
Abstract 

A  purely functional model of computation, called P-
FRP, offers a new paradigm for building reactive software. 
By allowing static priority assignment, P-FRP guarantees 
that, when a higher priority task is released, the system will 
immediately preempt any lower-priority tasks that may be 
executing at that time. To maintain the atomicity of execu-
tion, changes made to the system by an aborted task are 
rolled back. This gives P-FRP a unique execution paradigm 
as it does not fit into the strict definitions of the classical 
preemptive*or non-preemptive models of execution. Since 
preemptions are accompanied by cache related overheads 
which affect schedulability, real-time researchers have been 
involved in developing techniques for reducing the number 
of preemptions. However, most of  these studies deal with 
the preemptive model, where the notion of critical instant 
and optimality of the rate-monotonic priority assignment 
hold true. In previous works, we have shown that the results 
for critical instant and optimality of the rate-monotonic as-
signment do not hold true in P-FRP. Hence, it is unknown if 
available results for the preemptive model can be adopted 
‘as is’  for P-FRP. In P-FRP, the additional ‘abort’ cost 
incurred during a preemption, makes preemption reduction 
an important tool to enhance the schedulability of the task 
set. In this paper, we evaluate existing techniques and pre-
sent new ones for reducing the number preemptions in P-
FRP.  

1. Introduction 

Reactive programming is a paradigm where program 
variables dependant on external input are automatically up-
dated when any change in the input occur. For example con-
sider a function: f(x,y) ← x + y: x,y ∈ external input. In 
reactive programming, any change in the value of either x or 
y will result in f(x,y) being re-evaluated by the mechanism of 
the reactive programming system. Hence the value of f(x,y) 
will continuously change over time as input values are 
changed. This programming style is used for writing soft-
ware in reactive systems many of which are real-time in na-
ture. Reactive programming has been implemented in an 
imperative language [6], as an Object-Oriented model [22] 
and in the Functional Programming Model [29].   

Functional programming is based on the mathematical 
principles of lambda calculus (λ-calculus). A formal defini-
tion of functional programming was given by Backus, by 
                                                 
* This work is supported in part by U.S. National Science Foundation under 
Award no. 0720856 

introducing the FP programming language [5]. Since then 
many flavors of Functional languages have been developed 
including OCaml [9], Haskell [15] and Scheme [25]. Func-
tional languages are also called declarative languages as they 
are mainly concerned with the definition of computational 
logic rather than the control flow. Since they use functional 
evaluation, the execution of a functional program does not 
require variables and other mutable data that represents the 
state of the execution. (In practice however, for ease of use 
some shared and mutable data is allowed at the discretion of 
the programmer. Only purely functional languages do not 
allow any use of mutable data). 

Using the Functional paradigm in reactive programming 
offers the advantage of an inherently safe programming envi-
ronment for writing software. Functional Reactive Program-
ming has been implemented for applications like robotics 
[23] and embedded controllers [18]. FRP [29] was devel-
oped as a domain specific language on Haskell. A subset of 
FRP was used to develop RT-FRP [27] where the space and 
time cost of execution is bounded. The resource boundness 
of RT-FRP makes it well suited for embedded systems. A 
compilation strategy is proposed to convert a modified RT-
FRP language into efficient imperative code [28]. The lan-
guage of this new system called E-FRP, is for use in embed-
ded real-time controllers, and has been tested on a small 
microcontroller driven robot. The event execution in E-FRP 
follows the simple first-in-first-out order. This may cause 
these events to miss their deadline leading to potentially 
catastrophic results in real-time systems. To overcome this, a 
priority based E-FRP system called priority-based FRP (P-
FRP) [17] has been developed. P-FRP retains the exact com-
putational semantics of E-FRP but uses fixed priority sched-
uling to pre-assign a priority number to every event before 
execution. Hence, P-FRP offers guarantees for both respon-
siveness and resource boundness, making it ideal for memory 
and power constrained systems. However, a requirement in 
the functional programming model is that the state of the 
system cannot be changed, and no function can have side 
effects. To maintain this guarantee of stateless execution, the 
functional programming paradigm requires the execution of 
a function to be atomic in nature. To comply with this re-
quirement, as well as allow preemption of lower priority 
events, P-FRP implements a transactional model of execu-
tion. Using only a copy of the state during event processing 
and atomically committing these changes at the end of the 
event handler (or task), a multi-version commit model of 
execution is implemented.  This ensures that handling an 
event is an “all or nothing” proposition, and ensures the at-
omicity of handling an event.   
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In P-FRP, a preempted task is aborted and has to restart 
when no higher priority tasks are available for execution. 
The time spent in the aborted execution of a low priority task 
is termed the abort cost. As an illustration, consider two 
tasks τ1, τ2 with execution times 4 and 3, respectively, with τ2 
having a higher priority.  Let the arrival periods of τ1, τ2 be 8 
and 12, and release times be 0 and 3 respectively. The  exe-
cution of this task set in P-FRP is shown in Figure 1(a). 
Since τ1 is released first, it starts execution  but is preempted 
by the release of τ2 at time 3. After τ2 completes execution at 
time 6, τ2 commences execution but is unable to complete 
before the release of its second job at time 9. The time spent 
on the aborted execution of τ1 in the interval [0,3) is the abort 
cost induced on τ1 by τ2. 

