
A Hybrid Priority Multiprocessor Scheduling Algorithm

Chiahsun Ho and Shelby H. Funk
Computer Science Department

University of Georgia
Athens, GA, USA

{ho,shelby}@cs.uga.edu

Abstract

We propose a hybrid scheduling algorithm using deferred
preemption with an online adjustment. Our approach is to
prevent jobs from preempting one another until they have
been promoted. We use the tasks’ Worst Case Response
Time (WCRT) to determine when a promotion must occur
in order to ensure safe execution. During execution, this
promotion time is adjusted to extend nonpreemptive execu-
tion of lower priority tasks whenever possible. Promoted
tasks have the higher priority and are scheduled using a
fixed-priority scheduling algorithm. Scheduling decisions for
non-promoted tasks are more flexible. We consider four
strategies for determining which task to preempt: fixed-
priority, maximum remaining execution time, least laxity
and latest promotion time. Experimental results demonstrate
that these strategies successfully avoid most preemptions
compared to standard fixed-priority scheduling.

1. Introduction

In real-time systems, correct behavior depends not only
upon logical correctness but also upon temporal correctness.
In these systems, all jobs have deadlines. In a hard real-
time system, each job must be completed no later than its
deadline. We consider hard real-time scheduling on multi-
processor systems. Many scheduling algorithms for real-time
systems are priority-based, meaning each job has an associ-
ated priority and the algorithm will always select the highest
priority jobs to execute. However, such a scheme may lead
to scheduling overheads due to preemptions and migrations.
The aim of our research is to adjust multiprocessor fixed-
priority scheduling in order to reduce such overheads.

When a job is preempted, its state must be stored to ensure
proper operation upon resumption of execution. In addition,
the preempting job may cause the contents of the cache
to be overwritten, leading to cache misses that would not
have occurred without the preemption. Both of these events
lead to the system spending extra time on scheduling, which
delays the job’s completion time. Furthermore, a preempted
job may restart on a different processor, which can extend
the job’s completion time further because the job cannot

start executing until all relevant state information has been
transferred to the new processor.

Priority-based scheduling algorithms will only preempt
an executing job if a higher-priority job arrives. However,
this higher-priority job may be able to wait for the lower-
priority job to finish executing. As long as no jobs will
miss a deadline as a result, there is no need for the job to
execute right away. This strategy, called delayed preemption
or cooperative scheduling, has been studied extensively for
uniprocessor systems [1], [2]. Recently, some research has
been performed for multiprocessor systems as well [3],
[4]. These strategies are primarily aimed towards improving
the response time of aperiodic jobs. For uniprocessors,
deferred preemption has been considered as as strategy for
reducing scheduling overheads by Baruah in [5] and Yao, et
al., [6]. In choosing between preemptive and non-preemptive
scheduling algorithm to balance feasibility and overheads
on uniprocessors. Baruah [5] analyzed deferred preemption
scheduling with dynamic priority algorithms, such as EDF.
In [6], Yao, et al., determined the largest non-preemptive
regions for each task under fixed priority scheduling.

This paper considers the degree to which the delayed
preemption strategy can reduce overhead caused by pre-
emptions and migrations. Because there exists a method for
finding the WCRT of each task [7], we can determine how
long arriving jobs can safely wait before they must preempt
the executing lower-priority job. Once the job’s safe interval
has elapsed it will preempt a lower priority job if the one is
executing. We call such an event an unavoidable preemption.
While some preemptions are unavoidable, we found that
many preemptions can be avoided using this technique.

If a task incurs an unavoidable preemption, the scheduler
must schedule it according to its fixed priority to ensure it
completes on time. Once a task’s safe interval has elapsed,
we say it has been promoted. While promoted tasks must
adhere to the fixed priority scheduling strategy, we have
more flexibility in the way we schedule non-promoted tasks.
We consider a number of different scheduling strategies
to determine which job should be preempted. Hence, we
present a new scheduling method which safely combines
known scheduling strategies with the aim of reducing over-
head costs. With this in mind, we wish to consider which
algorithms will reduce more overhead when used in conjunc-



tion with a fixed-priority deferred preemption algorithm.

