

RTSS 2009

30th IEEE Real-Time Systems
Symposium

Work-In-Progress Proceedings

December 1-4, 2009

Washington, D.C., USA

Sponsored by the IEEE Computer Society
Technical Committee on Real-Time Systems

Edited by Dakai Zhu

@ Copyright 2009 by the authors

RTSS’09 Organizers

General Chair

 Steve Goddard, University of Nebraska-Lincoln, USA

Program Chair

 Theodore P. Baker, Florida State University, USA

Local Arrangements Chair

 Hakan Aydin, George Mason University, USA

Special Track Chairs

Marilyn Wolf, Georgia Institute of Technology, USA (Cyber-Physical
Systems)
Oleg Sokolsky, University of Pennsylvania, USA (Design and
Verification of Embedded Real-Time Systems)
Chenyang Lu, Washington University, St. Louis, USA (Wireless
Sensor Networks)

Work-in-Progress Chair

Dakai Zhu, University of Texas at San Antonio

Ex-Offico (TC Chair)

Raj Rajkumar, Carnegie Mellon University, USA

Finance Chair

Christopher Gill, Washington University, USA

jholt
Typewritten Text
ii

Program Committee for Work-in-Progress

Hakan Aydin George Mason University, USA
Enrico Bini Scuola Superiore Sant'Anna, Italy
Jian-Jia Chen Swiss Federal Institute of Technology, Switzerland
Qingxu Deng Northeastern University, China
Nathan W. Fisher Wayne State University, USA
Aniruddha Gokhale Vanderbilt University, USA
Sathish Gopalakrishnan University of British Columbia, Canada
Zonghua Gu Zhejiang University, China
Shinpei KATO University of Tokyo, Japan
Ying Lu University of Nebraska - Lincoln, USA
Christian Poellabauer University of Notre Dame, USA
Harini Ramaprasad Southern Illinois University, USA
Shangping Ren Illinois Institute of Technology, USA
Ali Tosun University of Texas at San Antonio, USA
Wei Zhang Southern Illinois University, USA

jholt
Typewritten Text
iii

Table of Contents

• Prioritized Out-of-Order Instruction Dispatching Techniques for

Simultaneous Multi-Threading (SMT) Processors
Monobrata Debnath, Byeong Kil Lee and Wei-Ming Lin ………………………… 1

• Finding an Upper Bound on the Increase in Execution Time Due to
Contention on the Memory Bus in COTS-Based Multicore Systems
Bjorn Andersson and Arvind Easwaran and Jinkyu Lee ………………………….. 5

• Time-Predictable and High-Performance Cache Architectures for
Multicore Processors
Jun Yan, Wei Zhang and Yu Liu ………………………………………………….. 9

• A Synchronous Transition Protocol with Periodicity for Global
Scheduling of Multimode Real-Time Systems on Multiprocessors
Vincent Nelis, Bjorn Andersson and Joel Goossens ……………………………..... 13

• Policies for Migration of Real-Time Tasks in Embedded Multi-Core
Systems
Kedar M. Katre, Harini Ramaprasad, Abhik Sarkar and Frank Mueller…………… 17

• On Optimal Multiprocessor Scheduling Considering Concurrency
and Urgency
Jinkyu Lee, Arvind Easwaran, Insik Shin, and Insup Lee ………………………… 21

• A Stochastic Framework for Multiprocessor Soft Real-Time
Scheduling
Alex F. Mills and James H. Anderson …………………………………………….. 25

• An Optimal Scheme for Multiprocessor Task Scheduling: a Machine
Learning Approach
Aryabrata Basu and Shelby Funk …………………………………………………. 29

• Feasibility Test for Multi-Phase Parallel Real-Time Jobs
Vandy Berten, Sebastien Collette, Joel Goossens ………………………………… 33

• Virtual Timers in Hierarchical Real-time Systems
Martijn M.H.P. van den Heuvel, Mike Holenderski, Wim Cools, Reinder J. Bril
and Johan J. Lukkien ……………………………………………………………... 37

• Analysis of Latest Defer Time for Fixed-Priority Scheduling
 Algorithm with Dual Priority
Chiahsun (Alex) Ho and Shelby Funk …………………………………………… 41

jholt
Typewritten Text
iv

• Real-time Scheduling of periodic tasks in a monoprocessor system
 with rechargeable energy storage
Maryline Chetto and Hussein El Ghor …………………………………………… 45

• Network-Aware, Energy-Conscious, Fair Service for Real-Time
Applications on Multiprocessor SoC
Thidapat Chantem, X. Sharon Hu, Christian Poellabauer, Jun Yi
and Liqiang Zhang ………………………………………………………………. 49

• Leakage-Aware Real-Time Scheduling For Maximal Temperature
Minimization
Gang Quan and Shangping Ren ………………………………………………… 53

• Leakage-Aware Scheduling for Real-Time Embedded Systems
with QoS Guarantee
Linwei Niu ………………………………………………………………………. 57

• An Adaptive Approach to Reduce Control Delay Variations
Shengyan Hong, Xiaobo Sharon Hu and M.D. Lemmon ………………………. 61

• Towards Timing Decomposition for Scalable Robot Control:
Collision Detection Analysis
Hoon Sung Chwa, Jinkyu Lee and Insik Shin …………………………………… 65

• Implementing Transactions in a Distributed Real-Time System
without Global Time
A. Burns and Y. Chen ……………………………………………………………. 69

• Statistical-based Response-Time Analysis of Systems with Execution
Dependencies between Tasks
Yue Lu, Thomas Nolte, Johan Kraft and Christer Norstrom …………………….. 73

• A transparent target function and evaluation strategy for complex
multi-objective optimization problems
Florian Polzlbauer, Eugen Brenner and Christian Magele ………………………. 77

• Prediction-based Interrupt Scheduling
Yuting Zhang …………………………………………………………………….. 81

jholt
Typewritten Text
v

• On Interrupt Scheduling based on Process Priority for Predictable
Real-Time Behavior
Minsub Lee, Juyoung Lee, Andrii Shyshkalov, Jaevaek Seo, Intaek Hong
and Insik Shin …………………………………………………………………… 85

• Time-Based Intrusion Dectection in Cyber-Physical Systems
Christopher Zimmer, Balasubramanya Bhat, Frank Mueller…………………….. 89

• Real-Time Process Control in Producing Clean Air and
Bio-Energy from Animal Waste
Yue Yu, Miao Song, Shangping Ren, Cindy Hood, Jun Zhu and Gang Quan ….. 93

jholt
Typewritten Text
vi

Prioritized Out-of-Order Instruction Dispatching Techniques

for Simultaneous Multi-Threading (SMT) Processors

Monobrata Debnath Byeong Kil Lee Wei-Ming Lin

Department of Electrical and Computer Engineering,

The University of Texas at San Antonio

{Monobrata.Debnath, Byeong.Lee, WeiMing.Lin}@utsa.edu

Abstract

 Simultaneous multithreading provides an improved

technique to increase resource utilization capability by

sharing key datapath components among multiple

independent threads. This thread-level parallelism (TLP)

can be further exploited in the round robin dispatching

with operand availability checking. The selection criteria

for allocating Issue Queue (IQ) slots can be improved by

not limiting the operand availability within the same

thread. In this paper, we propose an effective scheduler

for the SMT, named as Round robin with Operand Check

that allocates IQ entries based on a round robin principle

within a cycle. This scheme will dispatch at most one

instruction from each thread at its turn, instead of

dispatching all the available instructions from a single

thread. Our approach shows a 12% performance (IPC)

improvement with a smaller IQ size (16). The proposed

scheme is also much better matched with small-scale

processors that require a smaller IQ size (e.g., mobile

processors).

1. Introduction
 Simultaneous multithreading (SMT) offers an

improved technique to take the traditional superscalar

processors one step forward. The most common

characteristic of SMT processors is the sharing of key

datapath components among multiple independent

threads, which ensures improved resource utilization.

SMT not only exploits thread-level parallelism (TLP)

among the various threads [1][2], but also equally

concentrates on the advantages available at the instruction

level in each thread in terms of parallelism (ILP).

Consequently, the amount of hardware required of an

SMT system is significantly less than a traditional

superscalar machine to generate the same performance.

Thus SMT passes the litmus test of conventional tradeoff

between speed and cost. Most common resources which

are shared in SMT technique are Issue Queue (IQ),

physical register bank, various functional units and cache

memories. Due to the requirement in resource sharing,

these hardware components tend to remain busy in order

to allocate large number of entries. These entries ensure

the full performance potential afforded by SMT [4]. But

these large numbers of entries among the shared resources

exaggerate both the critical timing path and processor’s

cycle negatively. To retain the exploitation of thread-level

parallelism (TLP) as well as instruction-level parallelism

(ILP), a necessary solution must be introduced in order to

minimize the complexity among these shared resources

without affecting the ILP exploitation significantly.

 One of the critical datapath structures in a

Simultaneous Multithreading environment that might

become a potential performance bottleneck is the IQ, and

thus it requires an intelligent dispatching algorithm to

alleviate this bottleneck. Most of the solutions to address

this issue actually concentrate mostly on the quality of

instructions fetched from different threads into the

pipeline [3]. These solutions completely ignore how many

operands are ready in an instruction. This check for

readiness has the potential to reduce the IQ clogging

because of potentially long latency instructions waiting to

receive its first ready-operand, a cause for pipelining

bottleneck. Another solution proposed by Sharkey et. al.,

2_OP block [4], uses the readiness parameter and

dispatches an instruction only when it has at least one

ready-operand. Also it blocks a thread from any future

dispatching soon after scheduler encounters an instruction

with two non-ready-operands ignoring the instructions

with one or two ready-operands which may appear next to

the instruction with two non-ready-operands. This causes

lower throughput at smaller IQ size and performance

saturation with lower IPC than baseline SMT. We are

focused on improving performance at smaller IQ size and

moving saturation point with higher IPC.

 Similar approaches in [3][5] optimize instruction

scheduling with the combination of in-order and out-of-

order execution. Studies also show that the delay of the

select and wake-up logic are logarithmic and quadratic in

nature with respect to instruction scheduling window size

[6]. Moreover, power consumption of a large size

instruction scheduling window cannot be ignored [7][8].

 In this paper, we propose an effective scheduler for the

SMT, named as Round robin with Operand Check

(RROC), which allocates the IQ entry based on a round

robin principle. This scheme will dispatch at most one

instruction from each thread at its turn, instead of

dispatching all the available instructions from a single

thread. Our approach shows a 12% performance (IPC)

improvement with a smaller IQ size (16). This scheme

1

jholt
Typewritten Text

Table 1. Simulated multi-threaded workloads

Classification Mix Benchmarks

2 Low ILP

+ 2 High ILP

Mix1
crafty,swim,mesa,

perlbmk

Mix4
mcf,equake,mesa,

crafty

4 Low ILP Mix2 mcf,equake,vpr,lucas

4 Med ILP Mix3
applu,ammp,mgrid,

galgel

1 High ILP
+ 1 Low ILP

+ 2 Med ILP

Mix5
perlbmk,lucas,galgel,

gcc

Mix6
mesa, swim ,apsi,

mgrid

will be well fit for small-scale processors that require a

smaller IQ size (e.g., mobile processors). Simulation

results also show the performance improvement with

variations of issue width and ROB size.

 The rest of paper is organized as follows. Section 2

describes our proposed techniques. The workloads and

simulation methodologies are introduced in section 3.

Section 4 shows performance and power analysis, and

finally, concluding remarks and future work are presented

in the last section.

2. Prioritized Out-of-Order Instruction

Dispatching Techniques

 For instruction dispatching, we exploit dynamic

information available immediately after the register

renaming stage. Instructions with non-ready-operands

usually spend a large number of clock cycles in the IQ in

order to receive its operands [12]. This paper mainly

concentrates on when and how the instructions should be

placed in the IQ using micro-architectural information in

runtime. The proposed RROC scheme successfully

reduces the pressure on IQ by prioritizing the occupancy

order of the IQ slots by instructions among all the threads

instead of instructions from one thread. The key aspects

of this paper are as follows:

• The proposed scheduler RROC designed for the SMT

processor allocates instructions into the IQ based on

round robin principle [9][10][11]. Instead of

dispatching all the available instructions from a

single thread within a dispatch cycle, all threads will

take turn dispatching their ready instructions one at a

time at their respective turn.

• Within each thread, a dispatching order is maintained

among all ready-to-dispatch instructions based upon

the number of ready-operands of each instruction. An

instruction with two ready-operands receives the

highest priority (assuming an ISA which supports

two source operand instructions) and obtains the IQ

entry earlier than instructions with one or zero ready-

operand. Similarly, an instruction with only one

ready-operand gets dispatched before the instructions

with no ready operands.

• The scheduler blocks the thread which has zero

instruction ready to dispatch in the current clock

cycle. If all the threads are blocked due to

unavailable ready-to-dispatch instructions, scheduler

then jumps to the next clock cycle without

dispatching any more instruction in the current clock

cycle.

 Figure 1 shows a 4 threaded SMT instruction scheduler

using the proposed RROC scheme. Each thread is attained

in round robin fashion to dispatch its native instructions.

Once a thread is selected, the “Operand Check and

Priority Set” module scans for available ready to dispatch

instructions and their corresponding number of ready

operands. Then a priority is set among all the instructions,

based upon the number of ready-operands an instruction

has. The new prioritized order decides which instruction

should occupy the IQ entry first. Instructions with 2

ready-operands receive a highest priority followed by

instructions with one and then zero ready-operands.

Instructions with same number of ready-operands are

chosen according to the order they appear.

3. Workloads and Simulation Methodology

3.1 Workloads

 For multi-threaded workloads, we use the mixed SPEC

CPU 2000 benchmark suite [17] based on ILP

classification. Each of the benchmarks is initialized in

accordance with the procedure mentioned in Simpoints

tool [16] and then 100 million instructions are simulated.

Once the first 100 million instructions are committed

from any of the threads, simulation is terminated.

Figure 1. 4-threaded SMT with round robin and operand

check scheduling technique

2

Parameter Configuration

Machine Width 8 wide fetch / issue / commit

Window size

Issue queue (16-entry for best performance),

48 entry Load/Store queue, 128-entry ROB or
larger

Function Units

and Latency

(total/issue)

8 Int Add (1/1), 4 Int Mult (3/1) / Div (20/19),

4 Load/Store (2/1), 8 FP Add (2), 4 FP Mult

(4/1) / Div (12/12) / Sqrt (24/24)

Physical

registers
256 integer and floating point

L1 I–cache 64KB, 2–way set–associative, 128 byte line

L1 D–cache 32 KB, 4–way set–associative, 256 byte line

L2 Cache

unified
2 MB, 8–way set–associative, 512 byte line

BTB 2048 entry, 2–way set–associative

Branch Predictor
2K entry gShare,
10-bit global history per thread

Pipeline

Structure

5-stage front-end (fetch-dispatch), scheduling
(for register file access -2 stages, execution,

write back, commit)

Memory 64 bit wide, 200 cycles access latency

 In order to categorize multithreaded workloads, each of

the benchmarks is simulated individually in the Simple

scalar [15] environment. As shown in Table 1, three types

of ILPs – low ILP (memory bound), medium ILP and

high ILP (execution bound) – are identified, and 6 mixed

multi-threaded workloads are created based on different

combinations of ILP types.

3.2 Simulation Environments

 We used the tool M-Sim[14], a multi-threaded micro

architectural simulation environment model, to estimate

performance and power analysis of the proposed scheme.

M-sim includes accurate models of the pipeline structures

such as explicit register renaming, concurrent execution

of multiple threads, detailed power estimation using

Wattch framework [18], separate Reorder Buffer (ROB),

and register files which are necessary for Simultaneous

Multithreading (SMT) model. The Issue Queue, execution

units, Load-Store Queue (LSQ) are shared among the

threads, but branch predictor is exclusive to each thread.

The detailed processor’s configuration is shown in Table

2.

4. Result Analysis

4.1 Performance Evaluation

 Our proposed scheme shows a significant improvement

in terms of average throughput (IPC). In our simulation,

we perform three different analyses in comparing IPC by

varying ROB size, IQ entry size and instruction issue-

width, respectively. Figure 2 and 3 compare the

performance impact of the proposed scheme with

different issue width and ROB size in terms of average

throughput, with the other two hardware parameters

unchanged. The proposed dispatching technique shows a

performance improvement from 10% to 25% with

different issue-widths, and an improvement from 10% to

16% when varying the size of ROB. Table 3 and figure 4

reflect the impact of the proposed scheme under different

entry size IQ, with a fixed issue width (8) and a 96-entry

ROB size. It also gives a performance comparison

between the 2_OP block and the proposed RROC. We see

that the proposed scheme delivers a performance

improvement of around 12% compared to the traditional

scheme with a small IQ size (16). It is interesting to note

that the performance improvement is saturated as the size

difference between the IQ and ROB decreases. How this

size variation between the ROB and IQ exactly affects

performance and power consumption is also being studied.

4.2 Power Analysis

It is important to note that how our proposed scheme

affects power consumption. In this simulation, we

compare average total power per cycle with the baseline

machine. Figure 5 shows the comparison for different

instruction widths. For all three types of simulations,

power remained almost constant.

0
1
2
3
4
5

4 8 16

A
v
g

.
IP

C

Issue Width

Default

3.0

3.5

4.0

4.5

5.0

64 128 256

A
v

g
.
 I

P
C

ROB Size

Traditional

RROC

 Table 2. Configuration of the simulated processor

 ROB size: 128, IQ size: 16

 Figure 2. Average Throughput (IPC) vs. Issue width

Figure 3. Change of throughput IPC for different ROB size

 Traditional

 RROC

 Issue width:8, IQ size: 16

3

5. Conclusion and Future Work

 The proposed dispatching algorithm in this paper has

demonstrated its potential in leading to substantial

performance improvement without compromising the

power consumption issue. It allows for a higher degree of

fairness among threads in instruction dispatching and

better resource utilization at smaller IQ size. This new

foundation will facilitate even more design improvement

to be incorporated into the system. Potential future

research directions include the study in determining how

the performance is affected by the size variation between

the ROB and IQ needs using the proposed scheduler. Also,

circuit delays of the proposed scheme also need to be

investigated with various configurations.

References

 [1] D. Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue

on an Implementable Simultaneous Multithreading Processor,”

Proc. Int’l Symp. Computer Architecture, 1996.

 [2] D. Tullsen et al., “Simultaneous Multithreading: Maximizing On-

Chip Parallelism,” Proc. Int’l Symp. Computer Architecture,

1995.
 [3] J. Sharkey and D. Ponomarev, “Exploiting Operand Availability

for Efficient Simultaneous Multithreading,” IEEE Transactions

on Computers, vol. 56, no. 2, February 2007.
 [4] J. Sharkey and D. Ponomarev, “Efficient Instruction Schedulers

for SMT Processors,” Proc. 12th Int’l Symp. High Performance

Computer Architecture (HPCA), 2006.
 [5] Hui Wang, Rama Sangireddy, “Optimizing Instruction

Scheduling through Combined In-Order and O-O-O Execution in

SMT Processors,” IEEE Transactions On Parallel And
Distributed Systems vol. 20, no. 3, pp. 389-403, March 2009.

