
Scheduling Stochastically-Executing Soft Real-Time Tasks:
A Multiprocessor Approach Without Worst-Case Execution Times

Alex F. Mills
Department of Statistics and Operations Research

University of North Carolina

James H. Anderson
Department of Computer Science

University of North Carolina

Abstract
We introduce a scheduling method where stochastically-
executing soft real-time tasks are assigned to simple spo-
radic servers with predetermined execution budgets. We
outline a proof that using this method, any task system
whose average-case total utilization is less than the num-
ber of processors can be scheduled so that tardiness is
bounded in the average case. The constraint on average-
case utilization is extremely mild compared to constraints
on worst-case utilization because in multiprocessor sys-
tems, worst-case execution times may be orders of mag-
nitude higher than average-case execution times. Unlike
in previous work, we completely separate the determinis-
tic and stochastic analysis, so that if all execution times
are known, an upper bound on tardiness can be computed.
Furthermore, the derived expected tardiness bound de-
pends only on the mean and variance of execution times.
For soft real-time systems where bounded expected tardi-
ness is acceptable, this result eliminates the need for tim-
ing analysis to determine worst-case execution times.

1 Introduction
The focus of this paper is soft real-time workloads speci-
fied as implicit-deadline sporadic task systems. Previous
work on scheduling such workloads has focused almost
exclusively on allocating processing capacity to jobs based
on deterministic worst-case execution times. This is a par-
ticular impediment in the implementation of soft real-time
systems, where some tardiness is acceptable and therefore
the pessimistic assumption that every job may require its
worst-case execution time is unnecessary.

In uniprocessor systems, it is well known that the
earliest-deadline-first (EDF) scheduling algorithm can
schedule any system whose utilization is at most one,
without missing any deadlines; therefore, both hard and
soft real-time workloads can be scheduled on a unipro-
cessor without any loss of utilization. In multiprocessor
systems, Leontyev and Anderson showed that a number
of global scheduling algorithms ensure bounded tardiness
without utilization loss [4]; thus, soft real-time workloads
for which bounded tardiness is sufficient can be supported
by such systems. This result extended an earlier proof by

Devi and Anderson that showed the same of the global
earliest-deadline-first (GEDF) scheduling algorithm [2].
In these results, utilizations are defined by assuming worst-
case execution costs.

Previous work by Mills and Anderson questioned
whether using a deterministic worst-case execution time
to compute utilization always makes sense in the realm
of soft real-time systems [5]1. The actual worst-case ex-
ecution time of a task may be observed so infrequently
that it may not be worth dedicating such a large amount
of processing time to that task if bounded tardiness is ac-
ceptable. Moreover, timing analysis tools may add addi-
tional pessimism to the calculation of worst-case execu-
tion times. These problems are exacerbated on a multi-
processor, where the worst-case scenario may be even less
likely but even more costly. Mills and Anderson demon-
strated that processing capacity could be allocated based
on average-case execution times, with the result that the
expected (mean) tardiness of a task is bounded when the
system is scheduled using GEDF. Unfortunately, the ex-
pected tardiness bound established by them still depends
on worst-case execution times.

In this paper, we consider the sporadic stochastic task
model (sporadic interrelease times and stochastic execu-
tion times), as in [5]. We show that reliance on worst-case
execution times can be avoided by scheduling the sporadic
stochastic tasks on a system of simple sporadic servers.
Each server is a deterministic soft real-time task, and each
server’s utilization is on the order of the average-case uti-
lization of its corresponding sporadic stochastic task.

Unlike in the previous work, a job in such a system
does not necessarily run even when it has the highest pri-
ority. Instead, a job may only run when its task’s server
executes. This is a similar idea to that proposed but not
formalized by Calandrino et al. [1], where jobs that did
not complete by the time their execution budget ran out
could “steal” from the budget of the next job. Not only do
we formalize this concept, but our approach is also more
sophisticated, because the server budgets may be replen-

1The published version of [5] contains a small error in the tardiness-
bound derivation; a corrected version can be found at http://cs.
unc.edu/˜anderson/papers/.

http://cs.unc.edu/~anderson/papers/
http://cs.unc.edu/~anderson/papers/


ished more often than the jobs are released. Hence, if the
job (of the same task) after an over-running job is sepa-
rated by enough time, it may not be necessary to steal the
execution budget of the next job, but rather to simply con-
sume the budget of another instance of the server task in
the interim time. In this paper, we derive expected tardi-
ness bounds under this scheduling approach; such bounds
were not considered in [1].

