
An Optimal Multiprocessor Scheduling Algorithm
without Fairness

Geoffrey Nelissen1, Vandy Berten, Joël Goossens, Dragomir Milojevic
Parallel Architectures for Real-Time Systems (PARTS) Research Center

Université Libre de Bruxelles
Brussels, Belgium

Abstract—All known scheduling algorithms that optimally
schedule task sets on multiprocessor platforms, are partially
or completely based on the notion of proportionate fairness
introduced by Baruah et al. in 1993 [1]. One could therefore think
that there is no other solution to guarantee the optimality than
to use the proportionate fairness property. We want to prove the
opposite and we propose an alternative. In this paper we present
an algorithm which is a multiprocessor generalization of EDF
and where tasks do not have to follow any fairness property.
We conjecture that this algorithm optimally schedules any set
of periodic tasks with implicit deadlines and could easily be
extended to the schedule of sporadic tasks.

I. INTRODUCTION

Optimal scheduling algorithms for uniprocessor platforms
exist from many years [2]. These are generally based on
simple priority definitions as in Earliest Deadline First (EDF).
However, their generalization to the scheduling on multipro-
cessor platforms always leaded to the loss of optimality. A
new approach named proportionate fairness was therefore
proposed by Baruah et al. in 1993 [1]. In a Proportionate Fair
(PFair) algorithm, the time is divided in quanta and each task
τi is scheduled such that, after any quantum q, the amount of
quanta executed by τi from the start of the schedule to q has
been proportionate to its utilization factor. Unfortunately, the
optimality of this new class of algorithms is at the cost of nu-
merous preemptions, migrations and scheduling points during
the system execution. These drawbacks are partially overcome
when applying the Deadline Partitioning Fairness (DP-Fair)
theory [3], [4]. In this case, the property of fairness has indeed
to be ensured only at the deadlines of the jobs executed in the
application and not anymore after each quantum of time.

In [5], the authors proposed an hybrid solution named EKG
for the schedule of periodic tasks. In its optimal version,
the tasks are grouped in what we will call supertasks. All
supertasks are scheduled under a DP-Fair policy. Whenever
a supertask is chosen to be executed, one of its component
tasks is selected accordingly to the EDF algorithm to be
effectively executed on the platform. The technique used in
EKG allows to drastically reduce the amount of preemptions
during the execution. However, when extended to the schedule
of sporadic tasks with implicit deadlines, EKG [6] and its
evolution NPS-F [7] have to make a trade-off between

1Supported by the Belgian National Science Foundation (F.N.R.S.) under
a F.R.I.A. grant.

the upper-bound on the total utilization of the platform
and the amount of preemptions. Therefore, the optimality
cannot be guaranteed unless we accept to have an amount of
preemptions and scheduling points even greater than what we
get with a PFair algorithm.

Goal of this work: We conjecture that the the fairness property
needed by DP-Fair, EKG (and successors) is not mandatory
for optimality. We aim to propose an optimal multiprocessor
scheduling algorithm based on priorities and relaxing the
fairness property.

II. MODEL

We first tackle the problem of scheduling a set of n
independent strictly periodic tasks with implicit deadlines on a
platform composed of m identical processors. Each task τi has
a worst case execution time Ci and a period Ti. That is, each
job of τi must receive Ci time units before the next job arrival
and there are Ti time units between two such job arrivals. We
define the utilization factor of τi as the quantity Ui

def= Ci

Ti
. At

any instant t, we define the remaining execution time ri(t) of
τi as the amount of time units that the current job of τi has
still to execute before its next absolute deadline di(t).

The system state s(t) at time t is completely defined by the
remaining execution times ri(t) and the absolute deadlines
di(t) of all tasks τi in the system.

For a better readability, we will use the notations ri and di

instead of ri(t) and di(t) in the remaining of this paper.

III. ALGORITHM DESCRIPTION

In the following, we assume that for all pairs of tasks τk
and τ`, if k < ` then dk ≤ d` (i.e. the deadline of the current
job of τk is earlier than the deadline of the job of τ`).

