
Challenges and Design Principles for Implementing Slot-Based Task-Splitting
Multiprocessor Scheduling

Paulo Baltarejo Sousa, Björn Andersson, and Eduardo Tovar
CISTER-ISEP Research Center
Polytechnic Institute of Porto
4200-072 Porto, Portugal

{pbsousa,bandersson,emt}@dei.isep.ipp.pt

Abstract—Consider the problem of scheduling a set of spo-
radic tasks on a multiprocessor to meet deadlines even at high
processor utilizations. We assume that task preemption and
migration is allowed but because of their associated overhead,
their frequency of use should be kept small. Task-splitting (also
called semi-partitioning) is a family of algorithms that offers
these properties. An algorithm in this class assigns most tasks to
just one processor but a few tasks are assigned to two or more
processors, and they are dispatched in a way that ensures that a
task never executes on two or more processors simultaneously.
A certain type of task-splitting algorithms, called slot-based
split-task dispatching, is of particular interest because of
its ability to schedule tasks at high processor utilizations.
Unfortunately, no slot-based task-splitting algorithm has been
implemented in a real operating system so far.
Therefore, in this paper, we discuss challenges and design

principles for implementing slot-based task-splitting algorithms
on multiprocessor systems running the Linux kernel.

I. INTRODUCTION

The real-time systems research community has developed
a comprehensive toolkit comprised of scheduling algorithms
(RM and EDF), schedulability tests and implementation
techniques which have been very successful: they are cur-
rently taught at major universities world-wide; they are
incorporated in design tools and they are widely used in
industry. Unfortunately, the results were limited to computer
systems with a single processor only.
Today, a multiprocessor implemented on a single chip

(called multicore) is the preferred platform for many em-
bedded real-time applications and this brings the pressing
need for developing an analogous toolkit for multicores.
Such a toolkit for multicore should ideally exhibit the
same properties as the uniprocessor toolkit exhibited and
that engineers valued: (i) high utilization bound; (ii) few
preemptions; (iii) dispatchers with low time-complexity; and
(iv) the ability to provide pre-run-time guarantees to sched-
ule sporadically arriving tasks to meet deadlines even with
deadlines much shorter than the minimum inter-arrival times.
During recent years, the research community has therefore

created a family of real-time scheduling algorithms which
exhibit these properties. This family of algorithms is called
task-splitting or semi-partitioning [1], [2], [3], [4], [5], [6],

[7], [8]. Recent evaluations based on simulation experiments
[3] and implementations in real operating systems [9] have
demonstrated the excellent performance of this class of
algorithms. The key idea of these algorithms is that they
assign most of the tasks to just one processor but some
of the tasks (called split tasks) are assigned to two or
more processors. Uniprocessor dispatchers are used on each
processor but they are modified to ensure that a split task
never executes on two or more processors simultaneously.
One particularly interesting class of task-splitting algo-

rithms is those algorithms where time is subdivided into
timeslots such that within timeslots, processor reserves are
carefully positioned with a time offset from the beginning of
a timeslot. A split task is assigned to two or more processor
reserves located on different processors and the position-
ing of the processor reserve in time is statically assigned
(relative to the beginning of a timeslot) so that no reserves
serving the same split task overlap in time — see Fig. 2(a).
Among the types of split-task scheduling algorithms, this
is the class that provides the highest utilization bound. In
addition, its run-time dispatching does not depend on any
data structures that are shared among all processors and
therefore it has the potential to scale to multicore processors
with a very large number of processors. For these reasons,
we believe an implementation of a slot-based task-splitting
algorithm would be valuable.
Three implementations of multiprocessor scheduling al-

gorithms have recently been developed. LitmusRT [10]
provides a modular framework for different scheduling al-
gorithms (global-EDF and pfair algorithms) for the Linux
kernel. Kato et al. [9] has also created a modular framework
(called RESCH) for using other algorithms than LitmusRT

(partitioned and semi-partitioned scheduling) for the Linux
kernel. Faggioli et al. [11] has implemented global-EDF
in the Linux kernel and made it compliant with POSIX
interfaces. The implementation of LitmusRT and the POSIX
compliant implementation do not support the class task-
splitting at all and hence they are not in the scope of our
interest. The framework by Kato et al. shares some of our
goals in that it provides an implementation of task-splitting
algorithms. But it uses another type of task-splitting (that is



Local Timer Local Timer Local Timer Local Timer

P1 P2 · · · Pm

Counter register

Generate an interrupt to local
processor when the counter reaches

Figure 1. Each processor (Pi) has a local timer.

not slot-based split-task dispatching) which cannot guarantee
to meet deadlines at high processor utilization. Hence, the
current research literature provides no answer to the question
whether slot-based task-splitting multiprocessor scheduling
can be implemented and whether it works in practice.
This paper presents challenges and design principles for

implementing sloted-based task-splitting algorithms such as
[2] and [3]. This is relevant since the algorithm in [3]
was (and still is) the algorithm that, in theory, has the
best ability (among state-of-art algorithms) to offer pre-run-
time guarantees to arbitrary-deadline sporadic tasks on a
multiprocessor.