In this example, the task can be made schedulable by 
changing the release offset of τ2 to 0. With this change,  τ2 

starts execution first, and both tasks will be able to complete 
processing in their feasibility interval of [0, 24) (Figure 
1(b)). The tasks will also be schedulable if the priorities of τ2 
and τ1 are reversed (Figure 1(c)), or the preemption of  τ1 is 
deferred (Figure 1(d)), allowing the 1st job of τ1 to complete 
execution. Clearly, there are several techniques that can be 
used to reduce the number of preemptions in P-FRP. In this 
paper, we will present offline methods that analyze the task 
set and determine changes that can be made in task attributes 
or the scheduling policy that reduce the number of preemp-
tions.   

1.1 Related Work 

The transactional model of execution of P-FRP is simi-
lar, but not same, as the execution model found in lock-free 
and transactional memory systems. From previous work 
[1,2,3,13,17,24] on these models it is easy to  deduce that the 
temporal characteristics  of transactional models is quite dif-
ferent from the standard model of preemptive and non – pre-
emptive execution that have been the main focus of real-time 
research. Several researchers have looked into methods that 
improve the schedulability by reducing the number of pre-
emptions, and many approaches have been proposed for the 
preemptive model. In this model, the state of any pre-
emptable task has to be stored temporarily in a cache. Read / 
write operations to the cache can be expensive, and minimiz-
ing such costs has been the primary motivation in reducing 
the number of preemptions.  

Wang and Saksena [30] have applied preemption 
threshold in fixed priority scheduling. Defining a preemption 
threshold allows the scheduler to allow preemption for only 
those tasks whose priority level is below the threshold. 
Hence, preemption threshold allows the system to implement 
a hybrid preemptive / non-preemptive scheduling policy. The 
ThreadX [12] RTOS  is an example of a commercial system 
allowing definition of preemption threshold. In [19], the au-
thors propose a scheme to avoid preemptions in processors 
using support from dynamic voltage scaling.  A selected 
voltage scale up is used to hasten the execution of lower pri-
ority tasks. However, this scheme is limited in the sense that 
it is useful in cases where the processor is not capable of 
running at full speed for  longer durations. In normal cases, 

the processor is run at full speed and energy optimization 
algorithms are used to slow down the tasks without effecting 
real-time schedulability. The authors propose another ap-
proach of delayed preemption, where the start of a higher 
priority tasks is delayed to allow a lower priority to complete 
execution.  

Dobrin and Fohler [10] have presented several tech-
niques to reduce the number of preemptions by optimizing 
task attributes using Integer Linear Programming (ILP). 
However, as shown in [10] reduction in preemption does 
come with a cost of inflexibility in task execution.  In [7], 
response time analysis under deferred preemption / coopera-
tive scheduling has been presented. In a cooperative schedul-
ing policy tasks are broken up into several non-preemptable 
regions, boundaries of which are classified as preemption 
points. It has been unknown so far, if any of these ap-
proaches can be adopted for P-FRP. 

In previous work for P-FRP, response time analysis and 
priority assignment strategies have been discussed. In [3], it 
has been shown that the rate-monotonic priority assignment 
is not optimal and determining an optimal priority assign-
ment for P-FRP is being done in ongoing work.  

2. Basic Concepts and Execution Model of P-FRP 

In this section we introduce the basic concepts and the 
notation used to denote these concepts in the rest of the pa-
per.  In addition, we review the P-FRP execution model and 
assumptions made in this study. 