 [6] Subbarao Palacharla. Palacharla, N.P. Jouppi, and J.E. Smith,

“Complexity-Effective Superscalar Processors,” Proc. 24th Ann.
Int’l Symp. Computer Architecture (ISCA ’97), pp. 206-218,

1997

 [7] N. Mehta, B. Singer, R.I. Bahar, M. Leuchtenburg, and R.
Weiss,“Fetch Halting on Critical Load Misses,” Proc. 22nd IEEE

Int’l Conf.Computer Design (ICCAD), 2004

 [8] D. Folegnani and A. Gonzalez, “Energy-Effective Issue
Logic,”Proc. Int’l Symp. Computer Architecture, July 2001

 [9] J. Laudon, A. Gupta, and M. Horowitz. “Interleaving: A

multithreading technique targeting multiprocessors and
workstations,” 6th International Conference on Architectural

Support for Programming Languages and Operating Systems,

October 1994.
 [10] B. Boothe and A. Ranade. “Improved multithreading techniques

for hiding communication latency in multiprocessors,”19th

Annual International Symposium on Computer Architecture,
1992

 [11] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, J. Levy, and S.
Parekh. “An analysis of database workload performance on
simultaneous multithreading processors”, 25nd Annual

International Symposium on Computer Architecture, June 1998

 [12] Yu-Lai Zhao, Xian-Feng Li, Dong Tong Xu Cheng .”An Energy-
Efficient Instruction Scheduler Design with Two-Level Shelving

and Adaptive Banking,” Journal of Computer Science and
Technology, Volume 22 Issue 1, pp. 206-218, January 2007.

 [13] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the

New Millennium”, in the Transactions of IEEE Computer,
33(7):2835, July 2000.

 [14] J. Sharkey. “M-Sim: A Flexible, Multi-threaded Simulation

Environment.” Tech. Report CS-TR-05-DP1, Department of
Computer Science, SUNY Binghamton, 2005.

 [15] D. Burger, T. Austin. "The SimpleScalar tool set: Version 2.0.”

Tech. Report, Dept. of CS, Univ. of Wisconsin-Madison, June
1997 and documentation for all Simplescalar releases.

 [16] T. Sherwood, et al. “Automatically Characterizing Large Scale

Program Behavior,” Proc. ASPLOS, 2002.
 [17] Standard Performance Evaluation Corporation (SPEC) website,

http://www.spec.org/

 [18] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,”

International Symposium on Computer Architecture (ISCA-27),

June 2000

3.4

3.6

3.8

4

4.2

4.4

16 32 48 64

A
v

g
.

IP
C

IQ Size

Default

0

100

200

300

400

500

600

4 8 16

T
o
ta
l
a
v
e
ra
g
e
 P
o
w
e

p
e
r

C
y
c
le

Issue Width

Traditional

RROC

Bench mark Mix

IQ 16 IQ 32 IQ 48 IQ 64

Trd
1

2op
2

Roc
3

Trd
1

2op
2

Roc
3

Trd
1

2op
2

Roc
3

Trd
1

2op
2

Roc
3

1 4.25 4.57 4.67 4.83 4.68 4.81 4.84 4.69 4.81 4.84 4.68 4.81

2 3.13 2.98 2.98 2.98 2.97 2.97 2.96 2.97 2.97 2.98 2.97 2.96

3 4.49 4.78 5.28 5.49 5.38 5.49 5.54 5.39 5.50 5.55 5.39 5.51

4 2.74 2.73 2.75 2.75 2.74 2.75 2.76 2.74 2.75 2.76 2.74 2.75

5 4.24 4.28 4.39 4.59 4.40 4.54 4.60 4.40 4.55 4.60 4.41 4.56

6 4.17 4.82 5.17 5.31 5.11 5.34 5.33 5.11 5.34 5.34 5.12 5.35

Avg. 3.84 4.03 4.21 4.32 4.21 4.32 4.34 4.22 4.32 4.34 4.22 4.32

Table 3. Performance analysis with different IQ entry sizes

Figure 5. Power variation with issue-width

Figure 4. IPC variation for different IQ size

Issue Width: 8 ROB size: 96

1
: Traditional Scheduling , 2: 2 _OP block scheduling,

3
: Round robin with operand checking scheduling.

 ROB size: 96 IQ size: 16

Traditional

RROC

2 OP

4

Finding an Upper Bound on the Increase in Execution Time Due toContention on
the Memory Bus in COTS-Based Multicore Systems

Björn Andersson and Arvind Easwaran
Polytechnic Institute of Porto, Portugal

bandersson@dei.isep.ipp.pt, aen@isep.ipp.pt

Jinkyu Lee
Dept. of Computer Science, KAIST, South Korea

jinkyu@cps.kaist.ac.kr

Abstract—Contention on the memory bus in COTS based
multicore systems is becoming a major determining factor of
the execution time of a task. Analyzing this extra execution
time is non-trivial because (i) bus arbitration protocols in such
systems are often undocumented and (ii) the times when the
memory bus is requested to be used are not explicitly controlled
by the operating system scheduler; they are instead a result of
cache misses. We present a method for finding an upper bound
on the extra execution time of a task due to contention on the
memory bus in COTS based multicore systems. This method
makes no assumptions on the bus arbitration protocol (other
than assuming that it is work-conserving).

I. I NTRODUCTION

The multicore processor is today a generic building block
in the design of embedded real-time computing systems.
Typically, a multicore processor chip is comprised of a
set of processor cores, each with a private cache memory
(L1) and potentially a cache memory (L2) that is shared
among the processor cores. This chip is connected through
an interconnection network (such as a bus) to a set of main-
memory modules. When an instruction cannot be served
by the on-chip caches, it is necessary for the processor
to perform a transaction on the interconnection network
in order to fetch data from the main-memory modules.
Already today, this interconnection network is a performance
bottleneck for many applications [1]. Moreover, since the
number of processor cores in a multicore chip is increasing
dramatically, the amount of traffic on the interconnection
network increases accordingly, and consequently this prob-
lem is expected to be exacerbated in the future [1], [2].

The interconnection network has an impact also on the
execution time of an individual task. Consider a taskτ1

executing on processorP1 and another taskτ2 executing
on processorP2. The taskτ2 generates a cache miss but
before the transaction on the interconnection network has
finished, taskτ1 generates a cache miss as well. Then in
this case, serving the cache miss ofτ1 requires more time
than would have been the case ifτ1 was the only task in
the system because the bus must finish serving the other
processor. Therefore, it is important to develop a method
for finding an upper bound on the extra execution time of
a task due to contention on the interconnection network

between processor cores. This problem differs from studies
in Worst-Case Execution-Time (WCET) analysis because
WCET analysis is performed on a task in isolation, whereas
our problem concerns the interaction of tasks. It is also
different from works in real-time communication because
these studies find an upper bound on the queuing time
of individual message transmission requests, whereas our
problem concerns the cumulative waiting time of many
requests to perform transactions on the memory bus.

The scientific community has nonetheless provided some
initial insights into the problem of contention on the inter-
connection network. The software of a task can be structured
to be separated into a fetch phase (where cache misses are
allowed) and an execution phase (where cache misses are not
allowed) and then the memory bus and tasks are scheduled
to ensure that no two processor cores are in a fetch phase
simultaneously [3], thus eliminating contention. Or, a rate-
limiter is added to the memory controller to ensure that
no processor core will generate too much traffic in a time
interval of pre-specified duration and then network calculus
is used to analyze the processor cores [4]. Unfortunately,
common to these approaches is that they require control of
the arbitration of the memory bus and hence they cannot be
used on COTS-based multicores.

In this work we develop the first approach for finding
an upper bound on the extra execution time of a task due
to contention on the memory bus in COTS-based multicore
systems. We also present a technique for characterizing the
interconnection-network-traffic generation pattern of tasks,
which is then used as input for finding the upper bound on
task execution time. In taking this first step, we make the
following assumptions:

A1. The interconnection network is a shared bus (de-
noted asmemory bus henceforth);

A2. The shared L2 cache is either partitioned between
the processor cores or disabled if it cannot be
partitioned. The rationale for this assumption is
explained in Section II-C;

A3. Tasks are statically assigned to processors and all
jobs execute on the processor to which the task is
assigned (partitioned scheduling);

A4. Non-preemptive scheduling is used on each pro-

5

cessor;
A5. The bus arbitration protocol is work-conserving

(that is, the memory bus is idle only if no processor
core requests to use the bus).

Additionally, the technique developed in this paper has
the following properties.

P1. It does not assume any specific arbitration protocol;
P2. It works for constrained-deadline sporadic tasks.

II. SYSTEM MODEL

A. Task model

We assume that the workload is comprised of a set of tasks
τ = {τ1, τ2, . . . , τn}. We assume the constrained-deadline
sporadic task model which characterizes a taskτi by Ci, Ti

and Di (Di ≤ Ti), with the interpretation thatτi releases
a sequence of jobs such that two subsequent jobs fromτi

are released at leastTi time units apart and the exact times
of the releases of these jobs cannot be controlled by the
scheduling algorithm. Each job released byτi requests to
perform Ci units of execution at mostDi time units from
its release; otherwise it misses its deadline.

Note thatCi denotes an upper bound on the execution
time of a job of taskτi when the job executes with no
contention on the memory bus from other tasks.Ci can be
found by WCET analysis techniques. In this work, we are
interested in findingC′

i which denotes an upper bound on
the execution time when the job executeswith contention
on the memory bus from other tasks on other processors.

B. Architecture

Many high-performance processors today allow more
than one instruction to be issued in parallel, executed in
parallel and committed in parallel. Our model allows this.
Some high-performance processors allow instructions to be
committed in another order than they were issued. Such pro-
cessors can significantly complicate WCET analysis [5] even
on a single processor without bus contention. Therefore, we
assume that processor cores are in-order processors. Also,
some processors may switch to another thread when a long-
latency instruction is executed (for example a data-cache
miss). We assume this is not the case, that is, we assume
that when a processor core waits for accessing the memory
bus, the processor core is simply stalled. For these reasons,
we can computeC′

i asC′
i = Ci +Qi, whereQi is an upper

bound on the amount of time that taskτi stalls execution
when it executes forC′

i time units because of waiting for
accessing the memory bus.

Some computer systems use split transaction buses, where
a memory transaction is split into a request part (address)
and a reply part (data). We assume that the computer system
does not use split transactions.

Different bus transactions may take different amount of
time. For example, a bus transaction resulting from a load

which succeeds another load instruction with the same row-
address can be served faster because only the column address
of the DRAM memory needs to be changed. We letTR
denote an upper bound on the amount of time for performing
a bus transaction. This time,TR, includes the time to assert
the address, the time for the memory latency of the main-
memory module and the time for the main-memory module
to deliver the data to the processor. Note thatTR denotes
an upper bound on the amount of time for performing a bus
transaction for the case that the bus was idle; therefore,TR
does not include any queuing delay on the memory bus.

We make no assumption on the number of processor chips
or the number of processor cores per processor chip. For
example, we allow systems with a single processor chip
comprising two processor cores. We also allow systems
with two processor chips, each comprising four processor
cores. Further, we assume that tasks are already assigned to
processor cores. Therefore, we letτp denote the set of tasks
assigned to processor corePp.

Because of our definition ofC′
i it holds that if a task ex-

ecuted on a processor forC′
i time units, then it performsCi

units of execution. Therefore, we can check schedulability
of all tasks assigned to processorp by using a uniprocessor
schedulability test on processorp, but for each taskτi,
replaceCi by C′

i. See for example [6].

C. Bus requests

We assume thatBRi(t) is a function that denotes an
upper bound on the number of bus requests that taskτi can
generate during any time interval of durationt. We will use
BRi(t) in Section III for computingC′

i. It is also necessary
to find BRi(t); Section IV shows this.

The functionBRi(t) is clearly dependent on taskτi. The
task generates a bus request when it misses the shared L2
cache and before that it must also have missed its private L1
cache. Note that since the L2 cache is shared, the function
BRi(t) is actually not only a property of taskτi and the
caches but it is also a property of the interaction between
task τi and the tasks on other processor cores. This makes
the analysis very complicated. Therefore, in order to simplify
our study, we made assumption A2 regarding the shared L2
cache (partitioned or disabled). As a resultBRi(t) does not
depend on the behavior of tasks in other processor cores.

D. Problem statement

Our problem can therefore be stated as:

Given τ = {τ1, τ2, . . . , τn}, where eachτi is
characterized byTi, Di and Ci and the function
BRi(t), and given that each task is assigned to
a processor and executes on it non-preemptively,
find C′

i for eachτi.

6

III. A NALYSIS ON THE WORST-CASE EXECUTION TIME

WITH CONTENTION ON THEMEMORY BUS

In this section, we show how to calculate an upper bound
on the execution time when the job executes with contention
on the memory bus from other tasks on other processors
(i.e., C′

i) using givenBRi(t). We only assume that the bus
arbitration protocol is work-conserving, and do not assume
any other specific arbitration protocol.

Consider a jobJi,k released byτi. Bus transactions
requested fromJi,k during its execution can be delayed
due to: (a) bus transactions requested from other jobs on
other processors during the execution ofJi,k and (b) any
bus transactions requested but not performed before the
execution ofJi,k (backlogged bus transactions). Considering
this delay, we can calculateC′

i as follows.

C
′
i = Ci + BLi · TR +

X

τj∈(τ\τproc(τi))

BRj(C
′
i) · TR (1)

where BLi is the maximum number of backlogged bus
transactions at the beginning of the execution of a job
released byτi, andproc(τi) is a processor to whichτi is as-
signed. We consider (a) by

∑
τj∈(τ\τproc(τi)) BRj(C

′
i) ·TR.

Here note that we useBRj(C
′
i) instead ofBRj(Ci), so that

we can care for additional bus requests caused by additional
execution time (C′

i−Ci). We also consider (b) byBLi ·TR,
but we need to know how largeBLi is.

To calculateBLi, we first define the maximum busy
period of bus transactions (denoted asBP), and BP can
be calculated by the following recurrence equation.

BP = TR +
X

τj∈τ

BRj(BP) · TR (2)

The structure of this equation is similar to that of calcu-
lating response time. We knowBRj(·) is a non-decreasing
function so that we calculate Eq. (2) in an iterative manner
(i.e, BP (k+1) = f(BP (k)) starting fromBP (0) = TR. If
we replaceBP with t in Eq. (2), the right-hand side of the
equation means the longest time interval of bus transactions
requested duringt. If we consider that bus transactions are
continuously performed during the busy period,BLi can be
calculated by the following equation.

BLi = max
0≤t≤BP

&

TR + (
P

τj∈τ
BRj(t) · TR) − t

TR

’

(3)

Now we know all variables in Eq. (1) and thus calculate
the equation similar to Eq. (2) since the right-hand side of
the equation is a non-decreasing function ofC′

i.

IV. A NALYSIS ON THE MAXIMUM NUMBER OF BUS

REQUESTS

In this section, we show how to calculate a function which
is an upper bound on the number of bus requests that task

τi can generate during any time interval of durationt (i.e.,
BRi(t)) from experimental results.

We assume the following can be obtained from experi-
ments:

1) An upper bound on the number of bus requests in an
interval [0, t] (denoted asARH

j
i (t)), where0 denotes

the beginning of execution of thejth execution path
of τi and t denotes some future time. Note that this
measurement only depends on the execution of taskτi,
because of our assumption A2 on the shared L2 cache.
Therefore, we obtainARH

j
i (t) from measurements by

executing jobs ofτi independently on a processor core;
2) An lower bound on the number of bus requests in an

interval [0, t] (denoted asARL
j
i (t)), where0 denotes

the beginning of execution of thejth execution path
of τi and t denotes some future time;

3) The execution time of thejth path of taskτi (denoted
asC

j
i).

We note that different executions of the same path may
result in different numbers of bus requests; this is the reason
why we distinguish betweenARH

j
i (t) andARL

j
i (t). We let

paths(τi) denote the set of all paths of taskτi. We assume
that ARH

j
i (t) and ARL

j
i (t) are non-decreasing functions

for eachi andj and regardCi asmaxj∈paths(τi) C
j
i .

To calculateBRi(t), we divide t into three parts: the
head, middle, and tail parts, and denote them asfH

i (tH),
fM

i (tM), and fT
i (tT), respectively. This idea of splitting

a path to simplify the analysis has been used before; for
instance, in [7], for analysis of recurring task models. As
shown in Figure 1(a), the duration of the middle part is a
multiple ofTi so that there exist several complete executions.
The duration of the head is less thanTi, so that there exists
either one partial execution or one complete execution. Ditto
for the tail. The head (tail) part includes the end (beginning)
point of an execution as shown in Figure 1(a). Since the
definition of BRi(t) is an upper bound on the number of
bus requests, it can be calculated as follows.

BRi(t) = max
tH ,tM ,tT

f
H
i (tH) + f

M
i (tM) + f

T
i (tT), (4)

wheretH + tM + tT = t, (5)

tH , tT < Ti, (6)

tM =

»—

t

Ti

�

− 1

–+

Ti or tM =

—

t

Ti

�

Ti (7)

where[A]+ meansmax{A, 0}. Note that Eq. (7) is derived
from Eq. (5) and (6). Also note thattM is a multiple ofTi.

The head part starts from any arbitrary point of an
execution but includes the end point of the execution, so
that the maximum number of bus requests of the head part
is equal to the maximum difference between the number of
bus requests during a complete execution and the one during
a partial execution.

7

Ti Ti Ti

Ci
1 Ci

2 Ci
3 Ci

4

t

tH tM tT

< Ci
1- tH

< tT

(a) For the general case

Ti Ti Ti

Ci
1 Ci

2 Ci
3 Ci

4

t

s

s+t

(b) For t < Ti

Figure 1. Calculation ofBRi(t)

f
H
i (tH) = max

j∈paths(τi)
ARH

j
i (Cj

i) − ARL
j
i ([C

j
i − tH]+) (8)

In the middle part, there exists exactly one instance of
execution for everyTi, and thus we choose the maximum
execution time among all paths.

f
M
i (tM) =

tM

Ti

· max
j∈paths(τi)

{ARH
j
i (Cj

i)} (9)

The tail part includes the beginning point of an execution
but ends at any arbitrary point, so we can calculate the
maximum number of bus requests of the tail part similarly
to that of the head part.

f
T
i (tT) = max

j∈paths(τi)
ARH

j
i (min{tT , C

j
i }) (10)

Eq. (4) assumes that the head (tail) part includes the end
(beginning) of an execution. Ift is smaller thanTi, there
might be less than one entire execution duringt. In this
case, the assumption of Eq. (4) is broken, so we need to
analyzeBRi(t) in a different way. Once we consider the
time interval that starts and ends at an arbitrary point of an
execution as shown in Figure 1(b),BRi(t) can be found as:

BRi(t) = max
j∈paths(τi),0≤s≤Ci

ARH
j
i (min{s + t,C

j
i }) − ARL

j
i (s)

(11)

Finally, we can calculateBRi(t) in the following ways:
if t ≥ Ti, use the result of Eq. (4); and ift < Ti, choose
the maximum value between Eq. (4) and Eq. (11).

V. CONCLUSIONS ANDFUTURE WORK

We have presented an approach for finding an upper
bound on the extra execution of a task due to contention on
the interconnection network between processor cores and

memory in a COTS-based multicore system. To the best
of our knowledge, the problem of analyzing such extra
execution time was previously unsolved. Now, we are taking
measurements of real programs and using them to build a
model of the bus request pattern for each program. When
we finish it, we take measurements of the response time of
programs to test if our proposed methods for calculating an
upper bound on the extra execution time of a task is valid
in practice.

This paper is a starting point of considering the effect of
bus contention for real-time tasks on multicores, and thus
there are many potential research issues. Our future work
includes (i) allowing preemptive scheduling, (ii) analyzing
switched interconnection networks, (iii) avoiding the pes-
simism resulting from each task being analyzed individually
(that is, taskτ1 has to wait for all bus transactions from
τ2, and taskτ2 has to wait for all bus transactions from
τ1.), and (iv) developing processor scheduling algorithms
that facilitate the analysis of the memory bus contention.

