
1

Ri
2

r+Ri
1+Ri

2

Figure 1. An Illustration of Task Splitting.

With the a partitioned scheduling algorithm (with task splitting),
most tasks are assigned to a processor (and thereby will only ex-
ecute on this processor at run time). We call these tasks non-split
tasks. The other tasks are called split tasks, since they are split
into several subtasks. Each subtask of a split task τi is assigned to
(and thereby executes on) a different processor, and the sum of the
execution times of all subtasks equals Ci. For example, in Figure
1 task τi is split into three subtasks τ1

i , τ2
i and τ3

i , executing on
processor P1, P2 and P3, respectively.

The subtasks of a task need to be synchronized to execute cor-
rectly. For example, in Figure 1, τ2

i should not start execution until
τ1
i is finished. This equals deferring the actual ready time of τ2

i by
up to R1

i (relative to τi’s original release time), where R1
i is τ1

i ’s
worst-case response time. One can regard this as shortening the ac-
tual relative deadline of τ2

i by up to R1
i . Similarly, the actual ready

time of τ3
i is deferred by up to R1

i + R2
i , and τ3

i ’s actual relative
deadline is shortened by up to R1

i + R2
i . We use τki to denote the

kth subtask of a split task τi, and define τki ’s synthetic deadline as

∆k
i = Ti −

∑
l∈[1,k−1]

Rli. (1)

Thus, we represent each subtask τki by a 3-tuple 〈Cki , Ti,∆k
i 〉, in

which Cki is the execution time of τki , Ti is the original period and
∆k
i is the synthetic deadline. For consistency, each non-split task

τi can be represented by a single subtask τ1
i with C1

i = Ci and
∆1
i = Ti. We use Uki = Cki /Ti to denote a subtask τki ’s utilization.
We call the last subtask of τi its tail subtask, denoted by τ ti and

the other subtasks its body subtasks, as shown in Figure 1. We use
τ
bj

i to denote the jth body subtask.
We use τ(Pq) to denote the set of tasks τi assigned to processor

Pq , and say Pq is the host processor of τi. We use U(Pq) to denote
the sum of the utilization of all tasks in τ(Pq):

U(Pq) =
∑

τi∈τ(Pq)

Ui

3 Deflatable Parametric Utilization Bounds

A Parametric Utilization Bound (PUB for short) Ω(τ) for a task
set τ is the result of applying a function Ω(·) to τ ’s task parameters,
such that all tasks in τ are guaranteed to meet their deadlines under
RMS on a uni-processor if τ ’s total utilization U(τ) ≤ Ω(τ)3.

There have been quite a few parametric utilization bounds derived
for RMS on uni-processors. The following are some examples:

• The famous L&L bound, denoted by Θ(τ), is a PUB regard-
ing the number of tasks N : Θ(τ) = N(21/N − 1)

• The harmonic chain bound: HC-Bound(τ) = K(21/K − 1)
[4] , whereK is the number of harmonic chains in the task set.

3Note that the Hyperbolic Bound [1] is not a PUB.

The 100% bound for harmonic task sets is a special case of the
harmonic chain bound with K = 1.

• T-Bound(τ) [6] is a PUB regarding the number of tasks and

the task periods: T-Bound(τ) =
∑N
i=1

T ′
i+1
T ′

i
+ 2 · T

′
1

T ′
N
− N ,

where T ′i is τi’s scaled period [6].

• R-Bound(τ) [6] is similar to T-Bound(τ), but uses a more ab-
stract parameter r, the ratio between the minimum and max-
imum scaled period of the task set: R-Bound(τ) = (N −
1)(r1/(N−1) − 1) + 2/r − 1.

We observe that all the above PUBs have the following property:
Suppose a PUB Ω(τ) is derived from a task set τ ’s parameters. If
we decrease the execution times of some tasks in τ to get a new task
set τ ′, then Ω(τ) is still applicable to τ ′. We call a PUB holding
this property a deflatable parametric utilization bound, as formally
stated in the following definition:

Definition 1. A Deflatable Parametric Utilization Bound (D-PUB)
Ω(τ) is a PUB satisfying the following property: We decrease the
execution times of some tasks in τ to get a new task set τ ′. If τ ′

satisfies U(τ ′) ≤ Ω(τ), then it is guaranteed to be schedulable by
RMS on a uni-processor.