2.1 Basic Concepts 

Essential concepts for P-FRP are tasks and their associ-
ated priority, their associated time period and the concept of 
arrival rate and their processing time; the concept of a trace 
and task jobs therein. All tasks parameters are assumed to be 

 
Figure 1(b): If τ2 is released at time 0, both tasks are schedulable 

 

Figure 1(a): Task execution showing the abort cost induced on τ1 by τ2, causing τ1 to have a deadline 
miss at time 9. T1 and T2 represent tasks τ1 and τ2 respectively. 

Figure 1(c): If priorities are reversed, such that τ1 has the higher priority then both tasks are schedul-
able 

Figure 1(d): If the preemption of τ1 by the 1st job of τ1 is deferred, both tasks are schedulable 

 

 

 



known a priori.  The notation and formal definitions for 
these concepts as well as a few others used in the paper are 
as follows: 
 
• Let task set Γn = {τ1, τ2,…, τn} be a set of n periodic 

tasks,  and τi,m represent the mth job of task τi 
• The priority of τk ∈ Γn is prk. If prk > prj then τk has a 

higher priority than τj  
• Tk is the arrival time period between two successive 

jobs of τk and rk  = 1 / Tk is the arrival rate of τk 
• Ck is the worst-case execution time for τk 
• Rk,m represents the release time of the mth job of τk 
• Φk represents the release offset which is the release time 

of the first job of τk. Or, Φk   = Rk,1. Hence, Rk,m = Φk  + 
(m–1)·Tk 

• [t1,t2) represent the time window for analyzing gaps, 
such that:  ∀t∈[t1,t2),  t1 ≤ t < t2 ∧ t1  ≠ t2 

• Dk is the relative deadline of τk. If some job of τk is 
released at time Rk,m  then τk should complete processing 
by time Rk,m + Dk, otherwise τk will have a deadline 
miss. In this paper, Dk = Tk 

• A feasibility interval is the time interval [tH, tH + H) 
such that if all tasks are schedulable in [tH, tH + H) then 
the tasks will also be schedulable in the time interval [0, 
Z): Z→∞. H is the length of the feasibility interval and 
tH is its start time 

• Interference on τk is the action, where the processing of 
τk is interrupted by the release of a higher priority task. 
In P-FRP, an interference forces τk to abort and re-start 
later 

 

2.2 Execution Model and Assumptions 

For this study all tasks are assumed to execute in a uni-
processor system and have no precedence constraints. When 
job of a higher priority task τi is released it can immediately 
preempt a lower priority task, and changes made by the 
lower priority task are rolled back. The lower priority task 
will be restarted when the higher priority task has completed 
processing. When some task is released it enters a processing 
queue Q, which is arranged by priority order such that all 
arriving higher priority tasks are moved to the head of the 
queue. The length of the queue is bounded, and no two in-
stances of the same task can be present in the queue at the 
same time. This requires a task to complete processing be-
fore the release of its next job. To maintain this requirement, 
we assume a hard real-time system with task deadline equal 
to the time period between jobs. Hence,  

∀k∈Γn, Dk = Tk.  
 
Once a task τi enters Q two situations are possible. If a task 
of lower priority than i is being processed, it will be immedi-
ately preempted and τi will start processing. If a task of 
higher priority than τi is being processed then τi will wait in 
the Q and start processing only after the higher priority task 
has completed. An exception to the immediate preemption is 

made during copy and restore operations which is explained 
in the following paragraph. 

In P-FRP, when a task starts processing it creates a 
‘scratch’ state, which is a copy of the current state of the sys-
tem. Changes made during the processing of this task are 
maintained inside such a state. When the task has completed, 
the ‘scratch’ state is restored into the final state in an atomic 
operation. Therefore during the restoration and copy opera-
tions the task being executed cannot be preempted by higher 
priority tasks.  Both copy and restore operations involve 
simple copy of variables, which takes only a fraction of the 
execution time of a task. Hence, any blocking which copy 
and restore operations can induce on a higher priority task, 
have been ignored in this study. For reducing preemptions, 
the only task attributes that can be modified are the release 
offsets and priority assignment. The task arrival rates and 
worst-case execution times are assumed constant. 