2. Model and Definitions

Our goal is to reduce preemptions when scheduling peri-
odic [8] or sporadic [9], [10] tasks. Below we introduce the
terms and notation we will use in the following sections.
Periodic tasks: The periodic [8] and sporadic [9], [10]
task models have proven very useful for the modeling
and analysis of real-time computer application systems. In
this model, real-time processes recur at regular intervals.
Each periodic or sporadic task Ti is characterized by two
parameters — a worst case execution requirement (ei) and
a period (pi). Accordingly, we will model a real-time system
τ ≡ {T1, T2, . . . , Tn} as being comprised of a collection of
n periodic or sporadic tasks. Each periodic task Ti generates
an infinite sequence of jobs Ti,0, Ti,1, . . . , Ti,k, . . ..

We denote the arrival time and deadline of a job Ti,k to
be ai,k and di,k, respectively. A periodic task Ti = (pi, ei)
generates each job Ti,k at time ai,k = k · pi. Each job
Ti,k needs to execute for ei units of time by its deadline of
di,k = (k+1)·pi, for all non-negative integers k. We assume
a preemptive schedule which permits migration. Thus, jobs
generated by higher-priority tasks can interrupt (preempt)
a currently executing lower-priority job and the preempted
job may restart on any processor. The costs associated with
preemptions and migrations are generally assumed to be
included in their WCRT.
Delayed preemption: The tasks of τ are indexed according
to their priority. Hence, task T1’s jobs have the highest pri-
ority and task Tn’s jobs have the lowest priority. According
to our scheduling strategy, though, a higher-priority task will
not preempt a lower-priority task unless not preempting may
cause some deadline to be missed. Whenever the scheduler
executes a lower priority job while a higher priority job
is waiting, we say a priority inversion occurs. Priority
inversions must be limited because they can cause deadline
misses. However, as we shall see, we can use priority
inversions to our advantage as well.

Guan, et al., [7] introduced a method for determining each
task’s WCRT. We let Ri denote task Ti’s WCRT and let
Λi denote its latest defer time. If each job of Ti has its
priority promoted at least Ri time units before its deadline,
no deadlines will be missed because of the nature of dual
priority [1], [2], [3] and [4]. Hence,

Λi = pi −Ri. (1)

For each job Ti,k, we let λi,k denote Ti,k’s latest promotion
time. Thus,

λi,k = ai,k + Λi. (2)

As long as the job Ti,k is promoted to Ti’s fixed priority by
time λi,k, the system will be scheduled successfully.

3. Deferred Preemption Algorithm

The scheduler executes tasks in a manner similar to other
cooperative schedulers [1], [2], [3], [4]. The scheduler must
handle promoted tasks and non-promoted tasks differently.
When a processor becomes idle, the scheduler will assign
tasks to processors as follows.

1) Tasks with promoted priority.
2) Non-promoted tasks suffering a priority inversion (i.e.,

delayed preemption tasks).
3) Lower-priority non-promoted tasks.
Our primary goal is to reduce the overheads caused by

preemptions and migrations. To this end, we delay preemp-
tions as long as possible while still ensuring the system will
run safely (i.e., no deadlines will be missed). As described
above, we schedule promoted tasks using a fixed priority
scheduling strategy. Non-promoted tasks do not have to
adhere to such a strategy. We consider three strategies for
selecting which non-promoted task to preempt.

• Maximum remaining execution time
• Least laxity, or
• Latest promotion time.

These strategies were selected because we consider these
to be the tasks that are most likely to suffer unavoidable
preemptions (i.e., these tasks are the least likely to finish
executing before other tasks have their priorities promoted).
We also consider task systems with two fixed priorities
(i.e., a multiprocessor variant of the dual priority scheduling
strategy developed by Davis, et al. [1]).

In order for the delayed preemption strategy to work, we
must know the WCRT of the periodic tasks. Lehoczky, et
al., [11] developed the time demand analysis (TDA) strategy
for uniprocessor systems. This method was extended for
multiprocessors [12], [13], [14] and [15] as follows

Ri =
1

m

∑
k<i

(⌈
Ri

pk

⌉
ek + ek

)
+ ei. (3)

Recently, Guan, et al., [7] presented an algorithm that finds
a better WCRT upper bound for multiprocessors. Their work
examines the maximum interference from higher priority
jobs more precisely than Equation 3.

We observe that for all these TDA methods, the value of
Ri is the sum of Ti’s execution time and the maximum
amount of time that Ti may have to wait while higher
priority tasks execute. We call this maximum waiting time
and Ti’s interference time. If a job Ti,k executes for ξi time
units before its promotion time, the amount of time it will
execute at the promoted priority level is deceased by ξ time
units and the worst case interference time cannot be smaller
than it would have been if the job had executed for the
full ei time units after promotion. Therefore, the worst case
response time of the remaining (ei − ξi) time units cannot
have a response time larger than (Ri − ξi). With this in



mind, our algorithm adjusts task priority promotion times
whenever a non-promoted task executes. Specifically, if Ti,k
executes for ξi time units and is preempted then

λi,k ← λi,k + ξi. (4)

In other words, we leave the interference part unchanged in
equation 3, but shorten the worst case execution time.