The deflatable property is very common for PUBs: In fact all
PUBs for RMS on uni-processors we are aware of are deflatable4.
In the following, we use Ω(τ) to denote an arbitrary D-PUB de-
rived from τ ’s parameters under RMS on uni-processors.

4 The Algorithm for Light Tasks: RM-TS/light

In the following we introduce the first algorithm RM-TS/light,
which achieves Ω(τ) (any D-PUB derived from τ ’s parameters), if
τ is light in the sense of an upper bound on each task’s individual
utilization as follows.

Definition 2. A task τi is a light task if

Ui ≤
Θ(τ)

1 + Θ(τ)
(2)

where Θ(τ) denotes the L&L bound. Otherwise, τi is a heavy task.
A task set τ is a light task set if all tasks in τ are light tasks.

4.1 Algorithm Description

The partitioning algorithm of RM-TS/light is quite simple. We
describe it briefly as follows:

• Tasks are assigned in increasing priority order. We always se-
lect the processor on which the total utilization of the tasks that
have been assigned so far is minimal among all processors.

• A task (subtask) can be entirely assigned to the current proces-
sor, if all tasks including this one on this processor can meet
their deadlines under RMS.

• When a task (subtask) cannot be assigned entirely to the cur-
rent processor, we split it into two parts5. The first part is
assigned to the current processor. The splitting is done such

4The PUBs we are aware of include the ones listed above, and the non-closed-
form bounds in [2]. We do not exclude the possibility that there might exist (undis-
covered) parametric utilization bounds that are not deflatable. However, proving the
existence of, or finding such a non-deflatable bound is out of the scope of this paper.

5In general a task may be split into more than two subtasks. Here we mean at
each step the currently selected task (subtask) is split into two parts.



that the portion of the first part is as big as possible, guarantee-
ing no task on this processor misses its deadline under RMS;
the second part is left for the assignment to the next selected
processor.

In the following, we will give a detailed description. Algo-
rithm 1 and 2 describe the partitioning algorithm of RM-TS/light
in pseudo-code. At the beginning, tasks are sorted (and will there-
fore be assigned) in increasing priority order, and all processors are
marked as non-full which means they still can accept more tasks.
At each step, we pick the next task in order (the one with the lowest
priority), select the processor with the minimal total utilization of
tasks that have been assigned so far, and invoke the routine Assign
to do the task assignment. Assign first verifies that after assigning
the task, all tasks on that processor would still be schedulable un-
der RMS. This is done by applying exact schedulability analysis of
calculating the response timeRkj of each task τkj after assigning the
new task τki to Pq with the well-known fixed-point formula:

Rkj =
∑

τh∈τ(Pq)
h<j

⌈
Rkj
Th

⌉
Ch + Ckj

The response time Rkj obtained for each (sub)task τkj is compared
to its (synthetic) deadline ∆k

j . If the response time does not exceed
the synthetic deadline for any of the tasks on Pq , we can conclude
that τki can safely be assigned to Pq without causing any deadline
miss. Note that a subtask’s synthetic deadline ∆k

j may be different
from its period Tj . After presenting how the overall partitioning
algorithm works, we will show how to calculate ∆k

j easily.

1: Task order τ1
N , . . . , τ1

1 by increasing priorities
2: Mark all processors as non-full
3: while there is an non-full processor and an unassigned task do
4: Pick next task τki ,
5: Pick non-full processor Pq with minimal U(Pq)
6: Assign(τki , Pq)
7: end while
8: If there is an unassigned task, the algorithm fails, otherwise it succeeds.

Algorithm 1: The partitioning algorithm of RM-TS/light.

1: if τ(Pq) with τki is still schedulable then
2: Add τki to τ(Pq)
3: else
4: Split τki via (τki , τ

k+1
i ) := MaxSplit(τki , Pq)

5: Add τki to τ(Pq)
6: Mark Pq as full
7: τk+1

i is next task
8: end if

Algorithm 2: The Assign(τki , Pq) routine.

If τki cannot be entirely assigned to the currently selected
processor Pq , it will be split into two parts using routine
MaxSplit(τki , Pq): one subtask that makes maximum use of the
selected processor, and a remaining part of that task, which will be
subject to assignment in the next iteration. The desired property
here is that we want the first part to be as big as possible such that,
after assigning it to Pq , all tasks on that processor will still be able
to meet their deadlines. In order to state the effect of MaxSplit
formally, we introduce the concept of a bottleneck.