In response time analysis for fixed-priority scheduling, a 
critical-instant of release is assumed. Critical instant is the 
time, at which task releases lead to the worst-case response 
time (WCRT) [20] of the task being analyzed. In their semi-
nal work, Liu and Layland [20] showed that in fixed-priority 
scheduling for the preemptive model, the critical-instant for a 
lower priority task τi occurs when it is released at the same 
time as all higher priority tasks. As shown in [2], for P-FRP, 
a synchronous release of τi  and higher priority tasks is not 
guaranteed to result in the WCRT of τi. Methods to deter-
mine WCRT in P-FRP are discussed in [2].  

We now look at two methods that can be used to reduce 
the number of preemptions in P-FRP. First, we look at the 
task attributes that can be changed, and secondly we look at 
modifications to the scheduler which can reduce the number 
of preemptions.   
 

3. Modifications in Task Attributes 

Dobrin and Fohler [10], have identified three conditions, 
to define a preemption. They offer solutions to avoid each 
condition, effectively avoiding the preemption. While meth-
ods for eliminating each condition in P-FRP are being devel-
oped in ongoing work, we present a brief overview of each 
technique.     

3.1 Priority Reassignment for Individual Jobs 

In [10], each job of a task is individually analyzed for 
preemption. A preemption can occur if some higher priority 
task interferes with the execution of a lower priority task. As 
in [10], we will reverse the priority order for only those indi-
vidual jobs which interfere with each other. By building pri-
ority inequalities for all interfering jobs, an ILP formulation 
is derived, which is then solved to determine jobs whose 
priorities have to be modified. However, a side-effect of 
making this change, is bifurcating jobs whose priority order 
has been changed into individual tasks themselves. Such new 
tasks are referred to as artifacts in [10].  



3.2 Release Offset of Tasks 

Preemptions can be avoided by changing the release off-
sets of higher priority tasks. This has been illustrated in fig-
ure 1(b). However, changing the release offset of a task to 
avoid preemption of one job changes the release times of all 
jobs of the same task. This can possibly lead to additional 
preemptions of future jobs of the same or  different task, thus 
affecting the schedulability of the task set. Hence, after 
changing the offset for a task, a schedulability analysis in the 
feasibility interval of the task set has to be done.     

3.3 Release Times of Individual Jobs 

Consider, Γ2 = {τi, τj}, with pri > prj. If the finish time of 
the τj,p (denoted as finish(τj,p)) is more than Ri,q, then τi will 
preempt  τj. Or, a preemption will occur when: 

   finish(τj,p) > Ri,q. 
 
In [10], it is shown that if the release time of τi,q is changed 
such that : 

Ri,q = finish(τj,p) – Ci 
 
then,  τi,q will not preempt  τj,p. A preemption dependency 
tree is used to determine those jobs whose release times  can 
be changed to make them schedulable.   
 

4. Modifications in Scheduler 

Preemptions can be avoided by making necessary modi-
fication in the preemption policy of the scheduler. We will 
look at two approaches that can be used for P-FRP. 

4.1 Preemption Threshold  

Preemption threshold allows users to define a priority 
number, such that only those tasks having a priority lower 
than the threshold are preempted.  Tasks with priority equal 
to, or more than the threshold continue execution in a non-
preemptive way. Response time analysis for tasks with a pre-
emption threshold has been done in [30]. While the work in 
[30] assigns a global preemption threshold that remains static 
as long as the task is running, we will evaluate if the thresh-
old can be changed for specific jobs of the task. Since, pre-
emption threshold can effect the schedulability of a task set, 
the threshold number has to be set after careful  analysis.  

4.2 Deferred Preemptions 

In the deferred preemption policy that we will imple-
ment, the scheduler will defer preemption if the lower prior-
ity task has executed for a predefined number of steps. With 
this scheduling policy, a maximum bound on abort costs will 
be defined. Hence, every task will be preemptive only up to a 
certain point in its execution, after which the task with be-
come non-preemptive. Implementing this policy will affect 
the schedulability and responsiveness of the tasks, impact of 
which will be analyzed in ongoing work.  

5. Conclusions and Future Work 

We have presented a brief overview of techniques that 
will be adopted to reduce the number of preemptions in P-
FRP. Most of these techniques are similar to the ones pre-
sented in [7,10,30], but will be modified to work in P-FRP 
execution model. In ongoing work, algorithms and formal 
methods to implement these techniques are being developed. 
Experimental evaluations using synthetic task sets of all pre-
sented methods will also be done.  
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