
On Using Extreme Value Theory in Response-Time Analysis of Priority-Driven
Periodic Real-Time Systems

Yue Lu, Thomas Nolte
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden
{yue.lu, thomas.nolte}@mdh.se

Abstract

In this paper we present work toward using our previ-
ously proposed method RapidRT to perform response-time
analysis of periodic real-time systems, where the execution
time of the adhering tasks is a random variable from a
known distribution. In effect, we not only aim at validating
the potential of considering the results given by RapidRT as
upper bounds on tasks’ worst-case response time estimates,
but also investigate the possibility of using RapidRT as a
good substitute for the referenced exact stochastic analysis
method which is generally intractable for large systems.

1 Introduction

Traditional schedulability analysis methods for hard
real-time systems are often based on a periodic task model,
where a simplifying assumption on the existence of tasks’
single value Worst-Case Execution Time (WCET) is made
in order to provide a deterministic and stringent guarantee
that all the tasks in the system can meet their deadlines. If
deadlines of all tasks are met, then the system is deemed
schedulable. However, in the context of timing analysis for
soft real-time systems where a failure in meeting timing re-
quirements will not result in the failure of systems that po-
tentially leads to catastrophic human consequences, such a
stringent guarantee is not required. Moreover, it is often bet-
ter off providing a probabilistic guarantee that the deadline
miss ratio of a task is below a certain threshold. Conse-
quently, the assumption on tasks’ WCET has to be relaxed.

A stochastic analysis framework is presented in [1],
which does not introduce any worst-case or restrictive
assumptions into the analysis, and is applicable to gen-
eral priority-based real-time systems including both fixed-
priority scheduling systems and dynamic-priority schedul-
ing systems. The analysis method can handle any periodic
task set consisting of tasks, each of which the execution

time of the adhering jobs is specified as a random variable
with a known discrete distribution. Furthermore, the analy-
sis can give the exact Probability Mass Function (PMF) of
response time of the tasks in the system, and a probability
of deadline miss of tasks.

In [2], we present the timing analysis method
namely RapidRT, which combines Extreme Value Theory
(EVT) [3] with other statistical methods in order to produce
a Worst-Case Response Time (WCRT) estimate of tasks,
under a certain statistic constraint, i.e., a certain probability
of being exceeded. Moreover, RapidRT performs WCRT
analysis of the target system based on a number of traces1

containing response time data of tasks. In this work, we are
interested in validating RapidRT, by examining if the results
given by RapidRT can be considered as safe upper bounds
on the WCRT estimates of tasks in the context of priority-
driven periodic real-time systems. In such systems, exact
WCRT distributions can be obtained through using tech-
niques such as the stochastic analysis framework in [1]. In
addition, such work is meaningful and valuable in the sense
that it can also help us to validate if RapidRT is a suitable al-
ternative for the referenced stochastic analysis framework,
which by its authors is argued intractable for large systems.

2 System Model and Notations

The system model S consists of a set of n indepen-
dent periodic tasks running on a uniprocessor, i.e., S ←
τ1, ..., τn, where n ∈ N. A task τi is characterized by a
set of parameters 〈Ti,Φi, ei, Di,Mi〉, where Ti is the task
period, Φi is the initial phase, ei is execution time, Di

is the relative deadline or the temporal constraint, Mi is
the maximum allowed probability of missing the deadline.
The execution time ei is a discrete random variable with a
known distribution. The PMF is denoted by fei(·), where
fei(e) = P{ei = e}. Each periodic task results in an in-

1Such traces are either from simulation models or from the execution
of the real system.



finite number of jobs. Γi,j denotes the jth job of the task
τi. Each job Γi,j is released at the deterministic time λi,j ,
which is computed via Equation 1.

λi,j = φi + (j − 1)Ti (1)

The response time of a job Γi,j is a discrete random vari-
able denoted by Ri,j , and the response time of the task τi,
i.e., Ri is computed by averaging the response time of its
jobs as shown in Equation 2:

fRi
(r) =

1
mi

mi∑

j=1

fRi,j
(r) (2)

where mi = T/Ti, which is the number of jobs from the
task τi released in a hyper-period of the length T . In addi-
tion, a task τi is said to be schedulable if P{Ri > Di} ≤
Mi.

3 The Stochastic Analysis Framework

The referenced stochastic analysis framework in this
work, is proposed in [1], which will be introduced briefly
as follows. For the sake of simplicity, the task to which a
job belongs is not tracked, thus a job has a single index, e.g.,
Γj . The index of a job refers to its order in the infinite se-
quence of jobs, i.e., Γk is released before Γk+1, that is ∀k,
λk ≤ λk+1. The response time of a job Γj is computed by
using Equation 3:

Rj = W (λj) + ej + Jj (3)

where Rj denotes the response time distribution of an ar-
bitrary job Γj ; W (λj) denotes the backlog at time λj , i.e.,
the sum of the remaining execution times of all the jobs
(with higher priorities than the job under analysis) that do
not finish up to the time λj ; Jj denotes the interference of
all higher priority jobs released after the job Γj .