The jitter issue due to delay task priority promotion times
can be accommodated by Ha and Liu in [16]. Ideally, each
task priority promotion times will release every p time units
apart. However, our adjustment strategy might cause a task
Ti to have consecutive promotion times that are less than Pi

time units apart. While this kind of jittery billowier can often
cause problems, it does not have any negative consequences
for our algorithm. If a task Ti has consecutive promotion
times pi − x time units apart for some x > 0, then Ti’s
demand during that interval is ei − x. Therefore, Ti does
not impose extra interference to lower priority tasks. For a
more in depth discussion of this issue, please refer to [16].

In the next section we see that this strategy is very
successful at reducing preemptions and migrations – i.e.,
most preemptions are avoidable.

4. Experimental Results

In this section, we compare standard fixed priority
scheduling to the strategies described above for a variety of
scenarios. Using Baker’s method for randomly generating
task sets [17], we generated approximately 10,000 task sets
with a variety of different characteristics. The number of
processors range from 2 to 32 (i.e., 2, 4, 8, 16, and 32),
total utilization from 0.25% to 97.5% of m, and maximum
utilization from 0.1 to 0.9. We found WCRT for the tasks
using the algorithm developed by Guan, et al., [7]. Because
task periods can greatly influence the frequency of preemp-
tions, we use three different period sets to generate task sets.

• Harmonic task sets – Pi+1 = k · Pi,∀i = 1 to n− 1

– Periods of harmonic task sets have been chosen as:
{4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}

• Relatively prime task sets – gcd(Pi, Pj) = 1,∀i 6= j

– Periods of relatively prime numbers between 3 and
131

• Random task sets – 10 ≤ Pi ≤ 100,∀i = 1 to n
– Periods of 30 random numbers within [10,100]

We use the following expression to reflect overhead:
w1· number of preemptions + w2· number of migrations,
where w1 and w2 are weight factors. Because migrations
tend to be more time consuming than preemptions, we set
w1 = 1 and w2 = 3 for the reported experiments. An
average savings of 100% means all of the preemptions and
migrations in the fixed-priority schedule were avoidable (i.e.,
the hybrid schedule executed all tasks non-preemptively);
average savings of 0% means either all preemptions and

Figure 1: The average savings of different periods (Total Normal-
ized Utilization)

Figure 2: The average savings of different processors in random
periods

migrations are unavoidable or the fixed-priority schedule had
no preemptions or migrations.

Figure 1 compares the overhead savings for the different
period scenarios. All the strategies perform quite well. When
maximum utilization is small, there is no savings because the
fixed-priority schedule preempts infrequently. As maximum
utilization increases, the savings improve significantly. When
maximum utilization is 30%, over half the preemptions and
migrations are avoided. When it reaches 50%, over 80% of
the overhead is avoided.

Figure 2 illustrates the average savings for each of our
processor scenarios considering the random period scenario.
The other scenarios have similar results. For more than two
processors, we were unable to generate feasible task sets
with utilization over 70%. Notice that we got higher savings
when there were fewer processors. We believe that this is
because having more processors increases the likelihood that
some jobs can finish before a priority promotion occurs.



5. Conclusion

We consider a hybrid scheduling strategy using delayed
preemption of fixed-priority scheduling in conjunction with
four strategies for selecting which task to be preempted. We
use WCRT to determine when a preemption is unavoidable.
During execution, we adjust this value if a task is able to
execute prior to its promotion time. Experimental results
indicate that these strategies can reduce a significant number
of preemptions and migrations.

In future we plan to consider other hybrid algorithms to
see if they do equally well. We are particularly interested in
reducing the preemptions and migrations in optimal schedul-
ing algorithms such as Pfair [18], LLREF [19], BF [20] and
DP-Wrap [21]. We also plan to study using the deferred
preemption strategy to schedule infeasible task sets.

References

[1] R. Davis and A. Wellings, “Dual priority scheduling,”
in IEEE Real-Time Systems Symposium (RTSS). Wash-
ington, DC, USA: IEEE Computer Society, 1995, p.
100.

