
An Optimal Discrete-Time Based Boundary Fair Scheduler for Sporadic Tasks
in Multiprocessor Real-Time Systems∗

Yifeng Guo, Hang Su and Dakai Zhu
The University of Texas at San Antonio

San Antonio, TX 78249
{ yguo, hsu, dzhu}@cs.utsa.edu

Abstract

Several optimal scheduling algorithms have been studied
recently for various real-time tasks running on multiproces-
sor systems with continuous as well as discrete time. How-
ever, the existing optimal schedulers for sporadic tasks may
incur very high scheduling overhead due to either excessive
number of scheduling points (e.g., for the Pfair-like sched-
uler) or arbitrarily small allocation for tasks (e.g., for the
continuous-time based DP-Fair scheduler). In this paper,
extending the boundary fair (Bfair) scheduler that is opti-
mal for periodic tasks, we investigate an optimal scheduling
algorithm for such sporadic tasks with implicit deadlines in
multiprocessor systems. First, considering the irregular ar-
rivals of sporadic tasks, we discuss how to determine the
next boundary time (i.e., the deadline of a task) to mini-
mize the scheduling points. Then, an example is presented
to illustrate the major scheduling steps that incorporate the
dynamic arrivals of sporadic tasks, followed by the formal
presentation of the scheduling algorithm. We point out our
future work in the end.

1 Introduction

Numerous scheduling algorithms have been proposed in
the last few decades to guarantee various hard and/or soft
timing constraints for different (e.g., periodic, sporadic and
aperiodic) real-time tasks, on both single- and multiproces-
sor systems. Although the scheduling theory for unipro-
cessor systems has been well developed, the scheduling
for multiprocessor real-time systems is still an evolving re-
search field and many problems remain open due to their in-
trinsic difficulties. With the emergence of multicore proces-
sors, there is a reviving interest in scheduling algorithms for

∗This work was supported in part by NSF awards CNS-0720651, CNS-
0855247, CNS-1016974 and NSF CAREER Award CNS-0953005.

multicore/multiprocessor real-time systems and many inter-
esting results have been reported recently.

In this work, we focus on optimal scheduling algorithms
for multiprocessor real-time systems, which can achieve
full system utilization while guaranteeing the schedulability
of tasks. As the first well-known of such scheduling algo-
rithms, the proportional fair (Pfair) scheduler was studied
for a set of periodic real-time tasks with quantum-based tim-
ing requirements [3]. The central idea of Pfair is to enforce
proportional progress (i.e., fairness) for all tasks by ensur-
ing that the scheduling error from the ideal fluid schedule is
within one unit at each and every time unit. Several varia-
tions of Pfair have been studied to improve its performance
[2, 4] or to handle sporadic tasks [1]. Note that, by mak-
ing scheduling decisions at each quantum time point, Pfair
schedulers can incur very high scheduling overhead.

For systems with continuous time, the T-L Plane based
scheduling algorithms have been studied, which make
scheduling decisions at the arrival time or deadline of
tasks [5]. Recently, a generalized deadline-partitioned fair
(DP-Fair) scheduling model was investigated, again for
continuous time based systems [6]. Although DP-Fair can
handle sporadic real-time tasks, the continuous time model
requires to allocate time share for every active task within
any interval (i.e., between adjacent deadlines of tasks),
which can lead to arbitrarily small allocation and thus re-
sult in high scheduling overhead (e.g., context switches).

Observing the fact that a periodic real-time task can only
miss its deadline at its period boundary, we have previ-
ously studied an optimal discrete-time based boundary fair
(Bfair) scheduling algorithm, which makes scheduling de-
cisions and ensures fairness for tasks only at their period
boundaries (i.e., deadlines of tasks) [7]. That is, at each
period boundary, the allocation error for any task is less
than one time unit. We have shown that, compared to
Pfair schedulers, Bfair can significantly reduce the number
of scheduling points and associated scheduling overhead.
However, the old Bfair scheduler cannot handle sporadic
tasks due to their irregular arrival patterns.

1



2 System Models

We consider a set of n sporadic real-time tasks, Γ =
{T1, . . . , Tn}, where each task Ti = (ci, pi) is character-
ized by its worst case computation requirement ci and min-
imum inter-arrival time pi. Here, pi is also Ti’s relative
deadline. That is, we consider sporadic tasks with implicit
deadlines. Moreover, both ci and pi are assumed to be in-
teger multiples of a system unit time and ci ≤ pi. The
weight/utilization of task Ti is defined as wi = ci

pi
, and the

system utilization is U =
∑n

i=1 wi. We further assume that
U = m, where m is the number of available processors.