In [5], jobs of every task could potentially be affected
by a single job with a much longer-than-average execu-
tion time. In this paper, because the servers have a limited
budget in each period, only jobs of the same task can be af-
fected by such overruns. There are potential disadvantages
in this case, but the result is that in both the uniprocessor
and multiprocessor cases, sporadic stochastic tasks have
bounded expected tardiness. Moreover, unlike our previ-
ous work, the expected tardiness bounds do not depend on
worst-case execution times—in fact, tasks that do not have
a worst-case execution time can still be scheduled. The re-
sulting bounds also lead to an interesting decision problem
in allocating execution times to the servers.

Goal. The goal of this work is to develop a scheduling
policy where sporadic task systems with stochastic exe-
cution times can be scheduled such that average-case (ex-
pected) tardiness is bounded, but where the bound depends
on the execution times only in terms of the server budgets,
which in turn can be written in terms of the mean and/or
variance of execution times.

In the remainder this WIP paper, we first introduce the
system model, and then explain the proposed scheduling
policy. Finally, we give a brief outline of the analysis.

2 System Model
We consider a system τ = {τ1, τ2, . . . , τn} consisting of
n sporadic stochastic tasks. The sporadic stochastic model
is as follows.

A sporadic stochastic task τi is specified by its pe-
riod, pi, and its execution time distribution functionGi(x),
which gives the probability that a randomly selected job of
τi requires at most x time units to execute. We require this
distribution to have finite mean and variance. Any of the
standard probability distributions used for modeling, such
as uniform, exponential, Weibull, etc., have this property.
Moreover, in this paper we explicitly do not require these
tasks to have a worst-case execution time (WCET) (that
is, we do not require the existence of a finite x for which
Gi(x) = 1; if such an x exists, we do not have to know
it to do the analysis). In fact, nowhere in this paper do we
use worst-case execution times. We denote the expected,
or mean, execution time of τi as ēi. We denote the jth job
of τi by τi,j . We denote the actual execution time of τi,j
by the random variable Xi,j . We denote the release time
of τi,j by ri,j and the deadline of τi,j by di,j . Throughout

this paper, all deadlines are assumed to be implicit; that is,
di,j = ri,j + pi.

The notion of a sporadic stochastic task is a generaliza-
tion of that of a sporadic task that is widely used in the
real-time scheduling literature, where every task requires
ci time units to complete. In particular, we can model the
deterministic case using our notation by setting

Gi(x) =

{
1 if x ≥ ci,
0 if x < ci.

We say that a system of sporadic stochastic tasks is sta-
ble if and only if its total expected utilization,

ūsum =
∑
τi∈τ

ēi
pi
,

is strictly less than the number of processors (strict in-
equality is needed for technical reasons in the proofs). We
assume throughout the paper that τ is stable.

Simple Sporadic Servers. Each task τi ∈ τ will run on
a unique simple sporadic server Ti, which will carefully
control the amount of time that τi is allowed to execute
during each of its periods. This will therefore ensure that
worst-case execution times do not appear in the tardiness
bound.

Let T = {T1, T2, . . . , Tn} be a system of simple spo-
radic servers. Each simple sporadic server Ti has period pi
and execution budget ei. While pi is the same as the pe-
riod of τi, ei is a deterministic execution budget: it is not
related to Gi(x), the execution time distribution of τi, ex-
cept that we require ei > ēi (strict inequality is explicitly
required in one of the results we use later in the paper).

The budget of Ti is replenished whenever Ti is eligible
and backlogged. Ti is eligible if and only if it has never had
its budget replenished or at least pi time units have elapsed
since its last replenishment. Ti is backlogged if and only if
there is pending work of τi. We call Ti,j the jth instance of
Ti. The replenishment time of Ti,j is denoted byRi,j . The
deadline of Ti,j , denoted Di,j , is the earliest time at which
Ti,j+1 could be replenished, which is Di,j = Ri,j + pi
(i.e., server deadlines are implicit).

The budget of Ti is consumed whenever it has the high-
est priority according to the scheduling algorithm in use.
For example, if the scheduling algorithm is GEDF, then
the budget of Ti is consumed whenever it has one of the m
earliest deadlines.