Our algorithm divides the time in time slices extending
from one job arrival to the next one. Whenever a job arrives
in the system, we execute the two following phases:

Phase 1: The algorithm divides the ri time units of every
task τi among the processors. We define qi,j as the amount of
work of τi that we assign to processor πj in the interval [t, di]
(t is the instant of the new job arrival). The qi,j values are
determined such that (i)

∑
j qi,j = ri and (ii) the ri time units

of τi can be executed before di without intra-job parallelism.



TaskList := list of n tasks sorted by increasing
absolute deadlines
t := current time
for all τi ∈ TaskList do

Temp := ri
for j := 1 to m do
ρi,j := ρi−1,j+qi−1,j+

[
U i − (j − 1)

]1
0
(di−di−1)

qmax
i,j := (di − t)− ρi,j −

∑
`<j qi,`

/* Assignment on πj */
if qmax

i,j ≥ Temp then
qi,j := Temp
break

else
qi,j := qmax

i,j

Temp := Temp−qmax
i,j

end if
end for

end for
Fig. 1. Assignment pseudo-algorithm.

The tasks are assigned in an increasing absolute deadline
order. For each task τi and each processor πj , we compute the
amount of time units that τi can execute within the interval
[t, di] without parallelism.

Fig. 1 proposes a pseudo-code of the assignment protocol
and introduces the two following quantities:
• ρi,j : the amount of time which is already reserved on

processor πj for the execution of the tasks {τ1, ..., τi−1}
(i.e. tasks with a deadline at or before di).

• qmax
i,j : the maximum amount of work that τi could execute

on πj in the interval [t, di] without parallelism.
Explanations on the computation of both these quantities will
be given in Section III-A.

When the task τi is assigned, we always try to fill up
the processors with the smallest indexes. Therefore, we first
compute the maximum amount of work qmax

i,1 that the task
τi could execute on processor π1. If qmax

i,1 is larger than the
remaining execution time ri of τi, we can assign all the ri
time units on π1. That is, qi,1 := ri. On the other hand, if
ri > qmax

i,1 then we cannot assign more than qmax
i,1 time units

of τi on processor π1 (otherwise, from the definition of qmax
i,j ,

there is a risk that τi does not respect its deadline di without
parallelism). Therefore, we associate the maximum amount
of work of τi with π1 (i.e. qi,1 := qmax

i,1 ) and we recursively
apply the same procedure on processors π2 to πm until all
the ri time units of τi are dispatched on the processors of the
platform.

Phase 2: We schedule the qi,j time units according to
partitioned EDF. Furthermore, we add the following rule: if
a task τi is split among several processors (i.e. there exist at
least two processors πk and π` such that k < ` and qi,k > 0
and qi,` > 0) then τi cannot be executed on the higher
indexed processor π` when executed on the lower indexed
one πk. This mechanism does not affect the schedulability

dit

τi

π2

π3

τi

ρi,1

ρi,2

ρi,3

π1

qi,1

qi,2

qmax
i,3

Fig. 2. Computation of qmax
i,j .

of the task in the future if the qmax
i,j values were correctly

computed (see Section III-A).

When the first absolute deadline (say d1) is reached (i.e.
a new job arrives in the system), we update the system state
s(t) and we repeat the phases 1 and 2 for the next time slice
extending from d1 to the next absolute deadline in the system.

A. Computation Details

We define the maximum amount of work qmax
i,j that a task

τi can execute on a processor πj without parallelism as

qmax
i,j

def= (di − t)− ρi,j −
∑
`<j

qi,` (1)

Indeed, we cannot allocate more than (di−t) time units on one
processor within the interval [t, di]. Therefore, if there already
are ρi,j time units reserved on πj before the assignment of
τi then we can give (di − t) − ρi,j time units at most to τi
(i.e. qmax

i,j ≤ (di − t) − ρi,j). Moreover, accordingly to the
algorithm presented in the previous section, τi could have
already received some time qi,` on processors with lower
indexes (i.e. ` < j). The value of qmax

i,j is minimal when
these qi,` time units are scheduled as in the example depicted
on Fig. 2. Since intra-task parallelism is not allowed, the
maximum amount of work that τi could execute on πj under
this situation is given by Eq. 1.

