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Abstract

A purely functional model of computation, called P
FRP, offers a new paradigm for building reactivdtware.
By allowing static priority assignment, P-FRP guatees
that, when a higher priority task is released, fystem will
immediately preempt any lower-priority tasks thaaynbe
executing at that time. To maintain the atomicityerecu-
tion, changes made to the system by an aborted assk
rolled back. This gives P-FRP a unique executioraggm
as it does not fit into the strict definitions dfet classical

preemptiveor non-preemptive models of execution. Sinc

preemptions are accompanied by cache related oaeide
which affect schedulability, real-time researchbesre been
involved in developing techniques for reducing tiuenber
of preemptions. However, most of these studie$ wlita
the preemptive model, where the notion of criticetant
and optimality of the rate-monotonic priority assment
hold true. In previous works, we have shown thatrésults
for critical instant and optimality of the rate-matonic as-
signment do not hold true in P-FRP. Hence, it iknown if
available results for the preemptive model can depded
‘as is’ for P-FRP. In P-FRP, the additional ‘abortost
incurred during a preemption, makes preemption otidn
an important tool to enhance the schedulabilitytred task
set. In this paper, we evaluate existing technicares pre-
sent new ones for reducing the number preemptior-i
FRP.

1. Introduction

Reactive programming is a paradigm where progra
variables dependant on external input are autoaiBtiap-
dated when any change in the input occur. For el@aogm-
sider a functionf(x,y) «— x + y: x,y 00 external input.In
reactive programming, any change in the value thieek or

y will result in f(x,y) being re-evaluated by the mechanism og

the reactive programming system. Hence the valuigxof)
will continuously change over time as input valua®
changed. This programming style is used for writgajt-
ware in reactive systems many of which are reag-timna-
ture. Reactive programming has been implementednin
imperative language [6], as an Object-Oriented rh{2i2]
and in the Functional Programming Model [29].

Functional programming is based on the mathematicglg

principles of lambda calculug-alculus). A formal defini-
tion of functional programming was given by Backbsy,
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introducing the FP programming language [5]. Sitioen
many flavors of Functional languages have beenldped
including OCaml [9], Haskell [15] and Scheme [2Blinc-
tional languages are also called declarative laggsias they
are mainly concerned with the definition of compiataal
logic rather than the control flow. Since they fisectional
evaluation, the execution of a functional prograoesi not
require variables and other mutable data that sepits the
state of the execution. (In practice however, fasesof use
some shared and mutable data is allowed at theetise of
@e programmer. Onlypurely functionallanguages do not
allow any use of mutable data).

Using the Functional paradigm in reactive prograngmi
offers the advantage of an inherently safe progriaugmnvi-
ronment for writing software. Functional Reactivegram-
ming has been implemented for applications likeotims
[23] and embedded controllers [18]. FRP [29] wasetie
oped as a domain specific language on Haskell. bsesuof
FRP was used to develop RT-FRP [27] where the spade
time cost of execution is bounded. The resourcenthoesss
of RT-FRP makes it well suited for embedded systefns
compilation strategy is proposed to convert a niediRT-
FRP language into efficient imperative code [28heTan-
guage of this new system called E-FRP, is for nsembed-
ded real-time controllers, and has been tested email
microcontroller driven robot. The event executior&-FRP
follows the simplefirst-in-first-out order. This may cause
these events to miss their deadline leading to rpiaiéy
catastrophic results in real-time systems. To aveecthis, a

riority based E-FRP system called priority-bas@&PHP-
P) [17] has been developed. P-FRP retains thet ega-
putational semantics of E-FRP but uses fixed gsiarthed-
uling to pre-assign a priority number to every d@vieefore
execution. Hence, P-FRP offers guarantees for teston-
iveness and resource boundness, making it ideaidmory
nd power constrained systenitowever, a requirement in
the functional programming model is that the statehe
system cannot be changed, and no function can biaee
effects. To maintain this guarantee of statelesewion, the
functional programming paradigm requires the exeaubf
a function to be atomic in nature. To comply wiltistre-
quirement, as well as allow preemption of loweropty
ents, P-FRP implements a transactional modelxetie
n. Using only a copy of the state during evertcgssing
and atomically committing these changes at the anthe
event handler (otask, a multi-version commit model of
execution is implemented. This ensures that hagdsin
event is an “all or nothing” proposition, and eresithe at-
omicity of handling an event.



In P-FRP, a preempted task is aborted and hastartre
when no higher priority tasks are available for ansn.
The time spent in the aborted execution of a lowarjy task
is termed theabort cost. As an illustration, consider twc
tasksty, T, with execution times 4 and 3, respectively, with
having a higher priority. Let the arrival perioafst,, T, be 8
and 12, and release times be 0 and 3 respectilkgy. exe-
cution of this task set in P-FRP is shownHigure 1(a)
Sincert, is released first, it starts execution but isepmpted
by the release af, at time 3. Aftert, completes execution at
time 6,1, commences execution but is unable to comple
before the release of its second job at time 9.tirhe spent
on the aborted execution ofin the interval [0,3) is the abort
cost induced om; by 1,.