II. BACKGROUND

A. System model

Consider n tasks and m identical processors. A task τi

is uniquely indexed in the range 1..n and a processor in
the range 1..m. Each task τi is characterized by worst-case
execution time Ci and minimum inter-arrival time Ti and by
the time that the execution must be completed, the deadline
(Di). We assume 0 ≤ Ci ≤ Di.
A processor p executes at most one task at a time and

no task may execute on multiple processors simultaneously.
The system utilization is defined as Us = 1

m ·
∑n

i=1
Ci
Ti
.

We assume that (i) all processors have the same in-
struction set and data layout (e.g. big-endian/little-endian),
(ii) all processors execute at the same speed and (iii) the
speed at which a task executes is independent of which
processor it executes on. We assume that the execution speed
of a processor does not depend on activities on another
processor (for example whether the other processor is busy
or idle or which task it is busy executing) and also does
not change at runtime. In practice, this implies that (i) if
the system supports simultaneous multithreading (Intel calls
it hyperthreading) then this feature must be disabled and
(ii) features that allow processors to change their speed must
be disabled. We assume that each processor has a local
timer — see Fig. 1. that provides two functions: (i) one
function allows reading the current real-time (that is is not
calender time) as an integer; and (ii) another function makes
it possible to set up the timer to generate an interrupt x time
units in the future, where x can be specified.

Consider n=m+1 tasks with Ti=1 and Ci = 0.5+ε (where
ε is a positive number smaller than 1/6) to be scheduled
on m processors. It is easy to see that if task migration is
not allowed then there is a processor which is assigned at
least two tasks. And on this processor, the utilization exceeds
100% and hence a deadline miss occurs. This is problematic
since Us = m+1

m · (0.5 + ε) which becomes 0.5 as m → ∞
and ε → 0; that is, a deadline miss can occur although only
50% of the entire processing capacity is requested.
Researchers observed [12], [1] that if the execution-time

of a task could be “split” into two pieces then it is possible
to meet deadlines. For example, assign task τi with i ∈
{1, 2, 3, . . . , m} to processor Pi and assign task τm+1 to
two processors (for example P1 and P2) so that a job by
τm+1 executes 0.25 + ε

2 units on one of the two processors
and 0.25 + ε

2 units on the other. This makes it possible to
meet deadlines, assuming that the two “pieces” of task τm+1

are dispatched so that they never execute simultaneously.
Many recent algorithms are based on this idea and they

differ in (i) how tasks are assigned to processors and split
before run-time and (ii) how tasks are dispatched, particu-
larly, how split tasks are dispatched at run-time. The two
approaches for split-task dispatching that we believe are the
most promising are (i) job-based split-task dispatching [6]
and (ii) slot-based split-task dispatching [2]. Job-based split-
task dispatching splits a job into two or more subjobs and
forms a sequence of subjobs from the subjobs that originate
from the same job and sets the arrival time of a subjob equal
to the absolute deadline of its preceding subjob. Job-based
split-task dispatching provides a utilization bound greater
than 50% and few preemptions. It has been implemented
in a real operating system and through experimental studies
[9] of that implementation it was found to outperform many
other non-split approaches. The main drawback of job-based
split-task dispatching is that utilization bounds greater than
65% have not been attained.
Slot-based split-task dispatching subdivides time into

equal-duration timeslots whose beginning and end are syn-
chronized across all processors; the end of a timeslot of
processor p contains a reserve and the beginning of a
timeslot of processor p+1 contains a reserve, and these
two reserves supply processing capacity for a split-task —
see Fig. 2(a). Slot-based split-task dispatching causes more
preemptions than job-based split-task dispatching but, in
return, it offers higher utilization bounds (higher than 65%
and configurable for up to 100%) [2] and best performance
(among all algorithms, not only task-splitting algorithms)
for providing pre-run-time guarantees to arbitrary-deadline
tasks [3].
Despite the good performance of slot-based split-task

dispatching in theory, the current research literature provides
no answer to the question whether slot-based task-splitting
multiprocessor scheduling can be implemented and whether
it works in practice.