To compute qmax
i,j , we therefore need to know the amount

of time ρi,j which is already reserved on this processor for
the execution of the tasks {τ1, ..., τi−1}.

To compute the value of ρi,j , we assume that for each task
τk already assigned on the platform:

1) we reserved rk time units before its first absolute
deadline dk according to the algorithm presented in the
previous section.

2) we reserved a proportion of time equal to Uk after the
deadline dk such that all future jobs of τk will be able
to be executed on the platform. This technique does not
differ from the PFair approach [1]. However, since the
assignment protocol will be reapplied after the first job
deadline d1 reached in the system, this reserved time
will never be really scheduled. But, the anticipation of
this demand allows to keep a feasible system after d1.

Therefore, the amount of time reserved for τ1 between t
and di (i > 1) is equal to

r1 + U1(di − d1)



Applying this argument to all tasks τk such that k < i, we
get that the amount of processor time ρi reserved for their
execution on the platform is equal to

ρi
def=

i−1∑
k=1

(rk + Uk(di − dk)) (2)

Eq. 2 can be rewritten recursively:{
ρ1 = 0
ρi = ρi−1 + ri−1 +

∑i−1
k=1 Uk(di − di−1)

(3)

Indeed, the amount of time reserved for {τ1, ..., τi−1} within
[t, di] is equal to the time reserved for {τ1, ..., τi−2} within
[t, di−1] (i.e. ρi−1) increased by the time reserved for τi−1

before di−1 (i.e. ri−1) and the amount of time reserved
for all tasks {τ1, ..., τi−1} in the interval [di−1, di] (i.e.∑i−1

k=1 Uk(di − di−1) ).
Eq. 3 gives the amount of time already reserved for tasks

{τ1, ..., τi−1} within [t, di] on all the processors of the plat-
form. To compute the amount of time reserved on one specific
processor πj , we use the two following properties:
• According to the algorithm previously presented, the

amount of time assigned for the execution of τk within
[t, dk] on πj is equal to qk,j instead of rk.

• Only (di − di−1) time units can be reserved on one pro-
cessor in the interval [di−1, di]. Thereby, if for instance
(di − di−1) = 2 and the term

∑i−1
k=1 Uk(di − di−1) = 5

then we assume that two time units are reserved on π1,
the two next time units are reserved on π2 and the last
time unit is reserved on π3. Therefore, the amount of
time already reserved on processor πj in the interval

[di−1, di] is equal to
[∑i−1

k=1 Uk − (j − 1)
]1
0
(di − di−1)

where [x]ba
def= max(a,min(b, x)).

Using these two properties, we get that the amount of time ρi,j

already reserved on each processor πj before the assignment
of τi is given by

ρi,j = ρi−1,j + qi−1,j +

[
i−1∑
k=1

Uk − (j − 1)

]1

0

(di − di−1)

and using the notation U i def=
∑i−1

k=1 Uk it yields{
ρ1,j

def= 0
ρi,j

def= ρi−1,j + qi−1,j +
[
U i − (j − 1)

]1
0

(di − di−1)

B. Example

Fig. 3 shows an example of the assignment of three tasks
on two processors following the algorithm presented in Fig. 1.
The parameters of the tasks are as follow: d1 = t+ 10, d2 =
t + 30, d3 = t + 42, r1 = 5, r2 = 15, r3 = 26, U1 = 0.3,
U2 = 0.8 and U3 = 0.35. We first assign the task τ1 since
it has the smallest deadline. By definition of ρi,j , we get that
ρ1,1 = 0 (i.e. there is still no task assigned on the processor)