The backlog at the release time of any job Γj , denoted by
Wλj , can be computed by following the iterative procedure
introduced in [1]:

W (λk0) = 0 (4)

W (λk) = shrink(W (λk−1) + ek−1, λk − λk−1) (5)

where λk0 denotes the release time of the first job released
before Γj and has a higher priority. The shrink function is
shown by Equation 6:

fshrink(W,∆)(x) =





0 if x < 0,
0∑

z=−∞
fW (z + ∆) if x = 0,

fW (x + ∆) if x > 0.
(6)

The iterative procedure starts with a zero backlog as
shown by Equation 4 and iterates on all higher priority jobs
released before Γj . After computing the backlog at the re-
lease time of Γj , the backlog distribution is convolved with
the execution time distribution. Such convolution results in
a partial response time which is valid only if there is no
interference given by other higher priority jobs. In case of
the existence of higher priority jobs which are released after
λj , this partial response time will be valid only in the range
from λj to λj+1. A validity range is indicated as a super in-
dex for the response time R[0,λj+1−λj ], which is computed
by Equation 7:

R[0,λj+1−λj ] = W (λj) + ej (7)
In addition, Equation 8 can be used to increase the range

of the validity.

R[0,λk+1−λj ] = AF (R[0,λk−λj ], λk − λj , ek), k > j (8)

where the job Γk has a higher priority than Γj , and AF is
the stochastic function shown by Equation 9:

fAF (R,∆,e)(x) =





fR(x) if x ≤ ∆,
∞∑

i=∆+1

fR(i) · fe(x− i) if x > ∆.

(9)
Each iteration using Equation 8 increases the interval of

the validity of the partial response time, until the deadline is
included in the validity range. Correspondingly, the proba-
bility of missing the deadline for a certain job can be com-
puted by using Equation 10:

P (Rj > Dj) = 1−
Dj∑

k=0

P (R[0,∆]
j = k) (10)

After completing the analysis, the probability of miss-
ing the deadline of a certain task is computed by averaging
the probabilities of missing the deadlines of all its jobs, as
shown by Equation 2.

4 RapidRT Using Extreme Value Theory

Our proposed method RapidRT is based on Extreme
Value Thoery (EVT) [3], which is a separate branch of
statistics for dealing with the tail behavior of a distribution.
EVT is used to model the risk of the extreme, rare events,
without the vast amount of sample data required by a brute-
force approach. Example applications of EVT include risk
management, insurance, telecommunications and so on.

RapidRT is a recursive procedure which, as the first two
arguments, takes n reference data sets each of which con-
tains m simulation traces containing tasks’ response times.
For each reference data set, the algorithm returns the WCRT



Figure 1. The point, at which the bold dash line intersects
with the Gumbel Max curve, is the WCRT estimate given by
RapidRT for each reference data set. The EVT distribution
is constructed on these points for all reference data sets.

estimate of the task under analysis with a probability of be-
ing exceeded, e.g., 10−9, which is the third algorithm ar-
gument. Next, RapidRT will verify if the sampling distri-
bution consisting of n WCRT estimates given by EVT for
all n reference data sets (we refer to such a sampling dis-
tribution as the EVT distribution hereafter) conforms to a
normal distribution or not, according to the result given by
the non-parametric Kolmogorov-Smirnov test (the KS test
hereafter). If it is, then RapidRT will calculate the confi-
dence interval (i.e., CI hereafter) of the EVT distribution,
at the given confidence level 99.7%, and choose the upper
bound on the CI as the final WCRT estimate, as shown in
Figure 1. This invents a new hard statistic constraint, i.e.,
from the statistical perspective, given the modeled system,
the possibility of the existence of a higher WCRT estimate
(i.e., the actual WCRT of the task on focus) than the WCRT
estimate given by RapidRT is no more than 1.5 × 10−12

(i.e., (100% − 99.7%)/2 × 10−9). Otherwise, if the EVT
distribution cannot be fitted to a normal distribution, a re-
sampling statistic bootstrap will be adopted to obtain the
upper bound on the CI of the EVT distribution.

RapidRT consists of the following three steps: 1) con-
struction of the referenced data sets, 2) WCRT estimation
of each referenced data set using EVT, and 3) derivation of
a final WCRT estimate that is given by the algorithm. For
more details and thorough explanations about each step in
RapidRT, the interested readers can refer to [2]. In addition,
the outline of the algorithm is as follows:

1. Construct n reference data sets for the WCRT esti-
mates by running m Monte Carlo simulations for each
reference data at first, and then choosing the highest
response time value of the task under analysis in each
simulation. Consequently, the sampling distribution of
Response Time (RT) data per reference data set con-

sists of the m highest RT data collected from the m
simulations, respectively.