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: an in-
sightful visual performance model for multicore architectures,”
Communications of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[2] K. D. Bosschere, W. Luk, X. Martorell, N. Navarro,
M. OBoyle, D. Pnevmatikatos, A. Ramirez, P. Sainrat,
A. Seznec, P. Stenström, and O. Temam, “Challenge 2.2
in high-performance embedded architecture and compilation
roadmap,” inTransactions on HiPEAC, 2007, pp. 5–29.

[3] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus access
optimization for predictable implementation of real-time appli-
cations on multiprocessor systems-on-chip,” inProc. of IEEE
Real-Time Systems Symposium, 2007, pp. 49–60.

[4] L. Steffens, M. Agarwal, and P. van der Wolf, “Real-time
analysis for memory access in media processing SoCs: A
practical approach,” inProc. of Euromicro Conference on Real-
Time Systems, 2008, pp. 255–265.

[5] T. Lundqvist and P. Stenström, “Timing anomalies in dynami-
cally scheduled microprocessors,” inProc. of IEEE Real-Time
Systems Symposium, 1999, pp. 12–21.

[6] G. Laurent, N. Rivierre, and M. Spuri, “Preemptive and non-
preemptive real-time uniprocessor scheduling,” Tech. Rep.,
1996.

[7] S. K. Baruah, “A general model for recurring real-time tasks,”
in Proc. of IEEE Real-Time Systems Symposium, 1998, pp.
114–122.

Acknowledgements

This work was partially supported by ARTISTDesign Network
of Excellence on Embedded Systems Design, funded by the Eu-
ropean Commission under FP7 with contract number ICT-NoE-
214373 and the Portuguese Science and Technology Foundation
(Fundação para Ciência e Tecnologia - FCT). This paper has
been produced partially in a time when we have had general bus-
contention discussions with Stefan Petters and Dakshina Dasari.

8

Time-Predictable and High-Performance Cache Architectures for
Multicore Processors

Jun Yan, Wei Zhang and Yu Liu
Department of Electrical and Computer Engineering

Southern Illinois University, Carbondale, IL 62901
{jun,zhang,liu}@engr.siu.edu

Abstract
This paper studies several time-predictable cache architec-
tures to guarantee time predictability for real-time threads
without significantly impacting the performance (i.e., through-
put). We propose a prioritized cache that gives priority to
real-time threads while allowing all the threads to share
the aggregate cache space. Also, we study a prioritized-
partitioned cache to provide decent performance to non-real-
time threads without compromising the time predictability
of real-time threads. Our experiments indicate that the pro-
posed time-predictable caches can be used for different real-
time applications with various cache access behaviors for
balancing time predictability and performance.

1. Introduction
In a multi-core processor, in addition to the complexity
of WCET analysis for a single core, different cores typi-
cally share resources such as the low-level cache. Therefore,
threads running on different cores may interfere with each
other in accessing the shared resources at runtime, which is
very difficult to be analyzed statically and accurately. To en-
sure reliable use of multi-core computing platforms for var-
ious real-time applications, this paper proposes a prioritized
cache architecture to ensure time predictability of real-time
threads while still allowing other (non-real-time) threads to
share cache space for maximizing performance. Also, we ex-
plore partitioned caches and prioritized-partitioned caches to
better balance performance and time predictability for var-
ious real-time applications. In addition, we have developed
a WCET analysis tool based on Chronos [4] to reasonably
bound the worst-case performance for multi-core processors
with time-predictable caches.

2. Time-Predictable Caches for Multi-Core
Chips

2.1 Separated Caches
Obviously, a straightforward solution to enhance time pre-
dictability of multi-core caches is to use separated caches,
as shown in Figure 1 (a). Separated caches make WCET
analysis simpler because inter-core (L2) cache interferences
are completely avoided. On the other hand, separated caches
have several drawbacks. First, the performance may be infe-
rior (though predictable), especially when the working set
of a real-time thread is larger than the size of its private
L2 cache. Second, separated L2 caches may waste the pre-
cious cache space due to both internal cache fragmentation
within each core and the possible redundancy across sepa-
rated caches of different cores because of the reuse of in-
structions and/or data, which also makes it more expensive
to maintain cache coherence. Also, separate caches are rigid
and thus may not be attractive for emerging real-time ap-
plications with a mix of real-time threads and non-real-time
threads.

2.2 Partitioned Caches
Cache partitioning is not a new idea. Recently cache parti-
tioning [3, 5] has been studied intensively to enhance fair-
ness or QoS for multi-core chips. Nesbit et al. [8] proposed
virtual private caches, which can achieve QoS for the shared
cache in multicore systems by improving fairness in band-
width and capacity management. However, most of prior
studies have focused on studying general-purpose applica-
tions, not specifically for real-time applications. Generally,
cache partitioning can be implemented by using a global
approach [5] or a per-set approach [3]. In the partitioned
cache architecture, since each core has its own portion of
the partitioned cache, the inter-core cache interferences are
avoided, hence leading to high time predictability. At the
same time, non-real-time threads can still have decent per-
formance, because their own cache space cannot be invaded
by real-time threads. Moreover, compared with separated
caches, partitioned caches are more flexible, because the ag-
gregate cache space can be partitioned differently based on
the cache demands of various threads running on different
cores. For instance, as shown in Figure 1 (b), suppose a
real-time memory-intensive thread is running on core 2, it
is possible to allocate more L2 space to core 2 than core 1.
In addition, the cache space for non-real-time threads can

9

 (a) (b) (c) (d)

Core 2Core 2Core 2 Core 1

L2(C1) L2(C2)

Memory

L2

Memory

 1: High

 0: Low
pPrioritized L2

Memory

Core 1

L1

L2

L1

Core 1

L1L1L1

Prioritized Partitioned

 RT1 p NRT1 NRT2

L1

Figure 1. (a) separated L2 caches, (b) a partitioned L2 cache, (c) a prioritized L2 cache, and (d) a prioritized-partitioned cache.
Note RT represents a real-time thread, and NRT represents a non-real-time thread.

be adjusted dynamically and adaptively to maximize perfor-
mance.

2.3 Prioritized Caches
In this paper, we propose a prioritized cache, which is both
time-predictable (for the high-priority thread) and sharable
by different threads, including non-real-time threads. In a
prioritized cache, all the threads can use the shared cache
space; however, threads running on different cores are as-
signed different priorities by the O.S. Accordingly, a thread
with lower priority cannot replace data/instructions of a
high-priority thread, while a thread with higher priority can
overlap data/instructions of a low-priority thread. Therefore,
in a prioritized cache, the memory accesses of a high-priority
thread will not be affected by the memory accesses of low-
priority threads at runtime, thus making reasonable WCET
analysis for the high-priority thread possible. At the same
time, the low-priority threads can still use the shared cache
space that is available, unless all the cache blocks have been
used by the high-priority thread, which is very unlikely as
the worst-case cache behavior rarely happens.

As can be seen from Figure 1 (c), a priority bit is added
to each cache line of the prioritized L2 cache, which is used
to differentiate the priorities of threads from different cores.
Specifically, 1 can be assigned to the cache blocks that are
used by high-priority threads, and 0 is associated to the cache
blocks of low-priority threads. In mixed real-time applica-
tions the O.S (or programmers) can assign high priority (i.e.,
1) to real-time threads and low priority (i.e., 0) to non-real-
time threads. By default, at the time of each cache replace-
ment, the priority bit of any data or instruction will be set
based on the priority of the thread that accesses it. However,
to enable data sharing between different threads, when there
is a hit of a low-priority cache block by the high-priority
thread, the high-priority thread can overlap the priority bit
of the existing cache block, so that it will not be unfairly
replaced due to its low-priority. In contrast, a low-priority
thread cannot overwrite the priority bit of higher priority.
Also, when there is a hit in the prioritized cache, the data
and/or instructions can be accessed by any thread, regard-
less of their priorities. Accordingly, the cache replacement
algorithm needs to be modified to ensure the priority by us-
ing the priority bit.

It should be noted that Tan and Mooney [7] proposed a
prioritized cache for multi-tasking systems. In contrast, this
paper studies prioritized caches for multicore processors,
where different cores can access the shared cache simultane-
ously. Another difference is that in Tan’s work [7], tasks with
different priorities can only use pre-partitioned columns;
while in our design, they can use any cache block mapped.

size bsize assoc latency
L1-i-cache 4K 32 2 10
L1-d-cache perfect
L2-u-cache 32K 32 8 100

Table 1. Configurations of the dual-core chip memory hier-
archy.

Moreover, we have develop WCET analysis to bound the
worst-case performance of the prioritized caches proposed
in this paper.

2.4 Prioritized-Partitioned Caches
While the prioritized cache architecture can improve the
time predictability of the high-priority thread, the threads
with low priority may suffer from large performance loss
if the high-priority thread is memory-intensive. To ensure
reasonable performance for the non-real-time threads with-
out impacting time predictability of real-time threads, we
propose to incorporate cache partitioning into the priori-
tized cache architecture, which is also called prioritized-
partitioned caches in this paper. As can be seen from Fig-
ure 1 (d), in a prioritized-partitioned cache, the aggregate
cache space is first partitioned based on the demands of
real-time and non-real-time threads, with preference given
to real-time threads so as to guarantee their meeting of the
deadline constraints. After the partition, the space reserved
for non-real-time threads cannot be invaded by real-time
threads any more. However, in contrast to pure partitioned
caches, the unused or under-utilized cache space by real-
time threads can still be exploited by non-real-time threads.
In other words, non-real-time threads can virtually use all the
cache space; however, they have lower priority in accessing
the cache space allocated to real-time threads.

3. Evaluation Methodology
The WCET analysis for the time-predictable multi-core pro-
cessors is based on an extended Chronos timing analysis tool
[4] as aforementioned. We use SESC simulator to simulate
a baseline dual-core processor, in which each core is a 4-
issue superscalar processor with 5 pipeline stages, 32 inte-
ger registers and 32 floating-point registers. The important
parameters of the dual-core memory hierarchy are given in
Table 1. The benchmarks are selected from MediaBench (as
real-time threads) and SPEC 2000 (as non-real-time bench-
marks or real-time threads with a lower priority, including
164.gzip and255.vortex).

In our evaluation, we consider the following four schemes:

10

• Base: In the base scheme, we assume only a single thread
is running on the baseline dual-core with a shared L2
cache.

• Prioritized: This is the scheme that uses the prioritized
cache.

• Partitioned: This is the scheme that uses the partitioned
cache. By default, the total cache space is equally parti-
tioned among different cores.

• Prioritized-Partitioned (PP): This is the scheme that uses
the prioritized-partitioned cache. By default, the total
cache space is equally partitioned among different cores.
In this scheme, the first thread (i.e., the leftmost thread in
the group) has the highest priority; the second thread has
the second highest priority; and so on.

4. Experimental Results
4.1 Performance Results
In performance evaluation, we first study the performance
of the prioritized cache. We selectvortex as the non-real-
time benchmark, which is run concurrently with another
MediaBench that serves as the real-time application. The
combination of a real-time thread and a non-real-time thread
running on the baseline dual-core is also called a pair in
this paper. Figure 2 demonstrates the performance of the
prioritized cache for both the real-time thread (RTT) and
vortex, which are normalized with their execution cy-
cles in the base scheme. For all these eight pairs of appli-
cations, we find the high-priority thread can always achieve
the same performance as the base scheme, indicating that
the prioritized cache can successfully avoid interferences
from the co-running non-real-time thread. On the other
hand, we find the performance of the non-real-time thread,
i.e., vortex, degrades dramatically in many pairs due to
its low priority in accessing the prioritized cache. Specifi-
cally, the normalized performance degradation (i.e., differ-
ence between the prioritized cache and the base scheme) of
vortex varies from 8.3% (forcordic-vortex) up to
280% (for des-vortex). Interestingly, we also observe
that whenvortex is run with alow-utility real-time appli-
cation such ascordic, g721decode andg721encode,
its performance degradation becomes very small. This is be-
cause thoselow-utility benchmarks do not have high demand
for cache resources, thus leaving enough cache space for
vortex. In contrast, whenvortex is executed simultane-
ously withhigh-utility andsaturating-utility applications, its
performance degrades substantially owning to the excessive
interferences from the real-time thread.

Figure 3 compares the performance of different schemes
for the high-priority threads, which are normalized to the ex-
ecution cycles of the base scheme. For all the eight pairs, we
find that the prioritized cache achieves the same performance
as the base, and the prioritized-partitioned cache achieves
the same performance as the partitioned cache. Also, for all
the eight pairs exceptdes-vortex, both the partitioned
and PP caches attain performance very close to the priori-
tized cache as well. This is because for all these eight Medi-
aBench applications exceptdes, a 16K cache performs al-
most the same as a 32K cache, because of eitherlow utility,
saturating utility and/or insignificant number of L2 misses
to noticeably impact performance. By comparison, since the
performance ofdes can substantially benefit from larger
caches (i.e., from 16K to 32K), both the partitioned and PP
caches result in much lower performance than the priori-
tized cache fordes. Therefore, for real-time threads that are

0

0.5

1

1.5

2

2.5

3

3.5

4

cjp
eg

-v
or

te
x

co
rd

ic-
vo

rte
x

de
s-

vo
rte

x

djp
eg

-v
or

te
x

g7
21

de
co

de
-v

or
te

x

g7
21

en
co

de
-v

or
te

x

pe
gw

itd
ec

-v
or

te
x

pe
gw

ite
nc

-v
or

te
x

N
or

m
al

iz
ed

 E
xe

cu
tio

n
C

yc
le

s

RTT vortex

Figure 2. Performance of the prioritized cache, which is
normalized to the execution cycles of the base scheme. Note
RTT represents the real-time thread of each pair co-running
on the dual-core. The cache configuration is based on the
default parameters.

memory-intensive and have stringent deadline constraints,
the prioritized cache is superior to both the partitioned and
PP caches. On the other hand, for real-time threads that are
insensitive to cache resources, it may be acceptable to use
partitioned or PP caches, as long as they can meet the dead-
line requirement.

Figure 4 shows the performance of the low-priority thread
(i.e., vortex) with different caches, which are normal-
ized to the execution cycles of the base scheme. As we
can see, while the prioritized cache can guarantee the best
performance for real-time threads as demonstrated in Fig-
ure 3, it also leads to inferior performance forvortex in
many pairs. In contrast, both the partitioned and PP caches
achieve much better performance than the prioritized cache
for vortex. In particular, we observe that the PP cache out-
performs the partitioned cache for all the pairs. The reason
is that in a PP cache, the low-priority thread can not only use
its own partitioned cache space, but also exploit the spare
cache lines that are not used by the (low/saturating-utility)
high-priority thread. On average, we find that the PP cache
can achieve performance 38.4% better than the partitioned
cache forvortex. Considering the fact that both the PP and
partitioned cache have the same performance for real-time
threads, we believe the PP cache is a better design option to
balance time predictability and performance.

4.2 WCET Results
Table 2 compares the observed WCET (through simulation)
and estimated WCET (by performing static timing analy-
sis) for the baseline dual-core processor with a prioritized
L2 cache. As can be seen in the last column of Table 2, the
estimated WCET is not too far from the observed WCET
for most benchmarks, especially considering the fact that
the difference between the actual WCET and the observed
WCET of a dual-core processor with two-level memory hier-
archy is unknown, which indicates superior time predictabil-
ity of the prioritized cache. The overestimation in our WCET
analysis mainly comes from three sources. First, the worst-
case execution counts of basic blocks estimated through ILP
calculation are often larger than the actual execution counts
during simulation (which is a drawback of Chronos itself
[4]). Second, the cache static analysis approach [6] used for

11

Performance of Real-Time Thread

0

0.5

1

1.5

2

2.5

3

cjp
eg

-v
or

te
x

co
rd

ic-
vo

rte
x

de
s-

vo
rte

x

djp
eg

-v
or

te
x

g7
21

de
co

de
-v

or
te

x

g7
21

en
co

de
-v

or
te

x

pe
gw

itd
ec

-v
or

te
x

pe
gw

ite
nc

-v
or

te
x

N
or

m
al

iz
ed

 E
xe

cu
tio

n
C

yc
le

s

Prioritized Partitioned PP

Figure 3. Performance of prioritized, partitioned,
and prioritized-partitioned (PP) caches of real-time
threads, which is normalized to the execution cycles
of the base scheme. The cache configuration is based
on the default parameters.

Performance of Vortex

0
0.5

1
1.5

2
2.5

3
3.5

4

cjp
eg

-v
or

te
x

co
rd

ic-
vo

rte
x

de
s-

vo
rte

x

djp
eg

-v
or

te
x

g7
21

de
co

de
-v

or
te

x

g7
21

en
co

de
-v

or
te

x

pe
gw

itd
ec

-v
or

te
x

pe
gw

ite
nc

-v
or

te
xN

or
m

al
iz

ed
 E

xe
cu

tio
n

C
yc

le
s Prioritized Partitioned PP

Figure 4. Performance of prioritized, partitioned, and
prioritized-partitioned (PP) caches of the non-real-
time thread, i.e.,vortex, which is normalized to the
execution cycles of the base scheme. The cache con-
figuration is based on the default parameters.

Benchmarks Obs. WCET Est. WCET Ratio
cjpeg 11356406 11862326 1.045
cordic 1647858 1652098 1.003

des 17920830 21261210 1.186
djpeg 3975849 4331659 1.089

g721decode 367741834 420036834 1.142
g721encode 333650084 371553054 1.114
pegwitdec 25736521 32451811 1.261
pegwitenc 98186680 168297880 1.714

Table 2. Estimated WCET and simulated performance.

the L1 instruction cache analysis is very conservative, which
not only directly increases the estimated WCET, but also
leads to overestimation of L2 misses. Finally, because the
miss latency of L2 is much larger than that of L1, even slight
overestimation of L2 misses may have result in large overes-
timation of the WCET.

5. Conclusions
This paper proposes prioritized caches and prioritized-
partitioned caches for achieving time predictability for
multi-core processors. Our experiments indicate that pri-
oritized caches lead to good time predictability; however,
the performance of the low-priority thread may become
worse, especially when the high-priority thread is memory-
demanding. Also, our evaluation shows that the prioritized-
partitioned cache is superior to the pure partitioned cache,
because it allows low-priority threads to efficiently exploit
unused or under-utilized cache space of the high-priority
threads for performance improvement. We believe the pro-
posed time-predictable cache architectures can provide in-
teresting cache design options to enable real-time multi-core
computing.

In our future work, we would like to explore multi-level
prioritized caches for multiple real-time tasks with different
priorities. Also, we would like to integrate time-predictable
caches with multicore real-time scheduling to achieve better
schedulability and performance.

Acknowledgment
This work was funded in part by the NSF grants CNS
0720502 and CCF 0914543. We would like to thank anony-
mous reviewers for their comments to improve the paper.

References
[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,

D. Whalley, G. Bernat, C. Ferdinand, R. Heckman, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P. Stenstrom.
The Worst-case execution time problem - overview of
methods and survey of tools. In ACM Transactions on
Embedded Computing Systems, January 2007.

[2] L. Thiele and R. Wilhelm. Design for time-predictability. In
Proc. of the Perspectives Workshop: Design of Systems with
Predictable Behavior, April 2004.

[3] R. Iyer. CQoS: a framework for enabling QoS in shared
caches of CMP platforms. In Proc. of the 18th ACM
International Conference on Supercomputing, 2004.

[4] Homepage of Chronos, National University of Singapore.
http://www.comp.nus.edu.sg/˜rpembed/chronos/.