Definition 3. A bottleneck of processor Pq is a (sub)task that is
assigned to Pq , and will become non-schedulable if we increase

the execution time of the task with the highest priority on Pq by an
arbitrarily small positive number.

Note that there may be more than one bottleneck on a proces-
sor. Further, since RM-TS/light assigns tasks in increasing priority
order, MaxSplit always operates on the task that has the highest
priority on the processor in question. Thus, we can state:

Definition 4. MaxSplit(τki , Pq) is a function that splits τki into two
subtasks τki and τk+1

i such that:

1. τki can now be assigned to Pq without making any task in
τ(Pq) non-schedulable.

2. After assigning τki , Pq has a bottleneck.

MaxSplit can be implemented by, for example, performing a bi-
nary search over [0, Cki ] to find out the maximal portion of τki with
which all tasks on Pq can meet their deadlines. A more efficient
implementation of MaxSplit was presented in [5], in which one
only needs to check a (small) number of possible values in [0, Cki ].
The complexity of this improved implementation is still pseudo-
polynomial, but in practise it is very efficient.

Calculating Synthetic Deadlines Now we will show how to
calculate each (sub)task τki ’s synthetic deadline ∆k

i , which was left
open in the above presentation. If τki is a non-split task, its synthetic
deadline trivially equals its period Ti. Now we consider the case
that τki is a subtask of a split task τi. Recall that tasks are assigned
in increasing order of priorities. Thus, right after a (sub)task is split
and assigned to its host processor, the first part of it, which is a
body subtask, has the highest priority on that processor. After that
the processor will be marked as full and consequently no other tasks
of higher priority can be assigned to it. So we know:

Lemma 1. A body subtask has the highest priority on its host pro-
cessor.

A consequence of this is, the response time of each body subtask
equals its execution time, and one can replace Rli by Cli in (1) to
calculate the synthetic deadline of a subtask. Especially, we are
interested in the synthetic deadlines of tail subtasks (we do not need
to worry about a body subtask’s synthetic deadline since it has the
highest priority on its host processor and is schedulable anyway).
The calculation is explicitly stated in the following lemma.

Lemma 2. Let τi be a task split into Bi body subtasks
τ b1i , . . . , τ

bBi
i , assigned to processors Pb1 , . . . , PbBi

respectively,
and the tail subtask τ ti assigned to processor Pt. The synthetic
deadline ∆t

i of a tail subtask τ ti is calculated by:

∆t
i = Ti −

∑
j∈[1,Bi]

C
bj

i

Scheduling at Run Time At runtime, the tasks will be sched-
uled using RMS on each processor locally, i.e., with their original
priorities. The subtasks of a split task respect their precedence re-
lations, i.e., a split subtask τki is ready for execution when its pre-
ceding subtask τk−1

i on some other processor has finished.
From the presented partitioning and scheduling algorithm of RM-

TS/light, it is clear that successful partitioning implies schedulabil-
ity, i.e., the guarantee that all deadlines can be met.

Lemma 3. Any task set that has been successfully partitioned by
RM-TS/light is schedulable.



4.2 Utilization Bound

We can prove the utilization bound property for RM-TS/light:

Theorem 4. Ω(τ) is a utilization bound of RM-TS/light for light
task sets, i.e., any light task set τ with

UM (τ) ≤ Ω(τ)

is schedulable by RM-TS/light.

The proofs are omitted due to space limit.

5 The Algorithm for Any Task Set: RM-TS

In this section, we introduce RM-TS, which removes the restric-
tion to light task sets in RM-TS/light. We will show that RM-
TS can achieve a D-PUB Ω(τ) for any task set τ , if Ω(τ) does
not exceed 2Θ(τ)

1+Θ(τ) . In other words, if one can derive a D-PUB
Ω′(τ) from τ ’s parameters under uni-processor RMS, RM-TS can
achieve the utilization bound of Ω(τ) = min(Ω′(τ), 2Θ(τ)

1+Θ(τ) ). Note
2Θ(τ)

1+Θ(τ) = 81.8% when Θ(τ) = 69.3%. So we can see that despite
an upper bound on Ω(τ), RM-TS still provides significant room for
higher utilization bounds.