In this example, the task can be made schedulaple
changing the release offset Bfto 0. With this change 1,
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Figure 1(a): Task execution showing the abort cost inducet; &y T,, causingr; to have aleadline

miss at time 9. T1 and T2 represent taskdt, respectively.
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starts execution ﬁl’St, and both tasks will be atbleomplete Figure 1(c): If priorities are reversed, such thathas the higher priority then both tasks are sdhedu

processing in their feasibility interval of [0, 24lrigure

1(b)). The tasks will also be schedulable if the ptiesi oft,

andt; are reversedHigure 1(c), or the preemption oft; is

deferred Figure 1(d), allowing the ¥ job of 1, to complete
execution. Clearly, there are several techniquas ¢an be
used to reduce the number of preemptions in P-HREhis

paper, we will present offline methods that analtm task
set and determine changes that can be made iattagkites
or the scheduling policy that reduce the numbepreemp-
tions.

1.1 Related Work

The transactional model of execution of P-FRP risi-si
lar, but not same, as the execution model founddk-free

and transactional memory systems. From previousk wo

[1,2,3,13,17,24] on these models it is easy toudedhat the
temporal characteristics of transactional modelguite dif-
ferent from the standard model of preemptive and-n@re-
emptive execution that have been the main focusaiftime
research. Several researchers have looked intoodeethat
improve the schedulability by reducing the numbépie-
emptions, and many approaches have been proposéiefo
preemptive model. In this model, the state of amg-p
emptable task has to be stored temporarily in heaRead /
write operations to the cache can be expensivenanidniz-
ing such costs has been the primary motivatioreducing
the number of preemptions.

Wang and Saksena [30] have applied preemptio

threshold in fixed priority scheduling. Definingpageemption
threshold allows the scheduler to allow preempfamonly
those tasks whose priority level is below the thodds.
Hence, preemption threshold allows the system fdament
a hybrid preemptive / non-preemptive schedulingcyolThe
ThreadX [12] RTOS is an example of a commerciaten
allowing definition of preemption threshold. In [1%he au-
thors propose a scheme to avoid preemptions inepsats
using support from dynamic voltage scaling. A sild
voltage scale up is used to hasten the executidowedr pri-
ority tasks. However, this scheme is limited in gamse that
it is useful in cases where the processor is npaloa of
running at full speed for longer durations. Inmat cases,
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Figure 1(d): If the preemption of, by the £ job oft, is deferred, both tasks are schedulable

the processor is run at full speed and energy dgdiion
algorithms are used to slow down the tasks witledfgicting
real-time schedulability. The authors propose agothp-
proach of delayed preemption, where the start bfgaer
priority tasks is delayed to allow a lower prioritycomplete
execution.

Dobrin and Fohler [10] have presented several tech-
niques to reduce the number of preemptions by dgitign
fask attributes using Integer Linear ProgrammingP)l
However, as shown in [10] reduction in preempticres
come with a cost of inflexibility in task executionn [7],
response time analysis under deferred preemptoopera-
tive scheduling has been presented. In a cooperstivedul-
ing policy tasks are broken up into several norepnetable
regions, boundaries of which are classified as mppi®n
points. It has been unknown so far, if any of thege
proaches can be adopted for P-FRP.

In previous work for P-FRP, response time analgsid
priority assignment strategies have been discudadd], it
has been shown that the rate-monotonic prioritjgassent
is not optimal and determining an optimal priordgsign-
Hent for P-FRP is being done in ongoing work.

2. Basic Conceptsand Execution M odel of P-FRP

In this section we introduce the basic concepts tard
notation used to denote these concepts in theofdbe pa-
per. In addition, we review the P-FRP executiordet@nd
assumptions made in this study.

2.1 Basic Concepts

Essential concepts for P-FRP are tasks and thedcas
ated priority, their associated time period anddbecept of
arrival rate and their processing time; the concé trace
and task jobs therein. All tasks parameters anenasd to be



known a priori. The notation and formal definitions for made duringcopy andrestoreoperations which is explained

these concepts as well as a few others used ipaper are in the following paragraph.

as follows In P-FRP, when a task starts processing it creates

‘scratch’ state, which is eopyof the current state of the sys-

tem. Changes made during the processing of this das

maintained inside such a state. When the taskdrapleted,

- . the ‘scratch’ state irestoredinto the final state in an atomic

*  Thepriority of T L Ty is pric. If pric > prj thent, has a operation. Therefore during the restoration andycmpera-
h|gher pr|0r|'Fy tha,rtj . . tions the task being executed cannot be preemptdrigher

* Ty is thearrival time period between two successive priority tasks. Both copy and restore operatiomeoive

e Lettask set 'y = {14, Tp,..., T} be a set ofn periodic
tasks, and;.represent then" job of taskg;

jobs oftcandr, = 1/ Txis thearrival rate of T simple copy of variables, which takes only a fractof the
*  Ccis theworst-case execution tlmefortThk_ execution time of a task. Hence, any blocking whickpy
*  Rcmrepresents theelease time of them™ job of i and restore operations can induce on a higherityritask,