[5] G. E. Suh, S. Devadas and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and
partitioning. In Proc. of International Symposium on High
Performance Computer Architecture, 2002.

[6] C. Ferdinand and R. Wilhelm. Fast and efficient cache
behavior prediction for real-time systems. In Real-Time
Systems, 17((2/3), 1999.

[7] Y. Tan and V. Mooney. A prioritized cache for multi-tasking
real-time systems. In Proc. of SASIMI, 2003.

[8] K. Nesbit, J. Laudon and J. Smith. Virtual Private Caches. In
Proc. of ISCA, 2007.

12

A Synchronous Transition Protocol with Periodicity for Global Scheduling of
Multimode Real-Time Systems on Multiprocessors

Vincent Nelis1

Computer Science Department
Université Libre de Bruxelles (U.L.B.)

Brussels, Belgium
vnelis@ulb.ac.be

Björn Andersson
CISTER Research unit

Polytechnic Institute of Porto
Porto, Portugal

bandersson@dei.isep.ipp.pt

Joël Goossens
Computer Science Department

Université Libre de Bruxelles (U.L.B.)
Brussels, Belgium

joel.goossens@ulb.ac.be

Abstract—We consider the global scheduling problem of
multimode real-time systems upon identical multiprocessor
platforms. During the execution of a multimode system, the sys-
tem can change from one mode to another such that the current
task set is replaced with a new task set. Thereby, ensuring that
deadlines are met requires not only that a schedulability test
is performed on tasks in each mode but also that (i) a protocol
for transitioning from one mode to another is specified and (ii)
a schedulability test for each transition is performed. In this
paper, we extend the synchronous transition protocol SM-MSO
in order to take into account mode-independent tasks, i.e., tasks
of which the execution pattern must not be jeopardized by the
mode changes.

Keywords-multimode scheduling; multiprocessor scheduling;
real-time scheduling;

I. INTRODUCTION

Hard real-time systems require both functionally correct
executions and results that are produced on time. Currently,
numerous techniques exist that enable engineers to design
real-time systems while guaranteeing that all their temporal
requirements are met. These techniques generally model
each functionality of the system by a recurrent task, charac-
terized by a computing requirement, a temporal deadline and
an activation rate. Commonly, real-time systems are modeled
as a set of such tasks. However, some applications exhibit
multiple behaviors issued from several operating modes
(e.g., an initialization mode, an emergency mode, a fault
recovery mode, etc.), where each mode is characterized by
its own set of functionalities, i.e., its set of tasks. During the
execution of such multimode real-time systems, switching
from the current mode (called the old-mode) to another one
(the new-mode hereafter) requires to substitute the current
executing task set with the set of tasks of the new-mode. This
substitution introduces a transient stage, where the tasks of
the old- and new-mode may be scheduled simultaneously,
thereby leading to an overload which can compromise the
system schedulability.

1Supported by the Belgian National Science Foundation (F.N.R.S.) under
a F.R.I.A. grant.

The scheduling problem during a transition between two
modes has multiple aspects, depending on the behavior and
requirements of the old- and new-mode tasks when a mode
change is initiated (see e.g., [2], [3] for details about the
different task requirements during mode transitions). For
instance, an old-mode task may be immediately aborted,
or it may require to complete the execution of its current
instance (in order to preserve data consistency for instance).
On the other hand, a new-mode task sometimes requires
to be activated as soon as possible, or it may also have to
delay its first activation until all the tasks of the old-mode
are completed. Moreover, there may be some tasks (called
mode-independent tasks) present in both the old- and
new-mode, such that their periodic (or sporadic) execution
pattern must not be jeopardized by the mode change in
progress (such tasks are typically daemon functionalities).
In the literature (see [4] for instance), a transition protocol
is said to be synchronous if it does not schedule old- and
new-mode tasks simultaneously, otherwise it is said to be
asynchronous. Furthermore, a synchronous/asynchronous
protocol is said to be with periodicity if it is able to deal
with mode-independent tasks, otherwise it is said to be
without periodicity.

Related work. Numerous scheduling protocols have
already been proposed in the uniprocessor case to ensure
the transition between modes (see [4] for a survey of
the literature about this uniprocessor problem). Targeting
multiprocessor environments, previous work [1] proposed
two protocols without periodicity: a synchronous protocol
called SM-MSO and an asynchronous one called AM-MSO.
To the best of our knowledge, these two protocols are the
only ones to be proposed for the multimode scheduling
problem upon multiprocessor platforms.

This research. In this paper, we extend the protocols SM-
MSO proposed in [1] to make it “with periodicity”. We take
into account the mode-independent tasks and we rewrite
the validity test of SM-MSO in order to ensure that all
the requirements are met during every mode transition.

13

However this research is a first step since we only consider
synchronous protocols. Notice that in this document, we
assume that every operating mode of the system is scheduled
by a global, preemptive, work-conserving and fixed job-level
priority scheduling algorithm.

II. MODEL OF COMPUTATION

A. System and platform specifications

We consider multiprocessor platforms composed of
a known and fixed number m of identical processors
{P1, P2, . . . , Pm} upon which a multimode real-time system
is executed. “Identical” means that all the processors have
the same profile (in term of consumption, computational
capabilities, etc.) and are interchangeable.

We define a multimode real-time system τ as a set of x
operating modes noted M1,M2, . . . ,Mx where each mode
contains its own set of functionalities to execute. At any
time during its execution, the system runs in only one of
its modes, i.e., it executes only the set of tasks associated
with the selected mode, or the system switches from one
mode to another one. A mode Mk contains a set τk of nk
functionalities denoted

{
τk1 , τ

k
2 , . . . , τ

k
nk

}
. Every functional-

ity τki is modeled as a sporadic constrained-deadline task
characterized by three parameters (Cki , D

k
i , T

k
i) – a worst-

case execution time Cki , a minimum inter-arrival separation
T ki and a relative deadline Dk

i ≤ T ki – with the interpretation
that, during the execution of the mode Mk, the task τki
generates successive jobs τki,j (with j = 1, . . . ,∞) arriving
at times aki,j such that aki,j ≥ aki,j−1 + T ki (with aki,1 ≥ 0),
each such job has an execution requirement of at most Cki ,
and must be completed at (or before) its absolute deadline
denoted dki,j

def= aki,j + dki . In our study, all the tasks are
assumed to be independent, i.e., there is no communication,
no precedence constraint and no shared resource (except the
processors) between them.

At any time t during the system execution, a job τki,j
is said to be active iff aki,j ≤ t and it is not completed
yet. Hereafter, active(τk, t) denotes the subsets of active
tasks of τk at time t. A task must be enabled to generate
jobs, and the system is said to run in mode Mk only if
every task of τk is enabled and all the tasks of the other
modes are disabled. Thereby, disabling a task τki prevents
future job arrivals from τki . In the following, we denote by
enabled(τk, t) and disabled(τk, t) the subsets of enabled
and disabled tasks of τk at time t, respectively.

During any mode change from mode M i to mode M j ,
we denote by τmit

i,j the set of mode-independent tasks that
belong to both modes Mi and Mj (i.e., τmit

i,j = τ i
⋂
τ j).

These tasks are assumed to be sporadic and constrained-
deadline. Each such task sporadically generates jobs during
the entire mode transition and its sporadic execution pattern
must not be influenced by the mode change in progress.

B. Scheduler specifications

We consider in this study that the scheduler is global,
preemptive, work-conserving and it assigns fixed job-level
priority according to the usual interpretations (see [1] for
formal definitions). Notice that Global Deadline Monotonic
and Global Earliest Deadline First [5] are some examples
of such scheduling algorithms. We assume that every mode
Mk of the system uses its own scheduling algorithm noted
Sk and the tasks set τk of every mode Mk can be scheduled
by Sk on m processors without missing any deadline. This
assumption allows us to only focus on the schedulability of
the system during the mode transitions, and not during the
executions of the modes.

C. Mode transition specifications

While the system is running in a mode M i (i.e., the old-
mode), a mode change can be initiated by any task of τ i

or by the system itself, whenever it detects a change in the
environment or in its internal state. This is performed by
invoking a MCR(j) (i.e., a Mode Change Request), where
M j is the destination mode (i.e., the new-mode). We denote
by tMCR(j) the invoking time of a MCR(j) and we assume
that a MCR may only be invoked in the steady state of the
system, and not during the transition between two modes.

Suppose that the system is running in mode M i and
a MCR(j) is invoked (with j 6= i). At time tMCR(j),
the system entrusts the scheduling decisions to a transition
protocol. This protocol immediately disables all the old-
mode tasks that are not mode-independent (i.e., the tasks
of τ i \ τmit

i,j), hence preventing new job arrivals from these
tasks. At time tMCR(j) the active jobs of these disabled tasks,
henceforth called the rem-jobs (for remaining jobs), may
have two distinct behaviors: either they can be aborted or
they must complete their execution. In previous work [1]
we showed that aborting rem-jobs immediately do not jeop-
ardize the system schedulability, that scheduling problem
is straightforward. In this research we consider the more
interesting case where all rem-jobs must complete their
execution.

By assumption, we know that the set τ j of new-mode
tasks can be scheduled upon the m processors without
missing any deadline. However, the rem-jobs may cause
an overload if the tasks of τ j are immediately enabled
upon the mode change request MCR(j). As a result,
transition protocols usually have to delay the enablement
of these new-mode tasks until it is safe to do that. We
denote by Djk(M i) the relative enablement deadline of the
task τ jk during the transition from the mode M i to the
mode M j , with the following interpretation: the transition
protocol must ensure that τ jk is enabled not after time
tMCR(j) + Djk(M i). The goal of a transition protocol is
therefore to (i) complete every rem-job, (ii) schedule every
mode-independent tasks and (iii) enable every task of the
new-mode M j , while meeting all the job and enablement

14

deadlines. When all the rem-jobs are completed and all the
tasks of τ j are enabled, the system entrusts the scheduling
decisions to the scheduler Sj of the new-mode M j and the
transition phase ends.

III. THE PROTOCOL SM-MSO

In this section, we present how the synchronous protocol
SM-MSO proposed in [1] can be extended while considering
mode-independent tasks. Notice that we do not consider
asynchronous protocols in this document. The main idea
of this extension is the following: upon a MCR(j), every
non-mode-independent task of the old-mode (say M i) is
disabled and both the rem-jobs and the mode-independent
tasks continue to be scheduled by Si upon the m processors.
When all the rem-jobs are completed, all the non-mode-
independent new-mode tasks (i.e., the tasks of τ j \ τmit

i,j)
are simultaneously enabled. From this instant, both the new-
mode tasks and the mode-independent tasks are scheduled
by Sj upon the m processors. Figure 1 depicts an example
with a 2-processors platform. Both modes M i and M j

contain 3 tasks and 1 mode-independent tasks (τmit
i,j = {τ1}),

where the light gray, dark gray and black boxes are the old-
mode, new-mode, and mode-independent tasks, respectively.
Algorithm 1 gives the pseudo-code of this protocol.

-
time

P1

P2

Mode Mi in progress︷ ︸︸ ︷
τ1,1 τi4,1

τi2,1 τi3,1

τ1,2 τi4,2

τi2,2 τi3,2

MCR(j)

@
@I

tasks τi2,τ
i
3 and τi4

are disabled

τ1,3 τ
j
2,1

τ
j
4,1

τ
j
3,1

@
@I

�
��

arrival of every
job of τi

transition delay︷ ︸︸ ︷ Mode Mj in progress︷ ︸︸ ︷

@@I no more rem-job
⇒ SM-MSO enables

all the tasks of τj\τmit
i,j

(end of the transition phase)

Figure 1. Illustration of a mode transition handled by SM-MSO.

Algorithm 1: SM-MSO (revisited)
Input: tMCR(j): current time; M i: the old mode; Mj : the

new-mode
begin

Disable all the tasks τk ∈ τ i \ τmit
i,j ;

Schedule all the jobs of τ i according to Si ;

At job completion time t :
if active(τ i \ τmit

i,j , t) = φ then
enable all the tasks of τ j \ τmit

i,j ;
enter mode Mj ;

end

It is well-known that proposing a new scheduling
algorithm requires to also provide an associated
schedulability test, i.e., a condition based on the tasks
and platform characteristics which indicates a priori

whether the given system will meet every job deadline. In
a similar way, proposing a new mode transition protocol
requires to also provide an associated validity test, i.e., a
condition based on the tasks and platform characteristics
that indicates a priori whether the given system will meet
every job and enablement deadline during every transition
between every pair of operating modes of the system. In
the following, we focus on designing a validity test for the
protocol SM-MSO. First, Lemma 1 establishes an upper
bound on the completion time of any rem-job during any
mode transition, while considering the interference due
to the execution of the mode-independent tasks. Then in
Corollary 1, we determine the largest makespan, where the
makespan is defined as follows.

Definition 1 (makespan): Let J = {J1, J2, . . . , Jn} be
a set of n jobs with processing times c1, c2, . . . , cn that
are ready for execution at time 0. Let τmit be a set of
sporadic constrained-deadline tasks that are scheduled
during the schedule of J . Suppose that τmit and the n
jobs of J are scheduled upon m identical processors
by a global, preemptive, work-conserving and fixed-job
priority scheduler. We define the makespan as the earliest
time in the schedule at which all the jobs of J are completed.

By using a similar proof as Lemma 2 of [1], we can
easily show that every rem-job and every job generated
by any mode-independent tasks always meets its absolute
deadline di,j while using SM-MSO during the transition
phases. Thereby, for a given multimode real-time system,
the protocol SM-MSO will comply with every expected
requirement if all the enablement deadlines Djk(M i) are
also met during every mode transition, i.e., if the makespan
is not larger than the minimal enablement deadline of the
non-mode-independent new-mode tasks. This upper bound
on the makespan thus allows us to design a sufficient
validity test that indicates, a priori, if all the enablement
deadlines will be met during all possible mode changes.
Notice that we do not assume specific scheduling algorithms
in this document. Every result proposed here hold for any
global, preemptive, work-conserving and fixed-job priority
scheduler.

Definition 2 (processed work): At any time t in any
schedule, the processed work wk(t) denotes the amount of
work executed on processor Pk in the time interval [0, t].

Lemma 1: Let J = {J1, J2, . . . , Jn} be a set of n jobs
with processing times c1, c2, . . . , cn that are ready for exe-
cution at time 0. Let τmit be a set of sporadic constrained-
deadline tasks that are scheduled during the schedule of
J . Suppose that τmit and the n jobs of J are scheduled
upon m identical processors by a global, preemptive, work-
conserving and fixed-job priority scheduler. Then, an upper

15

bound R̂i on the time at which job Ji ∈ J completes is given
by the first fixed point of the following iterative process:

R̂
(0)
i ← 1

m

n∑
j=1
j 6=i

cj + ci

R̂
(k+1)
i ← 1

m

 n∑
j=1
j 6=i

cj +
∑

τj∈τmit

W (τj , R̂
(k)
i)

+ ci (1)

where W (τj , t) denotes an upper bound on the amount of
work that can be generated by the task τj in the time interval
[0, t]. Notice that in [6], the authors showed that

W (τj , t) = Nj(t)Cj + min(Cj , t+Dj − Cj −Nj(t)Tj)

where Nj(t)
def=
⌊
t+Dj−Cj

Tj

⌋
Proof: Suppose that the job Ji completes at time Ri

on processor Pk. Since the scheduler is work-conserving,
the processed work wk(Ri) on Pk is Ri and the processed
work wj(Ri) on the other processors Pj (with j 6= k) is at
least Ri − ci. Formally we have{

wj(Ri) = Ri if j = k

wj(Ri) ≥ Ri − ci ∀j = 1, . . . ,m and j 6= k

By summing these m expressions, we get
m∑
j=1

wj(Ri) ≥ mRi − (m− 1)ci (2)

where
∑m
j=1 wj(Ri) denotes the amount of work executed

on the m processors from time 0 to time Ri. On the other
hand, we know that this cumulative processed work cannot
be larger than the amount of requested work in the system,
i.e.,

m∑
j=1

wj(Ri) ≤
n∑
j=1

cj +
∑

τj∈τmit

W (τj , Ri) (3)

By using Inequalities 2 and 3, we get

mRi − (m− 1)ci ≤
n∑
j=1

cj +
∑

τj∈τmit

W (τj , Ri)

Rewriting this yields

Ri ≤
1
m

 n∑
j=1
j 6=i

cj +
∑

τj∈τmit

W (τj , Ri)

+ ci

As a result, Ri is upper bounded by R̂i defined as in
Expression 1.

Corollary 1: Assuming the same notations as in
Lemma 1, an upper bound on the makespan is given by

m̂s(J, τmit,m) def=
n

max
i=1
{R̂i} (4)

The proof is a direct consequence of Lemma 1. As a result,
a sufficient validity condition may be formalized as follows.

Validity test 1: For any multimode real-time system τ ,
SM-MSO meets every job and enablement deadline during
every transition between every pair of operating modes of τ
if, ∀M i,M j with M i 6= M j ,

m̂s(J, τmit
i,j ,m) ≤ min

τj
k
∈τj\τmit

i,j

{Djk(M
i)}

where J is the set of jobs composed of one job issued from
each task of τ i \ τmit

i,j .

IV. CONCLUSION AND FUTURE WORK

In this paper, we extended the synchronous protocol SM-
MSO proposed in [1] in order to take into account the
mode-independent tasks during the execution of sporadic
multimode real-time systems on multiprocessor platforms.
Moreover, we established a validity test which allows the
system designer to predict whether the given system can
meet all the expected requirements during every mode tran-
sition. In our future work, we aim to design an asynchronous
protocol with the consideration of mode-independent tasks.

REFERENCES

[1] V. Nelis, J. Goossens, and B. Andersson, “Two protocols for
scheduling multi-mode real-time systems upon identical mul-
tiprocessor platforms,” in Proceedings of the 21st Euromicro
Conference on Real-Time Systems, Dublin, Ireland, July 2009,
pp. 151–160.

[2] G. J. Fohler, “Flexibility in statically scheduled hard real-
time systems,” Ph.D. dissertation, Technische Universität Wien,
1994.

[3] F. Jahanian, R. Lee, and A. Mok, “Semantics of modechart in
real time logic,” in Proceedings of the 21st Hawaii Interna-
tional Conference on Systems Sciences, 1988, pp. 479–489.

[4] J. Real and A. Crespo, “Mode change protocols for real-time
systems: A survey and a new proposal,” Real-Time Systems,
vol. 26, no. 2, pp. 161–197, March 2004.

[5] T. Baker, “Multiprocessor EDF and deadline monotonic
schedulability analysis,” in Proceedings of the 24th IEEE
International Real-Time Systems Symposium, December 2003,
pp. 120–129.

[6] M. Bertogna and M. Cirinei, “Response-time analysis for
globally scheduled symmetric multiprocessor,” in Proceedings
of the 28th IEEE International Real-Time Systems Symposium,
December 2007, pp. 149–160.

16

Policies for Migration of Real-Time Tasks in Embedded Multi-Core Systems
Kedar M. Katre1, Harini Ramaprasad1, Abhik Sarkar2, Frank Mueller2

kedarked@siu.edu, harinir@siu.edu, asarkar@ncsu.edu, mueller@cs.ncsu.edu
1Southern Illinois University Carbondale, 2North Carolina State University

Abstract
The increasing computational and power demands of

embedded systems today are being met by deploying multi-
core architectures. Several embedded systems have real-time
requirements that necessitate offline temporal guarantees.
The use of multicores in such systems poses a challenge
in terms of timing predictability, specifically when real-time
tasks are permitted to migrate among the different cores.