[2] R. Jejurikar and R. Gupta, “Procrastination schedul-
ing in fixed priority real-time systems,” in LCTES
’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for
embedded systems. New York, NY, USA: ACM, 2004,
pp. 57–66.

[3] A. Tumeo, M. Branca, L. Camerini, M. Ceriani,
G. Palermo, F. Ferrandi, D. Sciuto, and M. Monchiero,
“A dual-priority real-time multiprocessor system on
FPGA for automotive applications,” in DATE ’08:
Proceedings of the conference on Design, automation
and test in Europe. New York, NY, USA: ACM, 2008,
pp. 1039–1044.

[4] A. A. Josep M. Banus and J. Labarta, “Extended global
dual priority algorithm for multiprocessor scheduling in
hard real-time systems,” in Euromicro Conference on
Real-Time Systems (ECRTS), July 2005.

[5] S. Baruah, “The limited-preemption uniprocessor
scheduling of sporadic task systems,” IEEE Real-Time
Systems Symposium (RTSS), vol. 0, pp. 137–144, 2005.

[6] G. Yao, G. Buttazzo, and M. Bertogna, “Bounding
the maximum length of non-preemptive regions un-
der fixed priority scheduling,” in IEEE Embedded
and Real-Time Computing Systems and Applications
(RTCSA), 2009, pp. 351 –360.

[7] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response
time bounds for fixed priority multiprocessor schedul-
ing,” IEEE Real-Time Systems Symposium (RTSS),
vol. 0, pp. 387–397, 2009.

[8] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment,” Journal of the ACM, vol. 20, no. 1, pp. 46–61,
1973.

[9] M. Dertouzos and A. K. Mok, “Multiprocessor
scheduling in a hard real-time environment,” IEEE

Transactions on Software Engineering, vol. 15, no. 12,
pp. 1497–1506, 1989.

[10] M. Dertouzos, “Control robotics : the procedural con-
trol of physical processors,” in Proceedings of the IFIP
Congress, 1974, pp. 807–813.

[11] J. Lehoczky, L. Sha, and Y. Ding, “The rate mono-
tonic scheduling algorithm: Exact characterization and
average case behavior,” in IEEE Real-Time Systems
Symposium (RTSS). Santa Monica, California, USA:
IEEE Computer Society Press, Dec. 1989, pp. 166–
171.

[12] B. Andersson and J. Jonsson, “Fixed-priority preemp-
tive multiprocessor scheduling: to partition or not to
partition,” IEEE Embedded and Real-Time Computing
Systems and Applications (RTCSA), vol. 0, p. 337,
2000.

[13] A. Burns and A. Wellings, Real-Time Systems and
Programming Languages, 3rd ed. Addison-Wesley,
2001.

[14] M. Bertogna and M. Cirinei, “Response-time analysis
for globally scheduled symmetric multiprocessor plat-
forms,” in IEEE Real-Time Systems Symposium (RTSS),
2007, pp. 149 –160.

[15] L. Lundberg, “Multiprocessor scheduling of age con-
straint processes,” in IEEE Embedded and Real-Time
Computing Systems and Applications (RTCSA). Wash-
ington, DC, USA: IEEE Computer Society, 1998, p. 42.

[16] R. Ha and J. W.-S. Liu, “Validating timing constraints
in multiprocessor and distributed real-time systems,” in
Proceedings of the 14th IEEE International Conference
on Distributed Computing Systems. Los Alamitos:
IEEE Computer Society Press, Jun. 1994.

[17] T. P. Baker, “An analysis of fixed-priority schedula-
bility on a multiprocessor,” IEEE Real-Time Systems
Symposium (RTSS), vol. 32, no. 1-2, pp. 49–71, 2006.

[18] S. K. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel,
“Proportionate progress: A notion of fairness in re-
source allocation,” Algorithmica, vol. 15, no. 6, pp.
600–625, June 1996.

[19] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal
real-time scheduling algorithm for multiprocessors,”
in IEEE Real-Time Systems Symposium (RTSS), Los
Alamitos, CA, USA, 2006.

[20] D. Zhu, D. Mosse, and R. Melham, “Multiple-resource
periodic scheduling problem: how much fairness is
necessary?” in IEEE Real-Time Systems Symposium
(RTSS), December 2003, pp. 142–151.

[21] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt,
“Dp-fair: A simple model for understanding optimal
multiprocessor scheduling,” in Euromicro Conference
on Real-Time Systems (ECRTS), July 2010, pp. 1–10.