+ @, represents theelease offset which is the release time have been ignored in this study. For reducing preiems,
of the first job ofty. Or, ®, =R;. HenceR = ®¢ + the only task attributes that can be modified aeerelease

(Mm-1)T, offsets and priority assignment. The task arrivates and
o [tyty) represent thaéime window for analyzing gaps, worst-case execution times are assumed constant.
such that:Ot[ty,ty), t;<t<t, Ot; #t, In response time analysis for fixed-priority schigay a

« Dy is therelative deadline of 1,. If some job oft, is critical-instant of release is assumed. Critical instant is the

released at tim&, ,, thent, should complete processingtime, at which task releases lead to the worst-casgonse

by time R + Dy, otherwiset, will have adeadline time (WCRT) [20] of the task being analyzed. Initteemi-
miss. In this paperD, = T, nal work, Liu and Layland [20] showed that in fixpdority

A feadbility interval is the time intervalt], t, + H)  Scheduling for the preemptive model, the criticetant for a

such that if all tasks are schedulabletip {4 + H) then lower priority tasktj occurs when it is released at the same

the tasks will also be schedulable in the timerirmtk[0, time as all higher priority tasks. As shown in [&]y P-FRP,
Z): Z-», H is the length of the feasibility interval anda synchronougelease of; and higher priority tasks is not
ty is its start time guaranteed to result in the WCRT ©f Methods to deter-
» Interference onty is the action, where the processing ofmnine WCRT in P-FRP are discussed in [2].
Ty is interrupted by the release of a higher priotityk. We now look at two methods that can be used tocedu
In P-FRP, an interference forcgsto abort and re-start the number of preemptions in P-FRP. First, we labkhe
later task attributes that can be changed, and secorallpok at
modifications to the scheduler which can reduceniimaber
of preemptions.
2.2 Execution Model and Assumptions

For this study all tasks are assumed to executeuni- 3 M odificationsin Task Attributes
processor system and have no precedence constiaihéen
job of a higher priority task; is released it can immediately ; ; . .
preempt a lower priority task, and changes madethigy to de_f!ne a pree_zmptlon. _They offer SOIUt'O.nS tmdyeach
lower priority task are rolled back. The lower pitp task cond|t|0n,_ e_f'fec_tlvely av0|d|ng_ t_he _preempﬂon. \énimeth-
will be restarted when the higher priority task bampleted ods fo_r ellmlngtmg each condition in P'F.RP armgeievel-
processing. When some task is released it enferscassing oped n ongoing work, we present a brief overviéveach
gueueQ, which is arranged by priority order such that alFechnlque.
arriving higher priority tasks are moved to the dhed the 31 prjority Reassignment for Individual Jobs
gueue. The length of the queue is bounded, andvaadri-
stances of the same task can be present in thee qaiethe
same time. This requires a task to complete proupdse-
fore the release of its next job. To maintain tieiguirement,

we assume a hard real-time system with task demeljual in [10], we will reverse the priority order for gnihose indi-
to the time period between jobs. Hence vidual jobs which interfere with each other. ByIHirig pri-

OKOT,, Dy = T ority inequalities for all interfering jobs, an ILf®rmulation
' is derived, which is then solved to determine joWisose
priorities have to be modified. However, a sideeff of
making this change, is bifurcating jobs whose |itsfoorder
has been changed into individual tasks themsetesh new
tasks are referred to as artifacts in [10].

Dobrin and Fohler [10], have identified three caiadis,

In [10], each job of a task is individually analgzéor
preemption. A preemption can occur if some highérity
task interferes with the execution of a lower gtiotask. As

Once a task; entersQ two situations are possible. If a task
of lower priority than is being processed, it will be immedi-
ately preempted and, will start processing. If a task of
higher priority tharr; is being processed thenpwill wait in
the Q and start processing only after the higher prraisk
has completed. An exception to the immediate préiem|s



3.2 Release Offset of Tasks 5.
Preemptions can be avoided by changing the retifase

Conclusions and Future Work

We have presented a brief overview of techniquas th

sets of higher priority tasks. This has been itatsd infig- il be adopted to reduce the number of preemptianB-
ure 1(b) However, changing the release offset of a task {erp. Most of these techniques are similar to thesqore-
avoid preemption of one job changes the releasestifi all - sented in [7,10,30], but will be modified to work P-FRP
jobs of the same task. This can possibly lead tfit@dal eyecution model. In ongoing work, algorithms andrfal
preemptions of future jobs of the same or diffetask, thus methods to implement these techniques are beinglajgad.

affecting the schedulability of the task set. Henaéier Experimental evaluations using synthetic task sétl pre-
changing the offset for a task, a schedulabilitglgsis in the  gented methods will also be done.

feasibility interval of the task set has to be done
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