When an instance of task Ti arrives at time t, it should
be allocated exactly ci time units of a processor within its
active interval from t to t+pi, which is represented as [t, t+
pi). Moreover, the allocation of processors to tasks should
satisfy the following two constraints [4]:

• C1: A processor is allocated to only one task at any
time (i.e., processors cannot be shared concurrently);

• C2: A task is allocated at most one processor at any
time (i.e., tasks cannot be executed in parallel);

3 Scheduling Points for Sporadic Tasks

Note that, the scheduling points of the Bfair scheduler
are tasks’ periodic boundaries, which are actually deadlines
of task instances. For periodic tasks, the boundary times are
fixed as tasks arrive regularly. However, for sporadic tasks,
task instances can arrive at any time provided that they are
separated by the minimum inter-arrival time. Therefore,
finding the next earliest boundary time (i.e., the earliest
deadline) is not straightforward. To minimize the number
of scheduling points and reduce the scheduling overhead,
we would like to have the next boundary time be as late as
possible to get a longer scheduling interval.

At a given boundary time point bk (k ≥ 0), we first add
the task instances that arrive at time bk into the ready queue.
Then, we can categorize tasks into three different types: a).
the active tasks are the ones that have a task instance in the
ready queue; b). the early-completion tasks are the ones
whose deadlines for the current task instances are later than
bk but their task instances have finished their executions
(i.e., they are running ahead); and c). the delayed tasks are
the ones whose minimum inter-arrival time reached before
or at bk but their task instances have not arrived yet.

For active tasks, their current deadlines are known. For
early-completion tasks, their current task instances have fin-
ished their executions and will not miss their deadlines.
Therefore, we only need to consider the next task instance
for such tasks that can arrive no early than the deadline
of their corresponding current task instances. For delayed
tasks, their task instances can arrive as early as (bk + 1).

Note that, for both early-completion and delayed tasks, as-
suming that their next task instances arrive at the earliest
possible time, we can get their expected deadlines.

Therefore, taking all tasks into consideration, the next
boundary time bk+1 should be the earliest deadline of task
instances in the ready queue as well as those that are ex-
pected to arrive in the future. More formally, we have:

bk+1 = min{di|Ti ∈ Γ} (1)

di =





dc
i Ti ∈ Φk

dc
i + pi Ti ∈ Ψk

(bk + 1) + pi Ti ∈ Ωk

(2)

Γ = Φk ∪Ψk ∪ Ωk (3)

where dc
i is the deadline of Ti’s current task instance. More-

over, Φk, Ψk and Ωk represent the sets for active, early-
completion and delayed tasks, respectively, at time bk. After
obtaining the next boundary time bk+1, the enhanced Bfair
scheduler will allocate processors to all tasks and generate
the initial schedule slice for the time interval of [bk, bk+1).

4 An Example

First, we illustrate the major scheduling steps through a
concrete example. Here, the task set consists of seven spo-
radic tasks: T1 = (2, 5), T2 = (3, 15), T3 = (2, 6), T4 =
(20, 30), T5 = (6, 30), T6 = (8, 10), and T7 = (4, 10).
Note that,

∑7
i=1 wi = 3 and 3 processors are assumed.

Suppose that the task instances arrive as follows: two
instances of T1 arrive at time 0 and 6; one instance of T2

at time 1; two instances of T3 at time 2 and 10; and one
instance of T4, T5, T6 and T7 at time 2, 4, 4 and 6 respec-
tively. At the initial boundary time b0 = 0, after adding
the first task instance of T1 into the ready queue, we have
Φ0 = {T1}, Ψ0 = ∅ and Ω0 = {T2, T3, T4, T5, T6, T7}.
From Equation (1), we can find that the next boundary time
is b1 = 5, which is the deadline of T1’s first task instance.

As in the Bfair scheduler, to guarantee all deadlines are
met, all tasks should make appropriate progress. Therefore,
when allocating processors to tasks for the time interval
[b0, b1) = [0, 5), every task needs to get at least its manda-
tory units, which can be calculated as follows: For active
tasks, their mandatory units can be obtained in the same
way as in Bfair; For early-completion and delayed tasks, as-
suming their next instances arrive at their earliest expected
time, their worst case (maximum) mandatory units can be
calculated accordingly as well. Moreover, after allocating
mandatory units, a certain number of optional units should
be allocated to eligible tasks and ensure the accumulate re-
maining work of all tasks is no more than 0.