The aim of this paper is to put forth novel policies
to guide migration decisions on time-critical and safety-
critical embedded systems that use multicore architectures.
Migration decisions are based on the cache usage of tasks,
the migration mechanisms available and the characteristics
of the network-on-chip (NoC) that is used to provide com-
munication among cores.

1. Introduction
Increasing computational demands over the years have

been addressed by increasing the operating clock frequencies
of microprocessors as required. However, these designs have
reached a clock frequency wall due to area and power
considerations, leading to designs with multiple processors
on a single chip, known as chip multiprocessors (CMPs)
or simply multicore processors. The invention of multicore
processors has, to a great extent, ensured that the rate of
increase in performance of computing systems is maintained,
thereby making multicores ubiquitous these days.

The electronics industry has been experiencing an upsurge
with the advent of embedded systems. Embedded systems
have been a major contributor in reducing the cost, power
and area requirements of computing systems. Until recently,
embedded systems worked on single-core microprocessors.
However, due to increasing computational demands even on
such systems, multicore architectures have already found
their place in the embedded systems domain.

Prediction of timing behavior to ensure that real-time
task deadlines are met is becoming increasingly difficult
with the use of multicore platforms in embedded systems.
While several real-time multicore scheduling strategies have
been and are being proposed to address this issue, their
reliance on task migration remains a major challenge. Task
migration among cores reduces timing predictability due to
cache warm-up overheads while increasing traffic on the
Network-on-Chip (NoC) interconnect.

This work was supported in part by NSF grants CNS-0905212, CNS-
0905181 and CNS-0720496.

In this paper, we present novel policies to guide migration
decisions on embedded multicore systems that require tem-
poral guarantees. Migration decisions are based on cache
usage of tasks, the migration mechanisms available and
characteristics of the NoC used for communication among
cores. We assume that a task may be migrated only between
jobs, or, in other words, at the end of the execution of one
job and before the next job begins. The core that a task is
executing on just before it is migrated is called the source
core for the migration and the core that the task is migrated
to is called the target core.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents relevant
background information and motivates the problem further.
Section 4 describes the methodology used to make migration
decisions. Finally, we present our conclusions in Section 5.

2. Related Work
Choffnes et al. propose migration policies for multicore

fair-share scheduling in the context of soft real-time systems
[8]. Their technique minimizes migration costs while ensur-
ing fairness among tasks by maintaining balanced scheduling
queues as new tasks are activated. In contrast, our work
targets hard real-time systems.

Li et al. present migration policies that facilitate efficient
operating system scheduling in asymmetric multicore archi-
tectures [11], [12]. Their work focuses on fault-and-migrate
techniques to handle resource-related faults in heterogeneous
cores and does not operate in the context of real-time
systems. In contrast, our work focuses on homogeneous
cores and strives to improve system utilization by allowing
migrations while providing timeliness guarantees for real-
time systems.

Yan and Zhang have proposed techniques to calculate
the worst-case execution time (WCET) of real-time tasks
executing on multicores [19], [18], [20]. Other approaches
develop WCET and cache analysis techniques for multi-level
caches [14], [10]. All these approaches are limited to shared
L2 instruction caches in WCET calculation and they do not
consider task migration.

Calandrino et al. propose scheduling techniques to ac-
count for co-schedulability of tasks with respect to cache
behavior [1], [7]. Their approach organizes tasks with the
same period into groups of cooperating tasks. While their
method improves cache performance in soft real-time sys-
tems, they do not specifically address issues related to task
migration.

17

Ramaprasad et al. propose techniques to bound the data
cache-related preemption delay (D-CRPD) of tasks in the
context of periodic, hard real-time systems [15]. We use the
results of this work for offline calculation of migration delay
bounds (Section 4.1).

3. Motivation and Prior Work
In this section, we present some background information

related to task scheduling on multicore systems and further
motivate a systematic assessment of migration policies in
real-time multicore systems.

3.1. Multicore Scheduling
Scheduling of tasks on cores is an important factor of con-

sideration on multicore systems. Researchers have proposed
several schemes for scheduling tasks on multicore systems.
They may be broadly classified as partitioned and global
scheduling policies.

In partitioned scheduling ([9], [6]), tasks are assigned
to cores statically and are not allowed to migrate between
cores. The advantage of using partitioned scheduling is
that there is no migration overhead. However, partitioned
scheduling suffers from two main disadvantages. First,
such schemes are inflexible and cannot easily accommodate
dynamic tasks without a complete re-partition. The re-
partitioning problem may be resolved by allocating incoming
dynamic tasks to the first available core, but this may not
be optimal in terms of overall system utilization. Second,
optimal assignment of tasks to cores is an NP-hard problem
for which polynomial-time solutions result in sub-optimal
partitions.

In global scheduling policies, tasks are allowed to migrate
between cores as required. Recently, several optimal global
scheduling policies have been proposed ([5], [13], [2], [3],
[17], [4]). While these schemes strive to overcome the
limitations of partitioned scheduling, they add migration
overheads to tasks. In the context of real-time systems,
the addition of migration overheads changes the timing
behavior of tasks, thereby affecting the timing predictability
of the system. This necessitates the incorporation of task
migration overheads in analysis techniques, thus providing
the motivation for, and demonstrating the importance of, the
work presented in this paper.

3.2. Reasons for Migration
As discussed in Section 3.1, global real-time scheduling

policies on multicores permit task migration among cores.
There may be several reasons to do this despite the fact
that migration introduces overheads on task execution time.
Some of the reasons are listed below.

Capitalize on early task completion: Actual execution
time of a real-time task is often significantly less than the
worst-case execution time estimate. Early completion of a
task on a particular core may be used to an advantage by
migrating waiting tasks on a busy core to the newly idle core.

This enables earlier start/resumption of the waiting task and
improves utilization by minimizing idle time.

Facilitate aperiodic job admission: Task migration may
be used to increase admissibility of sporadic jobs (aperiodic
jobs with hard deadlines) into the system and to improve
response times of aperiodic jobs with soft deadlines.

Avoid costly preemptions: A task potentially preempting
a lower-priority task executing on a particular core may be
migrated to a different core to allow significant reduction in
the preemption delay that would otherwise be incurred by
the lower-priority task.

Improve cache performance: If two or more tasks
scheduled on the same core overlap significantly in their
cache footprint, one or more of them may be migrated to a
different core to reduce cache interference.

Balance load, power and thermal characteristics: Task
migration may be used to balance the load on cores to ensure
that no single core gets overheated while another core is idle.

3.3. Migration Mechanisms
Architectural and hardware support for actual migration

may be provided in different ways. In prior work [16], we
presented several mechanisms to facilitate task migration
among cores. The basics of the mechanisms we use in the
current work are described below.
3.3.1. Pull-based model (Conventional warm-up). No
specific support for migration is provided in this case. Once
the migrated task starts executing on the target core, any
cache accesses that result in misses are resolved one at a time
using the coherence protocol in effect within the system,
either from the shared L3 cache or from the L1/L2 caches
of the source core.
3.3.2. Push-based model. In this scheme, cache lines of the
task to be migrated are proactively pushed from the source
core cache to the target core cache. We currently consider
two push models, as described below.

Whole Cache Migration: In this scheme, every line of
the source core cache is consulted to identify lines belonging
to the task to be migrated that have to be pushed to the target
core.

Regional Cache Migration: In this scheme, programmers
are allowed to define regions that correspond to a particular
cache and only these regions are considered while migrating
cache lines.

4. Methodology
In this section, we describe the methodology used to

determine when and what task to migrate and where to
migrate the task to. For this purpose, we develop a cost-
benefit analysis technique that considers several factors to
determine the feasibility and usefulness of a given migration.

4.1. Offline Analysis: Migration Delay Bounds
An offline component is employed for calculating the

worst-case possible delays introduced into the system due
to task migrations. Migration delay bounds include:

18

• Worst-case Migration Related Preemption Delay
(MRPD) experienced by the tasks on the source core
due to migration;

• Worst-case MRPD experienced by the existing tasks on
the target core due to migration;

• Worst-case Migration Related Cache Delay (MRCD)
experienced by the migrated task;

• Worst-case Communication Delay (WCCD) between
the source and target cores.

In order to calculate the first three of the four bounds
above, we employ static analysis techniques that were de-
veloped in prior work to calculate upper bounds on the
worst-case cache related preemption delay (CRPD) of tasks
[15]. For the calculation of WCCD, we use the worst-case
number of hops between the source and target cores and the
available network bandwidth as metrics. Further detail about
the offline analysis of migration delay bounds is out of the
scope of the current paper. Instead, we focus on the online
policies to guide migration decisions.

4.2. Online Analysis: Choosing the Best Migration
In Section 3.2, we discussed several reasons that might

trigger task migrations. In the current work, we focus on
a subset of these triggers. Specifically, migration decisions
are made a) when a periodic job is released and b) when
a periodic job finishes execution. At the point where a
migration decision needs to be made, offline migration delay
bounds are first employed to determine whether a possible
migration is feasible or not.

A migration is said to be feasible if the system remains
schedulable in spite of the migration overhead introduced.
In other words, a migration is feasible if and only if no task
misses its deadline due to the migration. At a given time,
there may be more than one feasible migration possible.
In this section, we present techniques to choose a suitable
migration candidate among a given set of feasible migration
candidates. Since we only consider feasible migration can-
didates for comparison, safety of the system is guaranteed.

4.2.1. Comparing Feasible Migrations: Greedy Ap-
proach. Although migration delay bounds are necessary to
determine the feasibility of a migration, they are pessimistic
bounds due to the fact that they depend entirely on statically
available information. In order to identify which of a set of
feasible migrations is the least expensive, we present a set
of online calculations that may be used to compare feasible
migrations.

Migration overheads depend on several metrics. A
weighted migration cost for a given migration candidate
is calculated based on these metrics. Employing a greedy
approach, the candidate with the lowest weighted cost is
chosen for migration. It is to be noted that the weighted
migration cost is a relative cost used to compare multiple
feasible migrations. In the current work, we make a simpli-
fying assumption that the target core of a migration is empty.

In future work, we will consider the effects of a proposed
migration on the tasks already allocated to the target core.
The metrics considered in this work are described below.

1. Number of Cache Lines. When a task migrates,
its cache lines have to be transferred to the intended target
core. The worst-case number of cache lines that must be
migrated, derived using offline MRCD values for the task
under consideration, is a metric used in the calculation of
the weighted migration cost.

2. Effect of Migration Mechanism. In Section 3.3,
we briefly described the migration mechanisms developed
in prior work [16]. The cost of migrating a given task to a
specific target core depends on the underlying mechanism
that facilitates the migration.

3. Time Until Next Release. As mentioned earlier, in
the current work, we only migrate tasks at the end of a job
so that the next job may start on the target core. Hence,
the time available before the release of the next job of the
migrated task is an important consideration while comparing
multiple feasible migrations.

4. Distance to Target Core. This metric constitutes
the worst-case number of hops between the source and
target cores. In the current work, we assume that routes
between cores are assigned statically, thereby simplifying
the calculation of the number of hops. In future work, we
intend to relax this assumption.

5. Quality of Service (QoS). The QoS factor of
the network for communication among cores (NoC) is the
minimum network bandwidth/latency that is guaranteed to
be available along a route at a given point of time. The time
taken for transfer of a set of cache lines along a given route
is affected by this QoS factor.

4.2.2. Weighted Migration Cost. In this section, we present
a method for calculating the weighted cost of a migration
relative to other migrations. Equation 1 shows the calculation
to determine the overhead of a migration with respect to the
release time of the next job of the migration candidate. It is
to be noted that migration time that overlaps with the time
available before the release of the next job does not count
as overhead as far as the response time of the migration
candidate is concerned, although it affects the traffic on the
NoC.

WMCtsm
i = ((nci ∗mi) ∗ nht

s ∗ q)− (trel
i − tsm) (1)

Here, i is the task number of the migration candidate Ti

and tsm is the start time of the potential migration. nci is the
worst-case number of cache lines that need to be transferred
between the source and target cores and nht

s is the worst-
case number of hops between the source core (s) and the
target core (t). mi represents the effect of the migration
mechanism used. q is the time required for the transfer of
one cache line along one hop and represents the global QoS
parameter for the NoC bandwidth and latency. trel

i is the
release time of the next job of the migration candidate.

19

The effect of different migration mechanisms on the
weighted migration cost is a comparative term among the
mechanisms. It takes into consideration, the advantages and
limitations of each mechanism. The less overhead a certain
mechanism imposes on the transfer of cache lines between
the source and target cores, the lower the value of the factor
mi. The subscript i is used here because the mechanisms
affect different tasks in a different manner based on their
cache access patterns.

As mentioned in Section 3.3, we assume migration of
tasks uses one of three mechanisms, namely 1) Pull-based
model (conventional warm-up, CW), 2) Whole Cache Migra-
tion (WCM) and 3) Regional Cache Migration (RCM). We
also introduce the concept of an Ideal Migration Mechanism
that assumes the migrated task’s cache lines from the source
cache are replicated on the target cache with zero overhead.
In other words, it is as though there was no migration at all.
It is to be noted that this ideal mechanism is not a realistic
one, but rather serves as a point of reference for comparison.
For ideal migration, we assume that mi = 0 for all tasks.
At the other end of the spectrum, we have conventional
warm-up that imposes the maximum possible migration
overhead since there is no explicit support for migration. For
conventional warm-up, we assume that mi = 1 for all tasks.
For all other mechanisms, the value of mi lies in between
0 and 1.

5. Conclusions
This paper presents greedy policies to guide migration de-

cisions on a real-time multicore system. The policy considers
the number of cache lines to be migrated, the mechanism
being used for migration and characteristics of the NoC
to choose the migration with the least overhead at any
given time. It is expected that using such a policy to
guide migrations will result in reduced response times for
tasks and improved overall utilization of the system while
guaranteeing real-time deadlines.

References

[1] J. Anderson, J. Calandrino, and U. Devi. Real-time scheduling
on multicore platforms. In IEEE Real-Time Embedded Tech-
nology and Applications Symposium, pages 179–190, Apr.
2006.

[2] J. Anderson and A. Srinivasan. Early-release fair scheduling.
In Euromicro Conference on Real-Time Systems, pages 35–43,
June 2000.

[3] J. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling
of asynchronous periodic tasks. In Euromicro Conference on
Real-Time Systems, pages 76–85, June 2001.

[4] S. Baruah. Techniques for multiprocessor global schedulabil-
ity analysis. In IEEE Real-Time Systems Symposium, pages
119–128, 2007.

[5] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation.
Algorithmica, 15:600–625, 1996.

[6] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies
for assigning real-time tasks to multiprocessor systems. IEEE
Trans. on Computers, 44(12):1429–1442, 1995.

[7] J. Calandrino and J. Anderson. Cache-aware real-time
scheduling on multicore platforms: Heuristics and a case
study. In Euromicro Conference on Real-Time Systems, pages
209–308, July 2008.

[8] D. Choffnes, M. Astley, and M. J. Ward. Migration policies
for multi-core fair-share scheduling. ACM SIGOPS Operating
Systems Review, 42:92–93, 2008.

[9] S. Dhall and C. Liu. On a real-time scheduling problem.
Operations Research, 26(1):127–140, 1978.

[10] D. Hardy and I. Puaut. Wcet analysis of multi-level non-
inclusive set-associative instruction caches. In IEEE Real-
Time Systems Symposium, Dec. 2008.

[11] T. Li, D. Baumberger, D. Koufaty, and S. Hahn. Efficient op-
erating system scheduling for performance-asymmetric multi-
core architectures. In ACM/IEEE Conference on Supercom-
puting, Nov. 2007.

[12] T. Li, P. Brett, B. Hohlt, R. Knauerhase, S. McElderry, and
S. Hahn. Operating system support for shared-isa asymmetric
multi-core architectures. In Workshop on the Interaction
between Operating Systems and Computer Architecture, June
2008.

[13] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and
migrating periodic tasks on multiple resources. In IEEE Real-
Time Systems Symposium, pages 294–303, Dec. 1999.

[14] F. Mueller. Timing predictions for multi-level caches. In
ACM SIGPLAN Workshop on Language, Compiler, and Tool
Support for Real-Time Systems, pages 29–36, June 1997.

[15] H. Ramaprasad and F. Mueller. Tightening the bounds
on feasible preemptions. ACM Transactions on Embedded
Computing Systems, page (accepted), Mar. 2008.

[16] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Push-
assisted migration of real-time tasks in multi-core processors.
In ACM SIGPLAN Conference on Language, Compiler, and
Tool Support for Embedded Systems, pages 80–89, June 2009.

[17] A. Srinivasan and J. Anderson. Optimal rate-based scheduling
on multiprocessors. In ACM Symposium on Theory of
Computing, pages 189–198, May 2002.

[18] J. Yan and W. Zhang. Time-predictable l2 caches for real-
time multi-core processors. In Work in Progress session of
IEEE Real-Time Systems Symposium, Dec. 2007.

[19] J. Yan and W. Zhang. Wcet analysis of multi-core processors.
In Work in Progress session of IEEE Real-Time Systems
Symposium, Dec. 2007.

[20] J. Yan and W. Zhang. Wcet analysis of multi-core processors
with shared l2 instruction caches. In IEEE Real-Time Em-
bedded Technology and Applications Symposium, Apr. 2008.

20

On Optimal Multiprocessor Scheduling Considering Concurrency and Urgency

Jinkyu Lee∗, Arvind Easwaran†, Insik Shin∗ and Insup Lee‡
∗Dept. of Computer Science, KAIST, South Korea

†IPP-HURRAY! Research Group, Polytechnic Institute of Porto (ISEP-IPP), Portugal
‡Dept. of Computer and Information Science, University of Pennsylvania, USA

jinkyu@cps.kaist.ac.kr; aen@isep.ipp.pt; insik.shin@cs.kaist.ac.kr; lee@cis.upenn.edu

Abstract—It has been widely studied how to schedule real-time
tasks on multiprocessor platforms. Several studies find optimal
scheduling policies for implicit deadline task systems, but it is
hard to understand how each policy utilizes the two important
aspects of scheduling real-time tasks on multiprocessors: concur-
rency and urgency. In this paper, we introduce a new scheduling
policy that considers these two properties. We prove that the
policy is optimal for the special case when the execution time of
all tasks are equally one and deadlines are implicit, and observe
that the policy is a new concept in that it is not an instance of
Pfair or ERfair. It remains open to prove the optimality of our
scheduling policy for general task systems.

I. I NTRODUCTION

Real-time schedulability analysis have been studied for
achieving predictability on satisfying timing constraints. In
particular, scheduling policies for uniprocessor have been
extensively studied. EDF [1] and DM [2] are optimal dynamic-
and static-priority scheduling policies for preemptive schedul-
ing of periodic and sporadic tasks, respectively. While unipro-
cessor scheduling has matured over years, finding optimal
scheduling policies for general task systems on multiprocessor
platforms is still an open problem. Some studies (e.g., [3], [4],
[5]) focused on adapting existing uniprocessor scheduling to
multiprocessor scheduling, but they do not optimally utilize
the processing capacity. This is because uniprocessor policies
are not designed to efficiently handle concurrent executions.
Several other studies (e.g., [6], [7], [8], [9], [10], [11]) have
been introduced that generate optimal schedules for implicit
deadline task systems on multiprocessor platforms, but some
of these algorithms suffer from high preemption overhead.
Further, none of them is able to preserve optimality for
more general task systems (such as constrained deadline task
systems). We believe this limitation in the state-of-art arises
from the fact that it is difficult to understand how existing
policies treat some of the important aspects of scheduling
real-time tasks on multiprocessor platforms. Therefore, in this
paper, we design a novel scheduling policy that clearly differs
from existing policies in this regard. That is, it explicitly uses
important aspects of scheduling like “job urgency” and “inter-
job concurrency” to prioritize jobs.