It should be clear that the replenishments of Ti do
not necessarily correspond to the releases of τi. In par-
ticular, there are at least as many replenishments of Ti
as there are releases of τi. From existing results, if we
treat Ri,j as a release time and Di,j as a deadline, then
T = {T1, T2, . . . , Tn} is schedulable as a soft real-time



1,1

1T

0

2,1 3,1

4 8 12

0 4 8 12

2T

0 4 8 12

0 4 8 12

2

1

1,2 2,2

Execution Suspension

(a)

(b)

Figure 1: Example servers and sporadic stochastic tasks
on a uniprocessor. (a) For servers T1 and T2, ↑ denotes
replenishment time and ↓ denotes deadline; the budget is
shaded for each server. T1 and T2 are scheduled using
EDF. (b) For the sporadic stochastic tasks τ1 and τ2, ↑ de-
notes release time and ↓ denotes deadline; the actual ex-
ecution times are shaded, while suspensions are shown in
white.

system (i.e., each job of Ti will receive ei units of execu-
tion time within a bounded amount of time from Di,j) if∑
i
ei
pi
≤ m.

2.1 Example Task System

Figure 1 shows example sporadic stochastic tasks τ1, with
period 5.0 and execution cost drawn from some distribu-
tion with mean 2.0, and τ2, with period 3.0 and execution
cost drawn from some distribution with mean 0.75. τ1,1
is released at time 0.0 and has execution cost 4.0, τ1,2 is
released at time 6.3 and has execution cost 1.5, and τ1,3
is released at time 11.3 and has execution cost 2.0. τ2,1 is
released at time 0 and has execution cost 0.8 and τ2,2 is re-
leased at time 3.0 and has execution cost 1.7. The schedule
is not shown after time 13.0.

The server T1 corresponds to τ1. It has period 5.0 (the
same as τ1, and budget 3.0 (which exceeds ē1). Server T2
corresponds to τ2. It has period 3.0 and budget 1.0. We

can verify that T is schedulable by EDF on a uniprocessor
because 3/5 + 1/3 ≤ 1.

We will use the example given in Fig. 1 to illustrate
some important properties of the considered scheduling
approach.

Initial Replenishment. Both servers are replenished at
time 0 because they are both eligible (having never been
replenished before) and backlogged (because both τ1 and
τ2 release jobs at that time). The eligibility times are set to
5 (for T1) and 3 (for T2).

Consumption Rule. The budgets are consumed accord-
ing to how the server instances of T are scheduled. In the
example, T is scheduled using EDF on a uniprocessor. For
example, T2 begins consuming its budget first at time 0
because T2,1 has a higher priority (earlier deadline) than
T1,1.

Idleness. T is scheduled without regard for τ , which
may cause idleness. Although τ2,1 finishes executing at
0.8, T2 continues its consumption, even though this means
that the processor is idle. In reality, it would be possible to
remove this idleness and improve performance; however,
to ease the analysis we will assume that T is scheduled as
if the scheduler knows only the release times of τ .

Suspension of Jobs. At time 4, the budget of T1,1 has
been consumed, so τ1,1 suspends its execution. At time
5, T1 is eligible, so its budget is replenished, even though
τ1,2 has not yet been released. τ1,1 resumes executing and
continues executing until time 7, when it completes.

Replenishment Rule. The budget of a server is replen-
ished only when it is eligible and backlogged. Therefore, a
replenishment will not necessarily occur at the next server
deadline. For example, T1 becomes eligible for replen-
ishment at time 10 but is not replenished until time 11.3
because no job of τ1 can execute until that time.

2.2 Remaining Work Process

We define the remaining work process Wi,k to be the
amount of work of τi due to jobs with deadlines at or prior
to Di,k that has not completed by the time Ti,k has com-
pleted. In a deterministic system, each job of τi would
require only the budget of a single job of the server Ti; in
the stochastic system, some jobs will run longer and hence
some work will be left over to run after Ti has been replen-
ished. It is this amount of work that we keep track of in the
remaining work process.

For example, in Figure 1,W1,1 = 1 because there is one
unit of work of τ1, specifically the unfinished part of τ1,1,
which has a deadline at or prior to time 5 but which does
not complete by the time T1,1 completes (which is time 4).
W1,2 = 0 because all the work of τ1 with a deadline at or
prior to time 10, namely τ1,1, completes by the time T1,2
completes at time 9.



3 Outline of Analysis
Proposition 1. Any job of τi with deadline at most Di,k

completes no later than the actual time at which the server
instance Ti,k+dWi,k/eie completes.

Proof. Take an arbitrary job τi,j where di,j ≤ Di,k. Either
τi,j completes by the time Ti,k completes, or it does not.
If it does, the result is immediate, because Ti,k completes
before any later job of Ti (in particular, Ti,k+dWi,k/eie).

Otherwise, there is some work remaining on τi,j when
Ti,k completes. The amount of such work is no more than
Wi,k, because Wi,k by definition includes all work due to
jobs of τi with deadlines at mostDi,k that did not complete
by the time Ti,k completed.