For the above example, after allocating both mandatory
and optional units for the first interval [0, 5), the tasks get
2, 1, 1, 3, 1, 4 and 1 unit(s), respectively. Note that, for

2



��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

������
������
������
������
������

������
������
������
������
������

1

0

2

1 2 3 4 50

6

T1 arrives

52 73

1

4 1
����
����
����
����
����

����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

������
������
������
������

������
������
������
������

��
��
��
��

��
��
��
��

1

0

2

1 2 3 4 50

2 4

1

3

7

6

T2 arrives

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

1

0

2

1 2 3 4 50

2

6 7 8

4

1 4 6 4 41

6 653

3 7

a. schedule slice at t = 0 b. T2 arrives at time 1 c. schedule slice at t = 5

��
��
��
��
��

��
��
��
��
��

1

0

2

1 2 3 4 50

2

6 7 8 11109

4

43

1 64 1

6

4

7

5

4

6

3

6

4 2 3

1 7

1

0

2

1 2 3 4 50

2

6 7 8 11109

4

43

1 64 1

6

4

7

5

4

6

3

4 2

1 7

6 3

6

d. schedule slice at t = 8 e. schedule slice at t = 11

Figure 1. Example: sporadic task scheduling within two scheduling slices

active task T1, its allocation is real and will be consumed.
However, for other delayed tasks, their allocated units are
only reserved, which may be adjusted if they do not arrive
as expected. After packing tasks’ allocation to processors
following a certain mechanism, the initial schedule slice is
shown in Figure 1(a). Here, the real allocation units are
represented by blank rectangles and reserved units are rep-
resented by shaded rectangles. Moreover, when processors
need to be idle due to, for instance, the lack of active tasks,
the corresponding rectangle is marked with a ’X’. After the
instance of T2 arrives as expected at time 1, the adjusted
schedule is shown in Figure 1(b), where T2’s allocation be-
comes to be real while other tasks’ allocations are adjusted
accordingly assuming that they would arrive at time 3.

At time b1 = 5, after the instances of T3, T4 and T6 ar-
rive and being partially executed, we can find that the next
boundary time is b2 = 8 and the schedule slice is shown
in Figure 1(c). Figures 1(d) and 1(e) shows the schedules
at time 8 and 11, respectively. Note that, for simplicity, we
limit the actual executed units of tasks to be their propor-
tional allocation within each interval. Therefore, although
there are active tasks with unfinished execution times, pro-
cessors can still be idle as shown in the schedules.

5 Sporadic-BFair Algorithm

Algorithm 1 summarizes the major steps of the Sporadic-
Bfair scheduler. In the algorithm, same terms have been
used as in the old Bfair algorithm [7]. At the very beginning,
the task sets are updated with newly arrived tasks being
added to Φk and the next boundary time bk+1 is obtained

(lines 1 and 2). For all tasks, their (expected) mandatory
units are first allocated (lines 4 to 11). Then, the number of
optional units that need to be allocated to ensure appropri-
ate progress of all tasks is determined and allocated (lines
13 and 14). Finally, the remaining work of tasks is updated
and the initial schedule slice is generated (lines 15 to 19).

Algorithm 1 Sporadic-Bfair Algorithm at time bk

1: Update the task sets Φk, Ψk and Ωk;
2: Get the next boundary time bk+1 from Equation 1;
3: /*First, calculate and allocate mandatory units;*/
4: for (∀Ti ∈ Φk ∪Ψk) do
5: mk+1

i = max{0, bRW k
i + (bk+1 − bk) · wic};

6: RW k+1
i = RW k

i + (bk+1 − bk) · wi −mk+1
i ;

7: end for
8: for (∀Ti ∈ Ωk) do
9: mk+1

i = b(bk+1 − (bk + 1)) · wic;
10: RW k+1

i = (bk+1 − (bk + 1)) · wi −mk+1
i ;

11: end for
12: /*Then, find and allocate optional units if needed;*/
13: OU = d∑n

i=1 RW k+1
i e;

14: AllocateOptionalUnits(OU);
15: /*Finally, update workload and generate schedule slice;*/
16: for (T1, . . . , Tn) do
17: RW k+1

i = RW k+1
i − ok+1

i ;
18: end for
19: GenerateScheduleSlice(bk, bk+1);

5.1 Number of Optional Units and Allocation

From Algorithm 1, we can see that the calculation of
mandatory units for tasks is quite straight-forward. How-

3



ever, due to the late arrival of sporadic tasks, it is inevitable
to have some processors be idle (e.g., when there are no
enough active tasks). Therefore, different from the Bfair al-
gorithm that allocates all available time units within a given
interval, it is not trivial to determine the number of optional
units that need to be allocated. With the optional units, we
should ensure appropriate progress of all tasks while guar-
anteeing all allocated (mandatory and optional) units for
tasks can be successfully packed to processors.