Handling the trade-off between “job urgency” and “inter-
job concurrency” is, in our opinion, the key to efficient
scheduling on multiprocessor platforms. This can be explained
as follows. To maximize the number of concurrently executing
jobs, it is desirable to delay the finishing time of jobs so
that more unfinished jobs are available for scheduling. For

instance, a policy which gives “higher priority to jobs with
longer remaining execution time” implements this concept.
However, in order to meet hard real-time requirements it is
also important to finish jobs by their deadlines. For instance,
a policy which gives “higher priority to jobs with earlier
deadline” implements this concept. Therefore, one approach
for allowing a trade-off between these concepts would be
to simultaneously consider the remaining execution time and
deadline of jobs.

In this work, we first consider a simple and intuitive
scheduling policy based on the above discussion (calledDy-
namic Density First (DDF)). The dynamic density of a job is
defined as its remaining execution time divided by the time to
deadline. Note that this parameter changes continuously over
a job’s lifetime. DDF assigns a higher priority to a job with
a larger dynamic density. However, we observed that such a
simple (and in some sense crude) strategy does not offer a
very fine-grained trade-off between urgency and concurrency.
Therefore, it entails another more refined scheduling strategy.

In this paper, we introduce a new scheduling policy ex-
tending DDF. We observe and prove that DDF is an optimal
multiprocessor scheduler for implicit deadline tasks, when
their execution times are all equally one. DDF is not optimal
for general tasks with arbitrary execution times however.
Looking at how DDF fails to schedule such general tasks, we
observe that some jobs are executed earlier than they should
be. Its implication is that an optimal schedule can be obtained
from a DDF schedule if we can delay the execution of “some”
jobs. Reflecting this, we introduce a new scheduling policy
called LADD (Lagging And Dynamic Density). A job is said
to belagging if it has a longer remaining execution time when
compared to some nominal value (we describe this nominal
value later in the paper). In LADD, jobs are classified into
two groups: a group of lagging jobs and another group of
non-lagging jobs. All jobs in the lagging group have a higher
priority than those in the non-lagging group. Further, jobs in
the same group are scheduled using DDF policy. LADD favors
lagging jobs first and then jobs with higher dynamic density; it
essentially delays the execution of non-lagging jobs. Our goal
is to investigate whether LADD is an optimal multiprocessor
scheduling algorithm. In this paper, we show that for the
special case where the execution times of all tasks are one,
LADD produces the same (optimal) schedule as the one by
DDF. We are currently working on proving the optimality of
LADD for general task systems.

The contributions of this paper are as follows: we introduce

21

a new scheduling policy that considers both concurrency and
urgency; we prove the optimality of the policy for a special
task system; and we observe that the policy is not an instance
of Pfair [6] or ERfair [8].

Task Model. We assume a constrained deadline sporadic
task model [12]. In this model, a taskτi is specified as
(Ti, Ci, Di), whereTi is the minimum separation,Ci is the
worst-case execution time requirement, andDi is the relative
deadline. We assumeCi ≤ Di ≤ Ti. A task τi invokes a
series of jobs, each separated from its predecessor by at least
Ti time units. We assume that a single job of a task cannot
be executed in parallel. There arem processors in the system,
and we assume that

∑
∀j

Cj

Dj

M= Dsys (named as the system
static density) is not more thanm.

We useDi(t) and Ci(t) to denote the remaining time to
deadline and the remaining execution time, respectively, of a
job of τi at time t. The dynamic density of a job ofτi at t
is then specified asCi(t)

Di(t)
, and the system dynamic density is∑

j
Cj(t)
Dj(t)

M= Dsys(t). We express that a job ofτi is activeat
t whenCi(t) is non-zero. We denote the number of tasks as
n, and the number of active jobs att asn(t).

We consider quantum-based (discrete) systems, and thus the
schedule is also quantum-based.

II. OPTIMALITY OF DDF FOR Ci = 1

In this section, we prove that we can schedule any task
set under the following assumptions: (A1) the task set is
scheduled by DDF; (A2) the system static density is not more
thanm; and (A3) execution times of all tasks are one (Ci = 1),
and thus remaining execution times of all active jobs are also
one (Ci(t) = 1, ∀ active τi at t). First, we prove that the
system dynamic density does not increase in case of no new
arrival of jobs. Second, we prove that the system dynamic
density at any timet cannot exceedm in spite of arrival of
new jobs.

The first lemma shows that if remaining time to deadline of
all jobs are identical, then the system dynamic density cannot
increase in case of no new arrival of jobs.

Lemma 1:Assume that the following conditions: (A4) re-
maining time to deadline of all active jobs att0 are identical
(i.e., Di(t0) = D(t0)); (A5) the system dynamic density at
t0 is not more thanm; and (A6) there is no new arrival of
jobs in the interval[t0, t1). Then,Dsys(t) ≤ Dsys(t0) for all
t ∈ [t0, t1).

Proof: We use mathematical induction.
(The basis) Att0, Dsys(t0) ≤ Dsys(t0).
(The inductive step) We wish to prove the following: if

Dsys(t) ≤ m is true, thenDsys(t + 1) ≤ Dsys(t). From
(A3) and (A4), we deriveDsys(t) = n(t)

D(t) implying n(t) =
Dsys(t) · D(t). Assumingm jobs are serviced in[t, t + 1),
we calculaten(t + 1) = n(t) −m. We then have the results
below.

Dsys(t + 1) =
n(t + 1)

D(t + 1)
=

Dsys(t) ·D(t)−m

D(t)− 1
≤ Dsys(t).

Here we assumed thatm jobs are scheduled in the time
interval [t, t+1). If there are less thanm active jobs att, then
there is no active job att+1. This meansDsys(t+1) = 0 ≤
Dsys(t), and hence this lemma is always true.

We now wish to show that the above lemma holds even
when remaining time to deadline of jobs are different. For this
purpose, we first show a system dynamic density bounding
transformation from a set of jobs with different deadlines
to a set of jobs with identical deadline (Lemma 2). Then,
in Lemma 3 we prove that Lemma 1 holds even when job
deadlines are different.

Lemma 2:Assumek · 1
D =

∑
j

1
Dj

and D ≤ Dj for all
j. Then, we can derive thatn · 1

D−t ≥ ∑
∀j

1
Dj−t for all

0 < t < D.
Proof:

k · 1

D − t
= k · 1

D
+ k · 1

D
· t

D − t
=

∑
j

1

Dj
+

∑
j

1

Dj
· t

D − t

≥
∑

j

1

Dj
+

∑
j

1

Dj
· t

Dj − t
=

∑
j

1

Dj − t

Lemma3: Assume (A5) shown in Lemma 1, and suppose
there is no arrival of new jobs in[t, t+1). Then, we can derive
that Dsys(t + 1) ≤ Dsys(t).

Proof: Without loss of generality, we sort the index of
jobs by remaining time to deadline att as follows.

D1(t) ≤ ... ≤ Dm(t) ≤ Dm+1(t) ≤ ... ≤ Dn(t)(t) (1)

We construct a set of new jobs satisfying the following: (a)
the system dynamic density att of the new jobs is same as
that of the original jobs; (b) them most urgent jobs (as per
DDF) from the new set is the same as that in the original set;
and (c) other new jobs except them most urgent jobs are the
same as themth urgent job in the original set. Note that, with
this transformation, the number of jobs in the new set at time
t is no more than that in the original set. Thus, the set of new
jobs can be expressed as follows.

D′
1(t) ≤ ... ≤ D′

m(t) = D′
m+1(t) = ... = D′

n′(t)(t),

whereD′
1(t) = D1(t), ..., D

′
m(t) = Dm(t)

and
n′(t)∑
j=1

1

D′
j(t)

=

n(t)∑
j=1

1

Dj(t)
, n′(t) ≤ n(t) (2)

During [t, t + 1) the m most urgent jobs are serviced, so
the system dynamic density att + 1 of the set described in
Eq. (2) is

∑n′(t)
j=m+1

1
D′j(t)−1 = n′(t)−m

D′
m+1(t)−1 . Here we know that

D′
m+1(t) is equal to or less than any ofDm+1(t), ..., Dn(t)(t).

By Lemma 2, the system dynamic density att + 1 of the set
described in Eq. (2) is no less than that of the set described
in Eq. (1).

We now define another set of new identical jobs as follows:

22

D∗
1(t) = ... = D∗

m(t) = D∗
m+1(t) = ... = D∗

n∗(t)(t),

where
n∗(t)∑
j=1

1

D∗
j (t)

=

n(t)∑
j=1

1

Dj(t)
, n∗(t) = n′(t) (3)

Note these jobs also have the system dynamic density att
same as that of the original job set. Further, it is easy to see that
D∗

m+1(t) ≤ D′
m+1(t), and thus the system dynamic density

at t + 1 of the set described in Eq. (3)
(∑n∗(t)

j=m+1
1

D∗
j (t)−1

)

is equal to or larger than that of the set described in Eq. (2)(∑n′(t)
j=m+1

1
D′

j(t)−1

)
. Therefore, by Lemma 1 we get,

n(t+1)∑
j=1

1

Dj(t + 1)
≤

n′(t+1)∑
j=1

1

D′
j(t + 1)

≤
n∗(t+1)∑

j=1

1

D∗
j (t + 1)

≤
n∗(t)∑
j=1

1

D∗
j (t)

=

n(t)∑
j=1

1

Dj(t)
,

and thus we conclude thatDsys(t + 1) is not more than
Dsys(t). Similar to Lemma 1, it does not affect the proof
that there can be less thanm active jobs att.

It now remains to prove that Lemma 1 holds even when new
jobs are released in the interval of interest. For this purpose,
we first prove that when the remaining time to deadline of a
job of τi becomes zero, the system dynamic density is at most
m −

(
1

Di

)
. The proof technique of the following lemma is

similar to that of Lemma 3.
Lemma 4:Assume (A5) in Lemma 1, and suppose there

is no arrival of new jobs in[t, t + D1(t)], where D1(t) is
the remaining time to deadline of the most urgent job att.
We denote the number of most urgent jobs att asN (note all
have deadline att+D1(t)). Then we concludeDsys(t+D1(t))
≤ Dsys(t)− N

D1(t)
.

Proof: Without loss of generality, we sort the index of
jobs by the remaining time to deadline att.

D1(t) = ... = DN (t) ≤ DN+1(t) ≤ ... ≤ Dm·D1(t)(t)

≤ Dm·D1(t)+1(t) ≤ ... ≤ Dn(t)(t) (4)

We construct a set of new jobs in a similar way to Lemma 3,
as follows:

D′
1(t) = ... = D′

N (t) ≤ D′
N+1(t) ≤ ... ≤ D′

m·D′1(t)(t)

= D′
m·D′1(t)+1(t) = ... = D′

n′(t)(t),

whereD′
1(t) = D1(t), ..., D

′
m·D′1(t)(t) = Dm·D1(t)(t)

and
n′(t)∑
j=1

1

D′
j(t)

=

n(t)∑
j=1

1

Dj(t)
, n′(t) ≤ n(t) (5)

By Lemma 2, the system dynamic density att′ ∈ [t, t +
D1(t)] of the set described in Eq. (5) is equal to or larger
than that of the set described in Eq. (4).

We now define another set of new identical jobs similar
to Lemma 3, but in this case we do not change theN most
urgent jobs{D1(t), ..., DN (t)}.

D∗
1(t) = ... = D∗

N (t) ≤ D∗
N+1(t) = ... = D∗

m·D∗1 (t)(t)

= D∗
m·D′1(t)+1(t) = ... = D∗

n∗(t)(t),

whereD∗
1(t) = D1(t), ..., D

∗
N (t) = DN (t),

and
n∗(t)∑
j=1

1

D∗
j (t)

=

n(t)∑
j=1

1

Dj(t)
, n∗(t) = n′(t) (6)

We can calculate the system dynamic density att of the set
described in Eq. (6) byU∗

sys(t) = N
D∗

1 (t) + n∗(t)−N
D∗

N+1(t)
. During

[t, t + D∗
1(t)], D∗

1(t) · m jobs are serviced, and thus, using
U∗

sys(t), we calculate the system dynamic density att+D1(t)
of this set as follows.

U∗sys(t + D1(t)) =
n∗(t)−D∗

1(t) ·m
D∗

N+1(t)−D∗
1(t)

=

n∗(t)−D∗
1(t) · U∗sys(t)

n∗(t)−D∗
1(t) ·m

(
U∗sys(t)− N

D1(t)

)
≤ U∗sys(t)− N

D1(t)

Usingarguments identical to Lemma 3 we can conclude that
Dsys(t + D1(t)) is equal to or smaller thanDsys(t)− N

D1(t)
.

Using the previous lemmas, we finally have the following
theorem.

Theorem 1:DDF can schedule any task set which satisfies
(A2) and (A3).

Proof: Assume that the system dynamic density att is
equal to or less thanm. By Lemma 4,Dsys(t+D1(t)) is not
more thanDsys(t)− N

D1(t)
. At t+D1(t), we have enough slack

in the system dynamic density to accommodate the arrival of
a new job of taskτ1. Since we assume constrained deadline
tasks, we then guarantee that the arrival of new jobs ofτ1

cannot make the system dynamic density larger thanm. Since
we know the system dynamic density cannot increase without
arrival of new jobs from Lemma 3, it is enough to look at
points when remaining time to deadline of any job becomes
zero. Since the system dynamic density at the start is not larger
thanm (system static density is at mostm), we then guarantee
that the system dynamic density never exceedsm.

At any time, there are at mostm urgent jobs (i.e., Ci(t) =
Di(t)), and these jobs have the highest priorities. Therefore,
DDF can schedule any task set which satisfies (A2) and (A3).

A direct corollary of the above theorem is that DDF is
optimal for implicit deadline task systems when execution time
of all tasks are equally one.

III. T OWARD OPTIMALITY OF LADD

We have proved in Section II that DDF is an optimal
scheduling policy when the execution times of all tasks are
equally one and deadlines are equal to periods. But it can
be easily verified that DDF is not optimal without such an
assumption on the execution time. Consider a task system that
comprises of seven tasks as follows:τ1 = τ2 = (14, 7, 14),
τ3 = τ4 = τ5 = τ6 = τ7 = (5, 1, 5). This task set is scheduled
on a multiprocessor platform that consists of two processors.
As shown in Figure 1(a), if we apply DDF,τ7 cannot be

23

0 1 2 3 4 5

Deadline miss

(a) The original task set

0 1 2 3 4 5

(b) The alternative task set

Figure 1. Schedule under DDF

scheduled until its deadlinet = 5. This scheduling failure
comes from early execution ofτ1 andτ2. If we substitute the
original set by a new task set whereτ ′1 = τ ′2 = (2, 1, 2) and
other tasks are the same, DDF produces a feasible schedule as
shown in Figure 1(b). Since any feasible schedule of the new
task set can be used for the original task set, we can see that
DDF’s schedule becomes a feasible schedule by postponing
the execution ofτ1 andτ2.

To improve DDF, we must answer the question “when to
delay the execution of jobs and which ones.” For this we
consider a parameter called the expected remaining execution
time of taskτi (denoted asCE

i (t)). If a job of τi is ideally
scheduled with a rate ofCi

Di
, its remaining execution time

at t becomesCE
i (t), which meansCE

i (t) = Ci

Di
· Di(t).

A job is said to belagging if Ci(t) is strictly larger than
CE

i (t + 1). The intuitive meaning of alagging job is that if
the job is not serviced in[t, t+1), its remaining execution time
becomes larger than its expected remaining execution time at
t + 1. Using this concept of lagging, we now introduce a
new scheduling policy called LADD (Lagging And Dynamic
Density). In LADD, we divide jobs into two groups: lagging
jobs and non-lagging jobs. At everyt, we schedulem lagging
jobs which have higher dynamic density att (scheduled by
DDF). If there are less thanm lagging jobs, we schedule non-
lagging jobs also prioritized using DDFThe following theorem
proves that LADD and DDF are equivalent for the task system
considered in the previous section.

Theorem 2:LADD can schedule any task set, which satis-
fies (A2) and (A3) shown in Section II.

Proof: Any active jobs att satisfy the following.

CE
i (t + 1) =

Ci

Di
· (Di(t + 1)) =

1

Di
· (Di(t)− 1) < 1 = Ci(t),

which means any active jobs are lagging. So, LADD produces
the same schedule as DDF. By Theorem 1, we conclude that
LADD can schedule any task set, which satisfies (A2) and
(A3). In other words, LADD is also optimal for any implicit
deadline task system where execution time of all tasks are
equally one.

In the following observation, we claim that LADD is a new
scheduling concept.

Observation 1:LADD is not an instance of Pfair or ERfair.
Proof: We provide a example. Consider a task system

comprised of six tasks as follows:τ1 = (157, 66, 157), τ2 =

(667, 174, 667), τ3 = (867, 162, 867), τ4 = (132, 127, 132),
τ5 = (878, 120, 878), τ6 = (31, 1, 31). In this system,m = 2
andDsys < 2. When we apply LADD,lag (as defined in [6])
of τ5 at t = 8 is strictly larger than1.0.

IV. CONCLUSION

We present a new multiprocessor scheduling policy that of-
fers a fine-grained trade-off between concurrency and urgency.
We prove that the proposed scheduling policy is optimal for
implicit deadline task systems where execution time of all
tasks are equally one. We also observe that our scheduling
policy is not an instance of Pfair or ERfair.

Our future work involves deriving a schedulability condition
for general task systems under LADD. Another direction of
our future work is to find the theoretical bound on the number
of preemptions and migrations. We also plan to compare
overhead of LADD with that of other scheduling algorithms
(e.g., EKG [9] and LLREF [7]) through simulation and/or
analysis.

Acknowledgement
This research was supported in part by IT R&D program of

MKE/KEIT of Korea [2009-KI002090, Development of Technology
Base for Trustworthy Computing], National Research Foundation of
Korea (2009-0086964), and KAIST ICC, KIDCS, KMCC, and OLEV
grants.

This work was also partially funded by the Portuguese Science and
Technology Foundation (Fundação para a Cîencia e a Tecnologia -
FCT) and the European Commission through grant ArtistDesign ICT-
NoE-214373.

REFERENCES

[1] C. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,”Journal of the
ACM, vol. 20, no. 1, pp. 46–61, 1973.

[2] J. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic real-time tasks,”Performance Evaluation,
vol. 2, pp. 237–250, 1982.

[3] S. Cho, S.-K. Lee, S. Ahn, and K.-J. Lin, “Efficient real-time
scheduling algorithms for multiprocessor systems,”IEICE Trans.
on Communications, vol. E85–B, no. 12, pp. 2859–2867, 2002.

[4] A. Srinivasan and S. Baruah, “Deadline-based scheduling of pe-
riodic task systems on multiprocessors,”Information Processing
Letters, vol. 84, no. 2, pp. 93–98, 2002.

[5] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority schedul-
ing on multiprocessors,” inRTSS, 2001.

[6] S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Pro-
portionate progress: a notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

[7] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time
scheduling algorithm for multiprocessors,” inRTSS, 2006.

[8] J. H. Anderson and A. Srinivasan, “Early-release fair schedul-
ing,” in ECRTS, 2000, pp. 35–43.

[9] B. Andersson and E. Tovar, “Multiprocessor scheduling with few
preemptions,” inRTCSA, 2006, pp. 322–334.