30%

30% 100%

Virtual schedule

d1

d1

d1t

t

t

d2

d2 d3

τ1

τ1

τ1

τ2 τ2

τ2 τ2 τ3

τ3

π1

π2

π1

π1

π2

π2

30% reserved for τ1

100% reserved for τ1 and τ2

100% reserved

45% reserved

10% reserved for τ1 and τ2

10%

(a)

(b)

(c)

Fig. 3. Tasks assignment example.

implying that qmax
1,1 = (d1 − t) = 10. We thereby assign all

the remaining execution time r1 of τ1 to π1 (i.e. q1,1 = 5).
Moreover, we reserve 30% of time after d1 to execute τ1 in
the future (i.e. a proportion of time equal to the utilization
factor of τ1) (see Fig. 3(a)). The second task that we must
assign is τ2. Since its deadline d2 is at time t+ 30, we have
to execute the remaining execution time of τ2 in the interval
[t, t+30]. We therefore compute the maximum execution time
qmax
2,1 that τ2 could execute on π1 in this time interval. Since
τ1 is executed during r1 = 5 time units between t and d1

and since 30% of time is reserved to execute τ1 after d1,
we get that ρ2,1 = r1 + U1(d2 − d1) = 11 and therefore
qmax
2,1 = (d2− t)− ρ2,1 = 19. Since r2 = 15, we assign the r2

time units to the processor π1 (i.e. q2,1 = 15). Furthermore, we
reserve 80% of time to execute τ2 after d2. The total proportion
of time reserved on the platform after d2 is thereby equal to
U1 + U2 = 110%. Since we cannot reserve more than 100%
of one processor, we reserve 100% of π1 and 10% of π2 (see
Fig. 3(b)). We obtain that ρ3,1 = ρ2,1+q2,1+1·(d3−d2) = 38
and ρ3,2 = ρ2,2 +q2,2 +0.1(d3−d2) = 1.2. It therefore yields
qmax
3,1 = (d3 − t) − ρ3,1 = 4 leading to the split of τ3 among
π1 and π2. We finally get that q3,1 = qmax

3,1 = 4 and q3,2 = 22
(see Fig. 3(c)).

Note that the assignment protocol will be re-executed after
each job arrival. Therefore, the virtual schedule build after d1

(i.e. the first deadline and thereby the first job arrival in the
system) on Fig. 3 will never be executed but is useful to keep
a feasible task system after d1.

IV. ALGORITHM PROPERTIES

In this section we will present some interesting properties
and conjectures about our algorithm.



A. Time Complexity

Property 1: The time complexity of our algorithm is
O(n ·m).

Proof: To obtain the time complexity of the complete
algorithm, we will compute the complexity of the two phases
presented in Section III.
• Phase 1: During the assignment process, the construction

of the sorted list (named TaskList in Fig. 1) can be
implemented with a complexity of O(n). Indeed if we use
a list of the tasks pre-sorted according to their periods, the
reconstruction of TaskList after each deadline consists
in the merge of two sorted lists. This can be achieved
with a linear complexity [8]. Moreover, the assignment
of the n tasks on the m processors is performed using
two nested loops. The first one has n iterations and the
second one has m iterations. All the operations realized
in the loops can be done in O(1). Therefore, the time
complexity of the assignment procedure is O(n ·m).

• Phase 2: After the assignment procedure, the execution of
EDF on each processor only needs to manipulate a ready
queue. This can be done with a complexity of O(log n).

The overall complexity is therefore O(n ·m).

B. Optimality

Conjecture 1: Our algorithm optimally schedules any fea-
sible set of periodic tasks with implicit deadlines such that∑n

i=1 Ui ≤ m.