2



B. Challenges
From Fig. 2(a), we can identify three challenges for

implementing slot-based split-task dispatching:
C1. Timeslots must begin at the same time on all

processors;
C2. A split-task must migrate instantaneously in the

beginning of a timeslot;
C3. The reserves should begin and end at precisely

specified time instants.
Since Moore’s law causes the number of processor cores

in multicore systems to increase exponentially with time we
believe it is also important that an implementation of a mul-
tiprocessor scheduling algorithm has a dispatching overhead
that is low as a function of the number of processors —
ideally independent of the number of processors. This poses
no challenges for scheduling non-split tasks. For split-tasks
however this brings the following two additional challenges:
C4. The run-time overhead of migration (manipulation

of data structures and concurrency control) should
be independent of the number of processors;

C5. The run-time overhead due to handling of timers
(reading the current value of a real-time clock;
setting up a timer to generate an interrupt signal
at a certain time) should be independent of the
number of processors.

We will address these challenges in the next section.
Challenges C1 and C3 will be resolved using high-resolution
local timers to each processor. Challenges C4 and C5 will
be resolved through carefully designed data structures which
avoids synchronization between processors and the local
timers will help us overcome C5. The challenge C2 is fun-
damental however — we can resolve it by a minor redesign
of the actual scheduling algorithm. Consider Fig. 2(a) again.
It shows that task τ2 must migrate instantaneously at certain
instants; this occurs at time 0, time S, time 2S, etc. Actually,
this situation can introduce additional complexity to the
dispatching algorithm, which can imply more overhead and
more preemptions. To illustrate this, let us assume that the
current time t is infinitesimal higher than S. Therefore, the
dispatcher of processor P2 will select task τ2 to be executed,
but it must not do that without checking if task τ2 has
already relinquished processor P1. Due to many factors, like
interrupt handling or timer drift just to mention some, it
could happen that task τ2 has not relinquished processor
P1 yet at that time. Since, task τ2 cannot execute on both
processors then the dispatcher of processor P2 has to select
other task to be execute on it. This can be avoided if the
reserve on processor P2 starts slightly later — see Fig. 2(b).

III. HOW TO IMPLEMENT SLOT-BASED TASK-SPLITTING
In order to cope with challenges listed in Section II,

we recommend that an implementation of a task-splitting
follows the following design principles:

P1. Each processor should have its own run-queue (the
queue that stores tasks which have outstanding
request for execution). The run-queue of processor
p should store non-split tasks assigned to
processor p. The run-queue of each processor
should support the operations insert_task,
peek_highest_priority_task and
extract_highest_priority_task with
low-time complexity.

P2. For each processor p, there should be a data
structure with two variables hi_split and
lo_split. The variable hi_split of processor
p and the variable lo_split of processor p+1
should point to the process control block for the
task that is split between them. If no such task
exist then these pointers are NULL.

P3. Each processor should have a variable called
begin_curr_timeslot. It should hold a
time which is no larger than the current
time and it should never be less than cur-
rent time minus S (timeslot length). The vari-
able begin_curr_timeslot should be incre-
mented by S to ensure this. This assures that the
beginning of the timeslot on each processor is
synchronized and avoids the lock mechanism that
would be necessary if this variable was global.

P4. Each processor should have a timer-queue of events
in the future. This should always include the time
of the beginning of the next timeslot, that is
begin_curr_timeslot + S. If applicable, it
also contains the time when the reserve in the
beginning of the timeslot ends and also the time
when the reserve in the end of the timeslot begins.
Whenever the timer queue changes (for example an
event has expired and therefore should be removed
from the timer queue, or a new event is inserted
into the timer queue), the processor should disable
interrupts, set up a timer x time units in the future
where x is the time of the earliest event in the
timer queue minus current time, and then enable
interrupts. This is a standard approach for timers
and it ensures that cumulative drift because of finite
speed of the processor does not occur (see page 38
in [13] for discussion).

P5. The operating system should implement a
delay_until system call (see page 38 in [13]
which makes it possible for a task to sleep until an
absolute time. This is important for implementing
periodically arriving tasks without suffering from
cumulative drift [13].