[10] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving
optimal real-time scheduling on multiprocessors,” inECRTS,
2008.

[11] B. Andersson and K. Bletsas, “Sporadic multiprocessor schedul-
ing with few preemptions,” inECRTS, 2008, pp. 243–252.

[12] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” inRTSS, 1990.

24

A Stochastic Framework for Multiprocessor
Soft Real-Time Scheduling∗

Alex F. Mills
Department of Statistics and Operations Research

University of North Carolina at Chapel Hill

James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract
Prior work has shown that the global earliest-deadline-first
(GEDF) scheduling algorithm ensures bounded deadline tar-
diness on multiprocessors with no utilization loss; therefore,
GEDF may be a good candidate scheduling algorithm for
soft real-time workloads. However, such workloads are often
implemented assuming an average-case provisioning, and in
prior tardiness-bound derivations for GEDF, worst-case exe-
cution costs are assumed. As worst-case costs can be orders
of magnitude higher than average-case costs, using a worst-
case provisioning may result in significant wasted processing
capacity. In this paper, prior tardiness-bound derivations for
GEDF are generalized so that execution times are probabilis-
tic, and a bound on expected (mean) tardiness is derived. It is
shown that, as long as the total expected utilization is strictly
less than the number of available processors, the expected
tardiness of every task is bounded under GEDF. The result
also implies that any quantile of the tardiness distribution is
also bounded.

1 Introduction
The advent of multicore platforms has led to renewed interest
in multiprocessor scheduling techniques for real-time work-
loads. In this paper, we consider an important category of
such workloads, namely, those with soft timing constraints.
The specific such constraint that we consider is that deadline
tardiness be bounded. We consider this constraint in the con-
text of implicit-deadline sporadic task systems.

In work on such systems, Leontyev and Anderson showed
that a variety of global scheduling algorithms are capable of
ensuring bounded tardiness without utilization loss [3]. This
result extended an earlier proof by Devi and Anderson that
showed the same of the global earliest-deadline-first (GEDF)
scheduling algorithm [1]. Partly because of this result, GEDF
is currently being seriously considered for support in real-
time Linux [6] (as defined by the REALTIME PREEMPT
patch).

While these tardiness-bound results bode favorably for the

∗Work supported by AT&T, IBM, and Sun Corps.; NSF grants CNS
0834270 and CNS 0834132; ARO grant W911NF-09-1-0535; and AFOSR
grant FA9550-09-1-0549.

viability of certain global algorithms like GEDF for soft real-
time scheduling, they were established assuming a worst-case
system provisioning: when specifying a task’s utilization,
which defines its needed processor share, a worst-case execu-
tion time is assumed. This is a serious impediment. Indeed,
on a multicore platform, worst-case execution costs could
conceivably be orders of magnitude greater than average-case
costs, making an average- or near-average-case provision-
ing all but inevitable in many settings. When using Linux,
which lacks the determinism of a real-time operating system,
a worst-case provisioning is even more questionable. Ad-
ditionally, timing-analysis tools have not matured enough to
effectively determine reasonably tight upper bounds on task
execution times on multiprocessors; on the other hand, mean
execution times can be easily estimated in an unbiased way
from observed data.

In light of these observations, we argue that, if bounded
tardiness is acceptable, then the use of a less conservative
task execution model should be as well. The natural model
for execution times that vary from job to job is a probabil-
ity distribution. Motivated by this, we present in this paper
a derivation of expected tardiness under GEDF when exe-
cution times are stochastic. This derivation generalizes that
used in the earlier worst-case bound established by Devi and
Anderson [1] and places GEDF on a more solid footing as a
candidate soft real-time scheduling algorithm.

Related Work in Queueing. It is natural to think about
possible parallels between soft real-time scheduling and
queueing. Problems with ‘due-date’ or ‘lead-time’ require-
ments have been examined in the queueing literature from a
control standpoint, both in admissions and in service disci-
plines (see, e.g., [5, 2]). In existing work, a single server
is assumed, or an asymptotic regime is used where multiple
servers reduce to a single server. In this asymptotic regime, an
optimal approach for controlling service is the parameterized
generalized longest queue (GLQ) rule [5]. In a GLQ(θ) disci-
pline, if Ni(t) is the number of customers in the queue of the
ith customer type at time t, then service is provided to the cus-
tomer type with the largest value of θiNi(t). The GLQ disci-
pline approximates GEDF under the following conditions:

• θi is the mean interarrival time of customer type i;

1

25

• customer types are indexed in ascending manner by rel-
ative deadline; and

• ties are broken by serving the customer type with the
smallest index.

The major difference between a queueing system with several
customer types and a sporadic task system is that sporadic
tasks are sequential: jobs of a single task must execute in
order, and they may not overlap. Such precedence constraints
do not generally arise in queueing problems.

Nonetheless, the asymptotic optimality of GLQ suggests
that GEDF should be a useful algorithm for scheduling spo-
radic task systems where execution times are stochastic, but
to our knowledge, this issue has not be considered in prior
work.

Main Contribution. The main contribution of this paper
is an expected tardiness bound under GEDF when task ex-
ecution costs are defined probabilistically, instead of deter-
ministically; as a byproduct of this analysis, we also obtain
bounds on the quantiles (or percentiles) of the tardiness dis-
tribution. Note that our analysis is not a simple matter of re-
placing worst-case execution costs with average-case costs—
rather, we assume that execution costs follow a probability
distribution, conduct an analysis of the system, and then give
a bound on tardiness that results in expectation. This bound
depends on the specific execution-time distributions through
mean, variance, and worst-case execution time. Thus, our
results can be applied without specific knowledge of these
distributions. Our bounds are applicable if the expected total
utilization is less than the system’s capacity. In prior work on
worst-case tardiness bounds, a similar requirement is needed
from a worst-case perspective. However, we allow the system
to be over-utilized in the worst case.

2 System Specification and Properties
In this section, we formalize the task system to be studied.
Throughout this paper, we will denote random variables by
capital letters, and deterministic quantities by lowercase let-
ters. All time values are continuous.

Task System. A task system τ is a collection of sporadic
tasks {τi, i = 1 . . . , n}. Each task τi is a possibly infinite se-
quence of jobs {τi,j , j = 1, 2, . . .}. A job is a segment of
code that requires execution on a processor. Jobs must exe-
cute sequentially; that is, the next job of a task cannot begin
execution until the previous job of that task has completed.
We assume that m processors are available to schedule τ .

A task τi is specified by its period pi, and its execution
time distribution function Gi(x), which gives the probability
that a job of τi requires no more than x time units to execute.
We require such a distribution to have finite mean and vari-
ance. Any of the standard probability distributions used for
modeling, such as uniform, exponential, Weibull, etc., have
this property; however, for the analysis to be correct, we also
need an upper bound on the expected value of the maximum

execution time seen so far at any point in time—a worst case
execution time ei will suffice. This is the same as assuming
that there exists ei <∞ such that Gi(ei) = 1.

This specification of tasks is very general. For example,
the deterministic case often considered in the real-time sys-
tems literature, where every task requires exactly its worst-
case execution time, is a special case of our system, where
Gi(x) is 1 if x ≥ ei, and 0 if x < ei.

Schedule-Independent Properties of a Job. The follow-
ing characteristics of a job τi,j do not depend on how jobs are
scheduled. The release time ri,j is the earliest time that job
τi,j may execute. We assume the sporadic model, for which
ri,1 ≥ 0 and ri,j ≥ ri,j−1 + pi for all i, j. The deadline
di,j is the time by which τi,j must complete execution. We
assume implicit deadlines, so di,j = ri,j + pi. The execution
time Xi,j is the actual time that τi,j executes on a processor,
so P (Xi,j ≤ x) = Gi(x).

Job τi,j is active at time t if ri,j ≤ t and it has not finished
executing. A task is active at time t if any of its jobs are
active at time t. Job τi,j is eligible at time t if it is active and
its predecessor τi,j−1, if it exists, is not active.

Each of the above properties depends only on the task
specification. We assume that the execution time of τi,j is
independently and identically distributed according to the dis-
tribution Gi(·). This means that the execution of each job of
τi follows the same distribution, and it does not depend on
the execution time of some other job. Note that distributions
are not identical across tasks, only jobs of the same task.

Properties of a Task System in Expectation. The expected
execution time of a job of task τi is given by

ēi = E (Xi,1) = E (Xi,2) = · · · =
∫ ∞

0

xdGi(x).

The expected utilization of a task τi is ūi = ēi/pi. The ex-
pected total utilization of τ is therefore ūsum =

∑
i ūi (for

background on properties of expectation, see for example, [4,
ch. 7]). The execution time variance σ2

i of a task τi is given
by E

(
X2
i,1

)
− ē2i .

Schedule-Dependent Properties of a Job. The following
characteristics of a job τi,j depend on how jobs are scheduled
under scheduler S. The completion timeCS

i,j is the actual time
the job completes executing. The tardiness T S

i,j is the amount
of time that the job is late:

T S
i,j = max{CS

i,j − di,j , 0}. (1)

We will omit the superscript S when it is clear which
scheduler is assumed, and we will omit max from the above
expression when it is clear that T S

i,j is non-zero.

Definition (Stability). τ is stable if ūsum < m, where m is
the number of processors, and ūi < 1 for all τi ∈ τ .

All task systems considered in this paper will be assumed
to be stable.

26

Definition (Schedulability). τ is schedulable by a scheduling
algorithm S if it can be scheduled by S in such a way that the
expected tardiness of every job is bounded.

The following processor-sharing scheduler will be a tool
in our analysis.

Definition. PS is a processor-sharing (PS) schedule on m
processors where for all i, at every instant that τi is active, we
allocate to τi a fraction ûi of the processing capacity of one
processor, where

n∑
i=1

ûi ≤ m (2)

ūi < ûi ≤ 1, ∀i. (3)

At instants when τi is not active, it receives no allocation.
When τi is active, the fraction of processing capacity allo-

cated to τi is thus strictly greater than the fraction needed for
it to complete on time in the average case—note that under
this model, some jobs may not complete by their deadlines
in PS. This is a major difference in comparison to how PS
schedules are usually defined.

We can imagine that the PS schedule is a system of n pro-
cessors, each of which has a fraction ûi of the processing ca-
pacity of one processor in the real system, and each of which
is dedicated to executing jobs of a specific task. It is im-
portant to note that there is not a unique choice of values of
{ûi, i = 1, 2, . . . , n}, and the choice of values will affect the
expected tardiness bound we derive; however, since the sta-
bility assumption guarantees that we will always have excess
processing capacity, we are guaranteed to be able to find val-
ues of {ûi, i = 1, 2, . . . , n} satisfying (2) and (3).

Example. Consider the example of a task system with
three tasks and two processors, with the following specifica-
tions: (p1, ē1) = (1, 0.8), (p2, ē2) = (2.1, 0.7), (p3, ē3) =
(1.6, 0.4). Then a feasible choice for {ûi, i = 1, 2, 3} is
{0.95, 0.4, 0.65}, and the corresponding PS schedule for one
instance of this task system is given in Fig. 1 (actual execution
times were randomly generated).

Definition. Global earliest-deadline first (GEDF) is a sched-
ule on m processors such that: at each time instant where
there are more than m active tasks, the m active tasks whose
eligible jobs have the earliest deadlines are each allocated one
processor; and at each time instant where there are k ≤ m
active tasks, each active task is allocated one processor, and
m − k processors are idled. In the case of deadline ties, a
consistent tie-breaker is used. We assume that ties are broken
in favor of the task with the smallest index.

If the set of release times is fixed, GEDF induces the fol-
lowing ordering on jobs.

Definition (Job Ordering). Given a fixed set of release times,
τi,j ≺ τk,l if and only if di,j < dk,l, or di,j = dk,l and i < k.

1û

2û

3û

1,1 2,1 3,1 4,1

1,2 2,2

1,3 2,3 3,3

1 2 3 4

Figure 1: Example PS schedule.

Definition. The instantaneous schedule IS is a schedule
where at the time a job is released, it instantaneously receives
its full allocation.

PS-induced and GEDF-induced Tardiness. The major re-
sult of this paper is that stability implies schedulability under
GEDF. In the deterministic model of [1], because there is no
uncertainty, a stable system can be scheduled using processor
sharing with no tardiness. Therefore, tardiness under GEDF
resulted only from the use of the non-optimal GEDF as com-
pared to PS.

Our result generalizes [1] for the case where there may
be tardiness under PS. In our model, there may be tardiness
under PS due to uncertainty of the execution times. We will
show that the total tardiness of a job under GEDF has two
contributions: PS-induced tardiness, which comes from the
variability of execution costs, and GEDF-induced tardiness,
due to using GEDF.

3 Main Result and Proof Sketch
Theorem 1. Let τ be a stable sporadic task system scheduled
using GEDF. For any given task τi ∈ τ , the expected tardi-
ness of each job τi,j of task τi under GEDF schedule is no
more than

βi = c+ ei,

where c is a constant that depends on the mean, variance,
and worst-case execution times of the tasks in τ , and on the
feasible choice of {ûi} used for schedule PS, and ei is the
worst-case execution time of τi.

Proving this results requires two steps.

GEDF-Induced Tardiness. We first use a posteriori analy-
sis to establish the following fact: for each job τi,j , there an
upper bound on the time (denoted by ci,j) when it completes
in GEDF, expressed in terms of the time (denoted by fi,j)
when it completes in PS, and the earliest time (denoted by
gi,j) when τi,j and all higher priority work according to the
ordering ≺ completes in PS. We do this through three steps:

1. we show that if some job’s completion time does not
meet a specified bound in GEDF, then there is a lower
bound on how much GEDF ‘lags behind’ the instanta-
neous schedule IS, in terms of allocation to jobs of τ ,

27

2. we upper bound how much GEDF ‘lags behind’ the pro-
cessor sharing schedule PS, and

3. we show a relationship between the allocation is PS and
in IS.

Our a posteriori analysis is similar the proof technique of
Devi and Anderson [1]. However, the deterministic system
specification of [1] results in PS-completion times and job
deadlines being identical; in our system specification, they
are not. As a result, jobs do not finish in the same order in
PS as they do in GEDF. This adds some complexity to the
proof as we cannot simply extend parts of the proof that use
this assumption. To work around this difference, we use a
second ideal system—the instantaneous schedule IS, which
is not used in [1].

The result of this analysis is that if we define êi,j =
maxj′≤j{ei,j′}, define υ =

∑
τk∈Umax

ûk, where Umax is
the set of m− 1 tasks with largest values of {ûi}, and define
ηi,j =

∑
τk∈Emax

êk,lk , where Emax is the set of m− 1 tasks
with largest values of êk,lk , then

ci,j ≤ max{di,j , fi,j}+
ηi,j +m(gi,j − fi,j)

m− υ
+ êi,j . (4)

Stochastic Analysis of PS-Induced Tardiness. The upper
bound in 4 on the GEDF-completion times is related to the
tardiness of the job in PS, since max{di,j , fi,j} is equal to
di,j plus the PS-induced tardiness of τi,j , and gi,j − fi,j is
bounded from above by summing the tardiness of the lowest
priority jobs of each task prior to τi,j . Thus, the second step is
to conduct a priori analysis on the tardiness of jobs in PS. To
prove that the expected (mean) tardiness of each job in PS is
bounded, we use a result from queueing to show the existence
of a constant ψ so that

E
(
TPS
i,j

)
≤ ûiψ, (5)

and we use linear programming to calculate the values of ψ
and {ûi, i = 1, . . . , n}.

By combining (4) and (5), we get the following result:

Lemma 2. Let τ be a stable sporadic task system. Let lk =
max{l : τk,l ≺ τi,j}. Then the expected tardiness of every
job τi,j in GEDF is no more than

βi,j = ûiψ +
ηi,j +m2ψ

m− υ
+ E (êi,j) , (6)

Theorem 1 follows from this lemma, because there exists
c so that βi,j ≤ βi for all τi,j ∈ τi: as long as each task
has a worst-case execution time ei, then E (êi,j) ≤ ei for all
τi,j ∈ τ , and ηi,j ≤

∑
τk∈E′max

ei for all τi,j , where E ′max is
the set of m− 1 tasks with largest values of ei.

Finally, the following Corollary follows directly from
Markov’s inequality [4]:

Corollary 3. The q-quantile of the tardiness of every job τi,j
is no more than

1
1− q

βi. (7)

To summarize the results:
1. there is an upper bound βi,j on the expected tardiness of

job τi,j in GEDF,

2. given the worst-case execution time ei, there is a con-
stant upper bound βi on the expected tardiness of any
job of τi in GEDF, and

3. any quantile (or percentile) of every job’s tardiness un-
der GEDF is also bounded by a constant.

4 Conclusion
We have presented a sketch of a probabilistic tardiness-bound
derivation for GEDF that is a generalization of the result of
[1]. If we use a deterministic model where worst-case ex-
ecution times are required for every job, then ēi = ei,∀i,
σ2
i = 0,∀i, and then choosing ψ = 0, ûi = ei/pi,∀i is suffi-

cient for PS-induced tardiness to be zero. Since the system is
deterministic, tardiness and expected tardiness are equivalent,
resulting in the tardiness bound for any job of τk of η

m−υ+ek,
which almost matches the tardiness bound given in [1], which
is η−emin

m−υ + ek, where emin is the smallest worst-case execu-
tion time over all tasks.

This result has practical value because it shows that GEDF
can be used to schedule a task system on a multiprocessor,
even if the total worst-case utilization exceeds the number of
available processors, and even if some tasks’ worst-case exe-
cution times exceed their periods, provided that total average-
case utilization does not exceed the number of processors,
and average-case execution times do not exceed periods.

References
[1] U. C. Devi and J. H. Anderson. Tardiness bounds under global

EDF scheduling on a multiprocessor. In Proceedings of the 26th
IEEE Real-Time Systems Symposium, 2005.

[2] B. Doytchinov, J. Lehoczky, and S. Shreve. Real-time queues in
heavy traffic with earliest-deadline-first queue discipline. The
Annals of Applied Probability, 11(2), 2001.

[3] H. Leontyev and J. H. Anderson. Generalized tardiness bounds
for global multiprocessor scheduling. In Proceedings of the 28th
IEEE Real-Time Systems Symposium, 2007.

[4] S. Ross. A first course in probability. Prentice Hall, 6 edition,
2002.

[5] J. A. Van Mieghem. Due-date scheduling: Asymptotic optimal-
ity of generalized longest queue and generalized largest delay
rules. Operations Research, 2003.

[6] P. Zijlstra. Deadline scheduling in Linux and why it hasn’t hap-
pened yet. In Eleventh Real Time Linux Workshop, 2009.

28

An Optimal Scheme for Multiprocessor Task
Scheduling: a Machine Learning Approach

Aryabrata Basu, Shelby Funk
University of Georgia

Athens, GA, USA
{abasu,shelby}@cs.uga.edu

Abstract—We consider the problem of scheduling periodic
task sets on identical multiprocessors. We present NQ-Wrap, an
online scheduling algorithm, that can optimally schedule periodic
tasks on multiprocessors. We wish to improve this algorithm
by reducing the scheduling overhead due to preemptions and
migrations. To this end, we introduce a number of rules that can
be used to safely modify and NQ-Wrap schedule. We plan to
apply these rules by incorporating machine learning techniques.