Because all work of τi is completed sequentially, we
can guarantee that the remaining work of τi,j is completed
once Ti has executed for at least Wi,k time units following
the completion of Ti,k. Because each instance of Ti exe-
cutes for ei time units when there is pending work of τi,
this means that the remaining work of τi,j will complete
no later than the time when Ti,k+dWi,k/eie completes.

For example, in Figure 1, τ1,1 has a deadline no later
than D1,1 = 5, and dW1,1/e1e = 1. By Lemma 1, τ1,1
should complete no later than the time that T1,2 completes,
namely time 7. Indeed, we see that this is the case, as τ1,1
completes at time 6.

Proposition 1 forms the basis for the remaining anal-
ysis, because it relates the completion time of a sporadic
stochastic job with the completion time of a particular
server instance. The next proposition describes those com-
pletion times on a uniprocessor.

Proposition 2. When T is scheduled on a uniprocessor us-
ing EDF, the completion time of Ti,dk+Wi,k/eie is no later
than Di,k + dWi,k/eiepi.

Proof. In the case where Wi,k = 0, the lemma simply
states that Ti,k completes by Di,k, which follows immedi-
ately from the optimality of EDF on a uniprocessor.

In the case where Wi,k > 0, we have Ri,k+1 =
pi + Ri,k because Ti is eligible and backlogged, and
replenishments of Ti continue to occur every pi time
units until all remaining work of τi, including the work
in Wi,k, is completed. Therefore, Ri,dk+Wi,k/eie oc-
curs dWi,k/eiepi time units after Ri,k does; i.e., at time
Di,k + (dWi,k/eie − 1) pi.

Because T is scheduled using EDF, Ti,dk+Wi,k/eie com-
pletes no later than its deadline, which is pi time units
later than its replenishment time, i.e., at time Di,k +
dWi,k/eiepi.

A similar proposition can be proved for multiproces-
sor scheduling, where T is scheduled using a global al-
gorithm with bounded tardiness. A number of scheduling

algorithms, such as global earliest-deadline-first (GEDF),
can schedule T on a multiprocessor with bounded tardi-
ness [2, 3]. In particular, any algorithm with window-
constrained priorities has this property [4].

The results proved so far lead almost directly a bound
on the completion time of an arbitrary job τi,j in terms of
the remaining work process associated with a correspond-
ing server instance. In the following paragraphs, we out-
line the remaining analysis.

Analysis of Remaining Work Process. In order to de-
rive a tardiness bound for an arbitrary job τi,j , we need
to examine the remaining work process. We can write a
recursion for the remaining work process involving the ac-
tual execution times of all the jobs in τi and the execution
budget ei. This recursion implies that if all the execution
times are known, an exact upper bound on tardiness can be
calculated.

Because actual execution times are not actually known
in advance, we apply known results from stochastic pro-
cesses to examine the behavior of the remaining work pro-
cess. For example, we write an expression for the expected
(average) remaining work. Such an expression leads to the
derivation of an average-case tardiness bound for the spo-
radic stochastic tasks.

Choice of Execution Budgets. We stated the problem as
if the execution budgets of the servers were predetermined.
In fact, the execution budget for Ti may be chosen in any
way such that ēi < ei ≤ pi. The choice of execution
budgets affects the tardiness bound, and hence it should be
treated as a design decision. It is possible to ensure that ex-
ecution budgets are chosen in such a way that they depend
only on mean and variance of the execution time distribu-
tions, so that worst-case execution times do not appear in
the final tardiness bounds.

References
[1] J. Calandrino, J. H. Anderson, and D. Baumberger. A hybrid

real-time scheduling approach for large-scale multicore plat-
forms. In Proceedings of the 19th Euromicro Conference on
Real-Time Systems, July 2007.

[2] U. C. Devi and J. H. Anderson. Tardiness bounds under
global EDF scheduling on a multiprocessor. In Proceedings
of the 26th IEEE Real-Time Systems Symposium, 2005.

[3] J. Erickson, S. Baruah, and U. C. Devi. Improved tardiness
bounds for global EDF. In Proceedings of the EuroMicro
Conference on Real-Time Systems (ECRTS), 2010.

[4] H. Leontyev and J. H. Anderson. Generalized tardiness
bounds for global multiprocessor scheduling. In Proceed-
ings of the 28th IEEE Real-Time Systems Symposium, 2007.

[5] A. F. Mills and J. H. Anderson. A stochastic framework for
multiprocessor soft real time scheduling. In Proceedings of
the 16th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, 2010.


	Introduction
	System Model
	Example Task System
	Remaining Work Process

	Outline of Analysis