These design principles will be followed to implement
the scheduling algorithm proposed in [2] using the Linux
kernel 2.6.28. This kernel version is provided by the required

3



t0 S 2S 3S

P1

P2

τ2 τ2 τ2

τ2 τ2 τ2

Capacity reserved for τ2 on processor P1

Capacity reserved for τ2 on processor P2

(a) Original split-task dispatching

t0 S 2S 3S

P1

P2

τ2 τ2 τ2

τ2 τ2 τ2

Capacity reserved for τ2 on processor P1

Capacity reserved for τ2 on processor P2

(b) New split-task dispatching

Figure 2. An example of the operation of slot-based task-splitting multiprocessor scheduling. Task τ2 is a split-task. A non-split task executes only on
its dedicated processor; it can execute in a reserve but it does so with a lower priority than a split task.

tools to statisfy these design principles: (i) each processor
holds its own run-queue and it is easy to add new fields to
it; (ii) it has already implemented red-black trees that are
balanced binary trees whose nodes are sorted by a key and
the most operations are done in O(log n) time; (iii) it has the
high resolution timers infrastructure that offers a nanosecond
time unit resolution and can be set on per-cpu; (iv) it is very
simple to add new system calls and finally (v) it comes with
the modular scheduling infrastructure that became easy to
add a new scheduling policy to the Linux kernel.

IV. CONCLUSIONS
We have shown the challenges and design principles

for implementing slot-based task-splitting multiprocessor
scheduling algorithms. These kind of scheduling algorithms
for multiprocessor systems offer higher utilization bounds
and best performance (among all algorithms, not only task-
splitting algorithms), however, the current research literature
provides no answer to the question whether slot-based task-
splitting multiprocessor scheduling can be implemented and
whether it works in practice. These design principles will be
followed to implement the scheduling algorithm proposed in
[2] using the Linux kernel 2.6.28.

ACKNOWLEDGEMENTS
This work was partially funded by the Portuguese Science

and Technology Foundation (Fundação para a Ciência ea
Tecnologia - FCT) and Luso-American Development Foun-
dation (FLAD).

REFERENCES
[1] B. Andersson and E. Tovar, “Multiprocessor scheduling with

few preemption,” in 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-
tion (RTCSA 06), Sydney, Australia, 2006, pp. 322–334.

[2] B. Andersson and K. Bletsas, “Sporadic multiprocessor
scheduling with few preemptions,” in 20th Euromicro Con-
ference on Real-Time Systems (ECRTS 08), Prague, Czech
Republic, 2008, pp. 243–252.

[3] B. Andersson, K. Bletsas, and S. Baruah, “Scheduling
arbitrary-deadline sporadic tasks on multiprocessors,” in 29th
IEEE Real-Time Systems Symposium (RTSS 08), Barcelona,
Spain, 2008, pp. 385–394.

[4] K. Bletsas and B. Andersson, “Preemption-light multiproces-
sor scheduling of sporadic tasks with high utilisation bound,”
in 30th IEEE Real-Time Systems Symposium (RTSS 09),
Washington, DC, USA, 2009, pp. 385–394.

[5] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned
fixed-priority preemptive scheduling for multi-core proces-
sors,” in 21st Euromicro Conference on Real-Time Systems
(ECRTS 09), Dublin, Ireland, 2009, pp. 239–248.

[6] S. Kato and N. Yamasaki, “Semi-partitioned scheduling of
sporadic task systems on multiprocessors,” in 21st Euromi-
cro Conference on Real-Time Systems (ECRTS 09), Dublin,
Ireland, 2009, pp. 239–248.

[7] ——, “Portioned EDF-based scheduling on multiprocessors,”
in 8th ACM/IEEE International Conference on Embedded
Software (EMSOFT’08), Atlanta, GA, USA, 2008, pp. 139–
148.

[8] ——, “Real-time scheduling with task splitting on multi-
processors,” in 13th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications
(RTCSA 07), Daegu, Korea, 2007, pp. 441–450.

[9] S. Kato, R. Rajkumar, and Y. Ishikawa, “A loadable real-time
scheduler suite for multicore platforms,” Technical Report
CMU-ECE-TR09-12, Tech. Rep., 2008.

[10] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT : A testbed for empirically comparing
real-time multiprocessor schedulers,” in 27th IEEE Real-Time
Systems Symposium (RTSS 06), Rio de Janeiro, Brazil, 2006,
pp. 111–126.

[11] D. Faggioli, M. Trimarchi, F. Checconi, and C. Scordino, “An
EDF scheduling class for the Linux kernel,” in 11th Real-Time
Linux Workshop (RTLWS 2009), Dresden, Germany, 2009.

[12] J. H. Anderson, V. Bud, and U. C. Devi, “An EDF-based
scheduling algorithm for multiprocessor soft real-time sys-
tems,” in 17th Euromicro Conference on Real-Time Systems
(ECRTS 05), Palma de Mallorca, Balearic Islands, Spain,
2005, pp. 199–208.

[13] A. Burns, Concurrency in Ada. Cambridge University Press,
1998.

4