The idea behind this conjecture is that our algorithm pro-
poses a valid schedule in the first time slice extending from
time t = 0 to the first deadline d1 in the system (the proof is
not presented here due to space limitation). Moreover, the task
system is still feasible after d1. Then, the algorithm computes
a new repartition of the jobs after d1 such that partitioned
EDF can be used without parallelism in the second time slice
(through the computation of qmax

i,j ) and such that the system of
tasks stays feasible after the second deadline d2 in the system
(through the computation of ρi,j and qmax

i,j ). Repeating this step
after each job arrival (i.e. each deadline in the system), we get
that our algorithm is optimal for the schedule of periodic tasks
with implicit deadlines.

C. Strict Multiprocessor EDF Generalization

Our algorithm is a strict multiprocessor EDF generalization
in the sense that applied on a uniprocessor platform, it
behaves exactly like EDF. We therefore get the following
property:

Property 2: Our conjectured optimal algorithm is a strict
multiprocessor EDF generalization.

Proof: If there is only one processor available in the
platform, at each job arrival in the system, our algorithm
will always assign all tasks on this processor (phase 1 of the
algorithm). Indeed, the available capacity on the processor is
always smaller than or equal to the tasks demand if the task
system is feasible. Therefore, all tasks running on the platform

are scheduled according to EDF between all job arrivals (phase
2 of the algorithm).

It results that our algorithm imposes at most one preemption
at each job arrival when used to schedule a task set on
one processor. In comparison, with some DPFair algorithms
such as DP-Wrap [3] or LLREF [9], there are at least n
preemptions between two job arrivals. However, we do not
say that this property extends when our algorithm is used
on more than one processor. Indeed, the upper bound on the
amount of preemptions on multiprocessor platforms has still
to be studied.

V. CONCLUSION AND FUTURE WORKS

In this paper, we presented a new multiprocessor scheduling
algorithm. We showed that this algorithm is a strict multipro-
cessor EDF generalization and we conjecture that it optimally
schedules periodic tasks with implicit deadlines. Furthermore,
to the best of our knowledge, it is the first multiprocessor
scheduling algorithm that does not use the fairness property
to reach the optimality. With this new approach, we open the
way to a new family of optimal algorithms with new tools to
impact their performances.

However, some research has still to be carried out to reach
our objectives. Therefore, our future works include:

1) formally prove the optimality of our algorithm.
2) extend this algorithm and its optimality proof to the

schedule of set of sporadic tasks with implicit deadlines.
3) quantify the amount of preemptions during the execu-

tion when our algorithm is executed. Furthermore, it
would be interesting to compare this quantity with the
results obtained with EKG, NPS-F and some DP-Fair
algorithms.

REFERENCES

[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportion-
ate progress: A notion of fairness in resource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600–625, 1996.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[3] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor scheduling,” in
Proceedings of the 22nd Euromicro Conference on Real-Time Systems.
IEEE Computer Society, July 2010.

[4] D. Zhu, D. Mossé, and R. Melhem, “Multiple-resource periodic schedul-
ing problem: how much fairness is necessary?” in Proceedings of the
24th IEEE International Real-Time Systems Symposium. IEEE Computer
Society, 2003, p. 142.

[5] B. Andersson and E. Tovar, “Multiprocessor scheduling with few pre-
emptions,” International Workshop on Real-Time Computing Systems and
Applications, pp. 322–334, 2006.

[6] B. Andersson and K. Bletsas, “Sporadic multiprocessor scheduling with
few preemptions,” in Proceedings of the 2008 Euromicro Conference on
Real-Time Systems. IEEE Computer Society, 2008, pp. 243–252.

[7] K. Bletsas and B. Andersson, “Preemption-light multiprocessor schedul-
ing of sporadic tasks with high utilisation bound,” in Proceedings of the
2009 30th IEEE Real-Time Systems Symposium. IEEE Computer Society,
2009, pp. 447–456.

[8] D. E. Knuth, Art of Computer Programming, Volume 3: Sorting and
Searching (2nd Edition). Addison-Wesley Professional, 1998.

[9] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling
algorithm for multiprocessors,” in Proceedings of the 27th IEEE Interna-
tional Real-Time Systems Symposium. IEEE Computer Society, 2006,
pp. 101–110.