Note that, after allocating mandatory units, there is
RW k+1

i < 1 (e.g., it is fair for individual tasks) at
time bk+1. However, to ensure that no required workload
is postponed to the next time interval, we need to have∑n

i=1 RW k+1
i ≤ 0. That is, the whole task set needs to

make proportional progress. Therefore, the number of op-
tional units can be found as OU = d∑n

i=1 RW k+1
i e, where

RW k+1
i is the remaining work of task Ti after it receives its

mandatory units.
To ensure that no task is required to run in parallel (the

constraint C2), not all tasks are eligible for such optional
units. A task Ti is said to be eligible if it is not running
ahead (i.e., RW k+1

i > 0) and not fully allocated (i.e.,
mk+1

i < bk+1 − bk). For eligible tasks to compete the op-
tional units, we have extended the priority with character-
istic value and urgency factor for sporadic tasks and higher
priority eligible tasks will get one optional unit each.

5.2 Schedule Slice Generation

After each task gets its mandatory and optional units,
generating the schedule slice (i.e., packing tasks’ allocation
to processors) brings in new issues. First, for delayed and
early-completion tasks, we should not pack them to pro-
cessors before their earliest arrival times. Second, no task
should be packed to more than one processors at any given
time unit (the constraint C2 in Section 2).

Considering the above requirements, we propose a new
sub-interval based packing algorithm to generate the sched-
ule slice, which adopts the longest task first (LTF) heuristic
and McNaughton packing rule [6]. Suppose that there are
g different possible arrival times for the delayed and early-
completion tasks within the interval [bk, bk+1), which are
denoted as a1, ..., ag (g ≥ 0). Moreover, we assume that
a0 = bk and ag+1 = bk+1. That is, there are (g + 1)
sub-intervals. The x’s sub-interval is denoted as [ax−1, ax)
(x = 1, ..., g + 1). As mentioned early, for active tasks,
their allocations can be packed to any sub-interval. How-
ever, for delayed or early-completion tasks that suppose to
arrive at time ax, their allocations can only be packed to
sub-intervals after time ax.

The packing algorithm will allocate tasks to processors
one sub-interval at a time from the first to the last sub-
interval. For the x’s sub-interval [ax−1, ax), only the tasks

that arrive on or before time ax−1 and still have remaining
allocated units can be packed to processors. To ensure that
there is no parallel execution of tasks during the remain-
ing sub-intervals, we first find the mandatory packing units
for each task Ti, which will be max{0, ri − (bk+1 − ax)},
where ri is the number of remaining allocated units for Ti.
Then, depending on tasks’ remaining allocated units, tasks
will be packed to processors in the LTF order following the
McNaughton rule. Note that, the number of units that are
packed to processors for any task should be no more than
(ax − ax−1), the length of the x’s sub-interval.

5.3 Runtime Schedule Adjustment

Note that, unless the delayed tasks arrive as expected, the
initial schedule slice needs to be adjusted when such tasks
arrive late. That is, in addition to the primary scheduling
points at boundary times, a light-weighted on-line scheduler
(which is similar to Algorithm 1) needs to be invoked to re-
calculated the time allocation for newly arrived and other
delayed tasks and to adjust the schedule based on the current
runtime information about all tasks.

6 Conclusions and Future Works

In this work, we investigate an enhanced Bfair schedul-
ing algorithm for sporadic real-time tasks in discrete-time
based multiprocessor systems. By considering the dynamic
arrival of sporadic real-time tasks, we discuss how to deter-
mine the boundary time (i.e., scheduling points) and present
the major steps for the Sporadic-Bfair algorithm. For our
future work, we will finalize the detailed steps of the algo-
rithm as well as the formal proof on the schedulability and
optimality of the proposed scheduling algorithm. Moreover,
we will conduct extensive simulations and evaluate its per-
formance in terms of reducing scheduling overhead when
comparing to exiting schedulers.

References

[1] James H. Anderson and A. Srinivasan. Pfair scheduling: beyond peri-
odic task systems. In RTCSA, 2000.

[2] J.H. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling of
asynchronous periodic tasks. In Proc. of ECRTS, 2001.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varel. Proportion-
ate progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[4] S. K. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic
tasks on multiple resources. In Proc. of IPPS, 1995.

[5] H. Cho, B. Ravindran, and E.G. Jensen. An optimal real-time schedul-
ing algorithm for multiprocessors. In Proc. of RTSS, 2006.

[6] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. Dp-fair: A
simple model for understanding optimal multiprocessor scheduling.
In Proc. of ECRTS, 2010.

[7] D. Zhu, D. Mossé, and R. Melhem. Periodic multiple resource
scheduling problem: how much fairness is necessary. In RTSS, 2003.

4