2. Perform the WCRT estimates on the task under analy-
sis per each reference data set, i.e., esti where 1 ≤ i ≤
n.

3. After verifying if the EVT distribution (i.e., EST ←
est1, ..., esti, ..., estn) can successfully be fitted to a
normal distribution by using the KS test, RapidRT will
return a result, i.e., EST + 3σEST (the sum of the
mean value and 3 standard deviation of EST at the
confidence level 99.7%). Otherwise, the bootstrap test
will be used in the context.

5 Evaluation

The target priority-based periodic real-time systems (in-
troduced in Section 2) will be modeled and analyzed by
using our RTSSim simulation framework [4]. RTSSim is
quite similar to ARTISST [5] and VirtualTime [6], and al-
lows for simulating job-level system models on a single pro-
cessor. Further, RTSSim provides typical RTOS services
to its simulation model, such as Fixed-Priority Preemptive
Scheduling (FPPS), intricate task execution dependencies
on job-level including Inter-Process Communication (IPC)
via message queues and synchronization (semaphores). The
execution time of jobs can be modeled as a random variable
with a specific type of distribution. All time-related opera-
tions in RTSSim, such as timeouts and activation of time-
triggered tasks, are driven by the simulation clock, which
makes the simulation result independent of process schedul-
ing and performance of the analysis PC. The response time
and execution time of tasks or jobs are measured when-
ever the scheduler is invoked, which happens for example at
IPC, task or job switches, EXECUTE statements, operations
on semaphores, task or job activations and when tasks or
jobs end. This, together with the simulation clock behavior,
guarantees that the measured response time and execution
time are exact. In RTSSim, a task may not be released for
execution until a certain non-negative time (i.e., the offset)
has elapsed after the arrival of the activating event. Each
task also has a period, a maximum arrival jitter, and a prior-
ity. Tasks with equal priorities are served on the first come
first serve basis.

In addition, we will propose a number of evaluation
frameworks from the following perspectives:

1. Different statistical constraints in RapidRT: In
our evaluation, the probabilities of being exceeded
in RapidRT can be set either low or high, when
compared to what we used in previous research,
i.e., 10−9. For example, such probabilities can be
10−3, 10−6, 10−12, 10−20 etc. The intention is to eval-
uate that if the results given by RapidRT can suc-
cessfully cover the exact value of WCRT of tasks,



when different levels of statistical constraints are ap-
plied. We intend to compare against exact data pro-
vided by the referenced stochastic analysis framework,
using the same system model when applying both ap-
proaches.

2. Different confidence levels of the EVT distribution:
We also consider to use different confidence levels in
the EVT distribution in RapidRT, such as 95%, which
is a typical value that based on preliminary assess-
ments provides appropriate results.

3. Scalability of RapidRT: This can be done by creat-
ing independent “subsystems” where each subsystem
represents a complete model, i.e., a priority-driven pe-
riodic real-time system (as introduced in Section 2).
More details about using “subsystems” for scalability
evaluation can be found in [7].

4. Optimization on the number of samples in
RapidRT: The KS test will be used in this context with
the purpose of optimizing the number of samples in
RapidRT, while keeping the accuracy of results. This
will reduce the computation time required by RapidRT,
which is especially meaningful and necessary for the
cases about timing analysis of large systems.

6 Related Work

As introduced in [1], the exact stochastic analysis of
most real-time systems under preemptive priority driven
scheduling is not affordable in practice currently. Some ap-
proaches about performing stochastic analysis with a spe-
cific scheduling model that isolates tasks so that each task
can be analyzed independently are proposed [8, 9]. In addi-
tion, in order to simply the stochastic analysis in such con-
text, the worst-case assumptions are introduced. Manolache
presents the way of restricting tasks preemption, and some
others [10, 11] introduce the assumption on the critical in-
stance. Dı́az et al. [12] further their previous study by in-
troducing an approximate analysis, in order to decrease the
memory demand on the computation of backlog and re-
sponse time distributions. Recently, Refaat [13] proposes
a method for efficient stochastic analysis by simplifying the
exact distributions of jobs through random sampling.

7 Future Work

This work-in-progress paper has presented ongoing work
on using our previously proposed method RapidRT in
response-time analysis of priority-driven periodic real-time
systems. We are also interested in using RapidRT as a
good substitute for the referenced exact stochastic analy-
sis method which is generally intractable for large systems.
In particular, we have expressed the idea of comparing the
results given by RapidRT to the ones obtained through the

referenced stochastic analysis framework, which provides
us with exact PMFs for task response times. Future work
will mainly lie in implementation and evaluation.
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