1: Mark all processors as normal and non-full

// Phase 1: Pre-assignment
2: Sort all tasks in τ in decreasing priority order
3: for each task in τ do
4: Pick next task τi
5: if DeterminePreAssign(τi) then
6: Pick the normal processor with the minimal index Pq
7: Add τi to τ(Pq)
8: Mark Pq as pre-assigned
9: end if

10: end for

// Phase 2: Assign remaining tasks to normal processors
11: Sort all unassigned tasks in increasing priority order
12: while there is a non-full normal processor

and an unassigned task do
13: Pick next unassigned task τi
14: Pick the non-full normal processor Pq with minimal U(Pq)
15: Assign(τki , Pq)
16: end while

// Phase 3: Assign remaining tasks to pre-assigned processors
// Remaining tasks are still in increasing priority order

17: while there is a non-full pre-assigned processor
and an unassigned task do

18: Pick next unassigned task τi
19: Pick the non-full pre-assigned processor Pq with the largest index
20: Assign(τki , Pq)
21: end while

22: If there is an unassigned task, the algorithm fails, otherwise it succeeds.

Algorithm 3: The partitioning algorithm of RM-TS.

1: P.(τi) := the set of normal processors at this moment
2: if τi is heavy then
3: if

∑
j>i Uj ≤ (|P.(τi)| − 1) · Ω(τ) then

4: return true
5: end if
6: end if
7: return false

Algorithm 4: The DeterminePreAssign(τi) routine.

5.1 Algorithm Description

We introduce some notations. If a heavy task τi is pre-assigned
to a processor Pq in RM-TS, we call τi a pre-assigned task and
Pq a pre-assigned processor, otherwise τi a normal task and Pq a
normal processor.

The partitioning algorithm of RM-TS is shown in Algorithm 3,
which contains three main phases:

1. We first pre-assign the heavy tasks that satisfy the Pre-assign
Condition (line 4 in Algorithm 4) to one processor each, in
decreasing priority order.

2. We do task partitioning with the remaining (i.e. normal)
tasks and remaining (i.e. normal) processors similar to RM-
TS/light until all the normal processors are full.

3. The remaining tasks are assigned to the pre-assigned pro-
cessors in increasing priority order; the assignment selects
the processor with the largest index (i.e., the one hosting the
lowest-priority pre-assigned task), to assign as many tasks as
possible until it is full, then selects the next processor.

The pseudo-code of RM-TS is given in Algorithm 3.

5.2 Utilization Bound

We can prove the utilization bound of RM-TS:

Theorem 5. Given a deflatable parametric utilization bound
Ω(τ) ≤ 2Θ(τ)

1+Θ(τ) derived from the task set τ ’s parameters. If

UM (τ) ≤ Ω(τ)

then τ is schedulable by RM-TS.

The proofs are omitted due to space limit.

6 Conclusions and Future Work

We have developed new fixed-priority multiprocessor schedul-
ing algorithms overstepping the Liu and Layland utilization bound.
The first algorithm RM-TS/light can achieve any deflatable para-
metric utilization bound for light task sets. The second algorithm
RM-TS gets rid of the light restriction and works for any task set,
if the bound is under a threshold 2Θ(τ)

1+Θ(τ) . Further, the new algo-
rithms use exact analysis RTA, instead of the worst-case utilization
threshold as in [3], to determine the maximal workload assigned to
each processor. Therefore, the average-case performance is signifi-
cantly improved. As future work, we will extend our algorithms to
deal with task graphs specifying dependency constraints and task
communication.

References

[1] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate monotonic analysis: The
hyperbolic bound. IEEE Transactions on Computers, 2003.

[2] D. Chen, A. K. Mok, and T. W. Kuo. Utilization bound revisited. In IEEE
Transaction on Computers, 2003.

[3] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor scheduling
with Liu & Layland’s utilization bound. In RTAS, 2010.

[4] T. W. Kuo and A. K. Mok. Load adjustment in adaptive real-time systems. In
RTSS, 1991.

[5] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority pre-
emptive scheduling for multi-core processors. In ECRTS, 2009.

[6] S. Lauzac, R. Melhem, and D. Mosse. An efficient rms admission control and
its application to multiprocessor scheduling. In IPPS, 1998.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. In Journal of the ACM, 1973.

[8] J. W. S. Liu. Real-time systems. Prentice Hall, 2000.