I. INTRODUCTION

As multiprocessors become more popular, they are used
in a wider variety of applications, including real-time and
embedded systems. While there are many advantages to using
multiprocessor systems, scheduling with these systems can be
quite complex. Algorithms that are known to perform very
well on uniprocessor systems, such as Earliest Deadline First
(EDF)[2] do not perform as well on multiprocessors. To date,
optimal multiprocessor scheduling algorithms tend to have
restrictions that make them less desirable than some non-
optimal algorithms. Some common restrictions are that (i) they
have high overhead, (ii) they apply only to a restrictive job
model, or (iii) the schedule must be quantum based. But these
claims are only restricted to PFair family. There are other
optimal algorithms like EKG[1] and advanced LLREF [3].

This paper introduces a set of guidelines and rules that can
be used to reduce the number of preemptions and overheads
of an optimal online multiprocessor scheduling algorithm.
Moreover we will generalize the overhead reduction policy
through machine learning approach.

The machine learning approach in general is a broad term
and has multifarious components. One of them will be dy-
namic selection in contrast with scheduling rules. This will
be our primary focus in this paper. Dynamic selection of
scheduling rules during real operations has been recognized
as a promising approach to the scheduling of the production
line. For this strategy to work effectively, sufficient knowledge
is required to enable prediction of which rule is the best to
use under the current line status.

This paper presents a scheduling approach that employs
machine learning. Using this technique, while analyzing the
earlier performance of the system, scheduling knowledge is
obtained whereby the right dispatching rule at each particular
moment can be determined. According to Quinlan[7] three
different types of machine-learning algorithms can be used to

obtain scheduling knowledge: inductive learning, backprop-
agation neural networks, and case-based reasoning (CBR).
Based on the scheduling knowledge, a binary decision tree
is automatically generated using empirical data obtained by
iterative simulations, and it decides online which rule to be
used at decision points. But as of now, we will be dealing
with Neural Networks and the rest of the techniques will be
considered in future.

p1
T2T1 T2T1

p2 T3 T4T2 T3

Tp3 T4

σ1 σ2 σ3

Fig. 1. An illustration of the NQ-Wrap Schedule

II. MODEL AND DEFINITIONS

This paper considers the scheduling of periodic[5] task
sets on multiprocessors. Let, Ti = (pi, ei) denote a periodic
task. We assume we that tasks are synchronous and deadlines
equal to periods. A task Ti is a process that invokes jobs
Ti,1, Ti,2, Each job has an execution requirement ei and a
relative deadline pi — if Ti,j arrives at time ai,j then it must
be allowed to execute for ei time units during the interval
[ai,j , ai,j + pi[. We say Ti,j’s deadline during this interval
is di,j = ai,j + pi. Each task invokes its first job at time 0
and all the remaining jobs are invoked exactly pi time units
apart — i.e., ai,j = (j − 1)pi for all j ≥ 1. A task set
τ = {T1, T2, . . . , Tn} denotes a set of n periodic or sporadic
tasks.

One important parameter used to describe a task with
deadlines equal to periods is its utilization ui = ei/pi. For
periodic tasks, the utilization ui measures the proportion of

29

time Ti executes on average. [umax, Usum] are τ ’s maximum
and total utilization, respectively.

NQ-Wrap divides time into consecutive intervals, called
time slices. The end of each time slice coincides with some
job’s deadline. We let σj = [tj , tj+1[denote the jth time slice,
where t1 = 0, and each subsequent tj is the deadline of some
job. The length of σj is denoted Xj – i.e., Xj = tj+1 − tj .

A task Ti,h will overlap with one or more time slices, we
let Ψi,j denote the set of time slices that coincide with Ti,h’s
execution. At all times t, every task Ti has a local execution
requirement, `i,t. This is the amount of time that Ti must
execute between time t and time ṫjt . A task’s local utilization
is the proportion of time Ti must execute during the remainder
of the time slice, namely ri,t = `i,t/(ṫjt−t). A task set’s total
utilization Rt and total local remaining execution Lt at time t
are defined to be the sum of the active task’s local utilization
and local remaining execution, respectively, viz.,

Rt =
∑

Ti∈Active(t)

ri,t and Lt =
∑

Ti∈Active(t)

`i,t

We consider the problem of scheduling periodic tasks on
identical multiprocessors. Throughout this paper, we let m
denote the number of processors. Without loss of generality,
we assume the speed of each processor is 1. That is each pro-
cessor performs one unit of work per unit of time. Henceforth,
a “multiprocessor” refers to an identical multiprocessor with
m unit speed processors.

III. NQ-WRAP ALGORITHM

The algorithm NQ-Wrap is based on time slices. Each time
slice ends at some job’s deadline. The algorithm has a global
scheduler and a local scheduler for each processor. The local
schedulers are table driven. At the beginning of each time slice
σj , the global scheduler does the following.

1) For each task Ti, calculates `i,tj = ui · (tj+1 − tj).
2) Puts these executions end-to-end and cuts this long

sequence of jobs every Xj time units.
3) “Wraps” these slices around onto the processors – i.e.,

the first cut is assigned to processor ρ1, the second cut
is assigned to processor ρ2, and so on.

4) Sends each processor its designated schedule.
5) Sleeps until time tj+1.
This algorithm will successfully schedule any task set on

m processors provided Usum ≤ m and umax ≤ 1 (i.e., this is
an optimal scheduling algorithm).

Figure 1 illustrates the NQ-Wrap scheduling of the task
set τ = [T1, T2, T3, T4], where T1 = (12, 6), T2 = (8, 5),
T3 = (10, 6), T4 = (11, 5) for the interval [0,16]. The first
five deadlines of τ occur at times 8, 10, 11, 12 and 16 and
the periods are 8, 10, 11 and 12. These deadlines define the
first five time slices. They are σ1 = [0, 8[, σ2 = [8, 10[, σ3 =
[10, 11[, σ4 = [11, 12[, and σ5 = [12, 16[as shown above.

In each time slice, the local execution is proportional to the
task’s utilization. For example, l1,0 = 6/12 × 8 = 4, l2,0 =
5/8×8 = 5, l3,0 = 6/10×8 = 4.8, and l4,0 = 5/11×8 = 3.6.

Because step 2 above makes O(Usum) cuts, NQ-Wrap
invokes O(Usum) migrations per time slice. Furthermore, each
job in the task set is broken up into pieces. Depending on
whether or not each job migrates within time slices, each piece
of a job is preempted either once or twice. Our aim is to reduce
these expensive operations.

We can reduce preemption and migration overhead by
adjusting the local execution of tasks within time slices. We
might want to adjust local executions to avoid preemptions.
If possible, we would try to concentrate all of a job Ti,h’s
local execution into a single time slice σj ∈ Ψi,h if Xj ≥ ei.
In this case we might choose to let Ti,j execute only in time
slice σj – i.e., we would set `′i,tj to ei and set `′i,tk to 0 for
all other σk ∈ Ψi,h. For example we may want to increase
l4,0 to 5 and let `4, 8 = `4,10 = 0 in Figure 1. In order to do
this, other jobs’ local executions might have to be reduced in
σj and increased in other time slices to compensate for Ti,j’s
increased execution (this is not necessary in the example above
because there is enough idle time in σ1 to allow `4,0 to increase
without forcing some other task’s local execution to decrease).

Alternatively, we might want to adjust local executions to
avoid a migration within some time slice σj if a cut splits
`i,tj into 2 pieces of length α1 (before the cut) and α2 (after
the cut). In this case, we could “give” some of `i,tj to either
`i1,tj or `i2,tj , where `i1,tj is assigned to the same processor
as α1 and `i2,tj is assigned to the same processor as α2. We
could either (i) increase `i1,tj by α1 and set `i,tj to α2 or
(ii) increase `i2,tj by α2 and set `i,tj to α1. For example, we
might reduce `1,0 to 3 in Figure 1, which would keep task T2

from wrapping to ρ2 in σ1. Of course, if we did this then T1

would have to execute for 3 time units during [8, 12[instead
of 2 time units.

Determining the absolute minimum number of preemptions
and migrations is NP-complete. In most cases, it will be non-
zero. However, it can certainly be reduced significantly from
the number invoked by the NQ-Wrap algorithm described
above. Our aim is to modify the NQ-Wrap algorithm to incor-
porate machine learning techniques like Rule based concept
learning and Inductive learning scheme.

These techniques rely on guidelines provided through rules
and examples. Below, we present some rules that apply to
the NQ-Wrap algorithm. Our goal is to use these rules in
conjunction with machine learning techniques to reduce NQ-
Wrap’s overhead.

IV. RULES

The following must hold:

• For each job Ti,h and time slice σj ∈ Ψi,h, the local
execution cannot exceed the length of the time slice –
i.e., `i,tj ≤ Xj .

• For each time slice σj , the total demand cannot exceed
available processing time – i.e., Ltj ≤ m ·Xj .

• For each job Ti,h it must be allowed to execute for
ei time units between its arrival and deadline – i.e,∑
σj∈Ψi,h

`i,tj = ei.

30

One possible approach would be to first increase Ltj to be
as large as possible within some time slices and then (perhaps)
“swap” execution times of tasks between time slices.

A. Increasing Ltj .

The local execution of tasks can be increased as much as
possible provided the three rules above are not violated. For
example we can increase l4,0 to 5 in Figure 1.

B. Swapping execution

Swapping execution means increasing the local execution
of a job TA,x by some amount a and decreasing the local
execution of another job TB,y by the same amount a. While
swapping could be done both forward and backward in time,
the approaches we envision only swap forward in time.
Once the local execution times for a time slice have been
determined, they will remain fixed and the next time slice
will be considered. We may come up with some other better
techniques.

With this is mind, we see 2 possible approaches: Explicit
and Implicit Swapping. In explicit swapping, the swap amount
a is explicitly designated to apply to two time slices σj1
and σj2 . In implicit swapping, the swap amount is specified
for one time slice σj1 and the remaining execution of TA,x
and TB,y are adjusted accordingly – the change in remaining
execution can be spread among the remaining time slices for
the jobs.

Explicit swapping. The implementation of explicit swapping
are very straightforward. We make the following adjustments.
• `A,tj1 ← `A,tj1 + a,
• `B,tj1 ← `B,tj1 − a,
• `A,tj2 ← `A,tj2 − a, and
• `B,tj2 ← `B,tj2 + a.

Of course, once such a swap has occurred, rule 1 will no
longer be applied at the beginning of each time slice.

For example, in Figure 1, we have `1,8 = 1 and `4,8 = 0.9.
Also, `1,10 = 0.5 and `4,10 = 0.4. We could explicitly swap
0.5 units of work between tasks T1 and T4 in time slices
σ2 and σ3. To do this, we would increase `1,8 to 1.5 in σ2,
decrease l4,8 to 0.4 in σ2, decrease l1,10 to 0 and increase
l4,10 to 0.9.

Implicit swapping. The implementation of implicit swapping
is a little more complicated. In order to describe this method,
we need to keep track of the remaining work for the tasks be-
cause it will no longer be proportional to the task’s utilization.
We let ξi,j denote the remaining work to be done on job Ti,h
at the beginning of time slice σj ∈ Ψi,h. Thus,

ξi,j = ei −
∑

σk∈Ψi,h∧k<j

`′i,k.

With implicit swapping, Step 1 of the algorithm above will
initialize `i,tj to Xk · (ei− ξi,j)/(di,h− tj) instead of Xk ·ui.
An implicit swap makes the following adjustments between
TA and TB .

• `A,tj1 ← `A,tj1 + a,
• `B,tj1 ← `B,tj1 − a,
• ξA,tj1+1 ← ξA,tj1+1 − a, and
• ξB,tj1+1 ← ξB,tj1+1 + a.

We let ωi,t denote Ti’s remaining utilization at time t –
namely

ωi,t =
ei − ξi,t
di − t

,

where di is Ti’s next deadline after t. Clearly, at all times t,
we must ensure that ωi,t ≤ 1 for all tasks Ti. If we also ensure
the following rule is always satisfied for all time slices σj

n∑
i=1

ωi,tj ≤ m,

then we can be sure that no deadline will be violated.
For example, in Figure 1 (assuming no execution times are

altered in σ1) we might increase `4,8 and `1,8 to 2, allowing
these two tasks to executes to full length of σ2. Also, `3,8
must be 1.2 because T3’s deadline is 10. Because only 6 units
of work can be completed during σ2, we must reduce `2,8
to 0.8 instead of 1.25. Thus, the reduced 0.45 units of work
would be spread out through the time slices σ3, σ4, σ5. At
time t = 10, task T2 would have 4.2 units of work remaining
instead of 3.75 units of work.

Fig. 2. An illustration of a Neural Network

Maintaining this condition is not as easy as it first seems.
If dA < dB when the swap occurs, then ωB,tj+1 > uB and
ωA,tj+1 < uA. At time dA, when TA generates its next job,
ωA,dA

will become uA. At that point, it could be possible that
the above rule is violated if ωB,dA

is still larger than uB .
Having developed these rules, our next step will be to

implement NQ-Wrap and these rule sets to approximate a
constant time near-optimal solution to minimize the number of
preemptions and migrations, which is NP-complete in nature.
Machine Learning techniques are capable of handling such
rule sets efficiently. Our intent here is to estimate a constant
time approximation of the rule sets whose application is NP-
complete.

31

V. MACHINE LEARNING

As discussed above, we will be dealing with back-
propagation neural networks (BPNS), or multi-layer
perceptrons[8]. These are one of the most well known
tools and are widely used as pattern classifiers and function
approximators[4]. Figure 2 gives an overview of a neural
network of this type. As can be seen, there is a single hidden
layer and there are no connections between neurons in the
same layer in this particular case.

The back-propagation training algorithm is the one that is
used in this type of neural network. There are several versions
of this algorithm, but we consider the standard neural network
model as described below. We will assume a network with
an input layer of n1 neurons, a hidden layer of n2 neurons,
and an output layer of n3 neurons. The input, hidden and
the output layers are xi, yj and zk respectively. The weights
of the connections that connect the first two layers and the
thresholds of the second layer neurons are called wij and uj ,
respectively. Similarly, w′jk and u′k, are the weights of the
connections between the two latter layers and the thresholds
of the third layer neurons.

The training algorithm is iterative, and employs the gradient
algorithm to minimize a function that measures the difference
between the network output (zµk) and the desired one (oµk).
This algorithm has two phases, one forward and the other
backward. The former calculates the difference between the
network output and the desired one:

E(wij ,uj ,w′jk,u′k) =

1
2

p∑
µ=1

n3∑
q=1

[
(oµq) - f

(
n2∑
j=1

w′jq . yµj - u′q

)]2
,

where yµj = f
(n1∑
i=1

w′ij . xµi - u′j
)

.

Here, p is the number of training examples.

This function called the cost, target, error or energy function
measures how appropriate the weights of the connections are,
and approaches zero when the network output approximates
to the desired output. Once this function has been calculated,
the backward phase follows. In this phase, by applying the
gradient algorithm, the weights and thresholds are modified
so that error is reduced. This process is iterated until the error
is reduced to the desired amount. Finally, inductive learning
algorithms generate a decision tree from a set of training
examples.

For the training algorithm we have, the task set τ , optimal
schedules deduced from the rule set discussed above, number
of processors and the Sigmoid activation function[6]. For a
particular time slice, we have to take care of the amount of
execution time left for each task, the amount of time left to

reach deadlines of each task, and the amount of execution time
intended for each task in a time slice. In addition, we have
the length of time slices as global parameters, irrespective of
which time slice you are in.

For each time slice there will be one neural network per task.
Also, there will be a neural network for the time slice. The
task’s neural network will each have 3 inputs and 3 outputs,
one for remaining work, one for remaining time to deadline
and one for work done during the time slice in consideration,
each. The output nodes are replicated for feed-forward and
feedback. In addition, the time slice has 3 additional inputs.
These are flags dealing with the amount of execution time
left on each processor, so as to switch between the schedules
allocating a new execution time for the task sets. We set a
negative and a zero flag for taking care of the same. For
example, each time slice as discussed in Figure 1 will have
2 ∗ 4 ∗ 3 + 3 = 27 input nodes and 6 ∗ 4 = 24 output nodes.

Finally, we use back-propagation for error feedback and the
stopping criteria for the training network would be the error
rates going up on the test sets versus the training sets.

VI. FUTURE WORK

Once this work is developed for periodic tasks with dead-
lines equal to periods, we plan to consider sporadic tasks and
tasks with deadlines need not be constrained. We then plan to
incorporate other more challenging changes.

We plan to make the schedule quantum based in the
sense that each job executes for an integer amount of time
within each time slice. This reduces the number of times that
preemptions and migrations can occur. Of course, in this case
task parameters must be integers.

Also, we plan to account for resource sharing or non-
preemptive sections. All work to date has assumed an inde-
pendent set of fully preemptable tasks. Abandoning either of
those assumptions will introduce many challenges.

Finally, for the machine learning part, we might want to add
the concept of cross validation as a future scope.

REFERENCES

[1] Björn Andersson and Konstantinos Bletsas. Sporadic multiprocessor
scheduling with few preemptions. In ECRTS ’08: Proceedings of the
2008 Euromicro Conference on Real-Time Systems, pages 243–252,
Washington, DC, USA, 2008. IEEE Computer Society.

[2] Dario Faggioli, Michael Trimarchi, and Fabio Checconi. An implemen-
tation of the earliest deadline first algorithm in linux. In SAC ’09:
Proceedings of the 2009 ACM symposium on Applied Computing, pages
1984–1989, New York, NY, USA, 2009. ACM.

[3] Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. Work-conserving
optimal real-time scheduling on multiprocessors. In ECRTS ’08: Pro-
ceedings of the 2008 Euromicro Conference on Real-Time Systems, pages
13–22, Washington, DC, USA, 2008. IEEE Computer Society.

[4] Richard P. Lippmann. An introduction to computing with neural nets.
pages 36–54, 1988.

[5] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[6] Sridhar Narayan. The generalized sigmoid activation function: competi-
tive supervised learning. Inf. Sci., 99(1-2):69–82, 1997.

[7] J. Ross Quinlan. C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[8] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by back-propagating errors. pages 696–699,
1988.

32

Feasibility Test for Multi-Phase Parallel Real-Time Jobs

Vandy Berten, Sébastien Collette, Joël Goossens
Computer Science Department, U.L.B., Brussels, Belgium

Supported by the F.R.S.-FNRS and the Communauté Française de Belgique.
{vandy.berten, sebastien.collette, joel.goossens}@ulb.ac.be

Abstract—We consider the scheduling of real-time and paral-
lel tasks on identical multiprocessor platforms (see [1], [2]). We
deal with the case where each job may be executed on different
processors simultaneously, i.e., we allow job parallelism. Jobs
are composed of phases to be executed sequentially. We provide
a necessary feasibility test and we believe that our techniques
will yield a sufficient test.

I. INTRODUCTION

In this research we study the feasibility problem, i.e.,
the existence of a feasible schedule which meets the timing
requirements. This work can be seen as a generalization of
the seminal paper on parallel and real-time jobs (see [3]
for details). We study a task model which is more flexible
than [3] in the sense that a task can have an arbitrary number
of phases that have to be executed sequentially (see [4]
for details) while [3] considered a single phase per task.
In our model, each phase is characterized by a (maximal)
degree of parallelism. E.g., the task could be composed of
initialization, computing and finalization phases; solely the
computing phase can be parallelized, others are sequential.

II. MODEL

In our model the platform is composed of m identical
processors. We consider the scheduling of n frame-based
and implicit-deadline real-time tasks τ1, τ2, . . . , τn, i.e., all
tasks share the same period or deadline. In the following,
D denotes the frame length, and as we manage each frame
independently, we denote by t = 0 the beginning of each
frame. Each task τi is composed of a sequence of qi phases:
τi =< τi,1, τi,2, . . . , τi,qi

> .
Each phase τi,k is characterized by two parameters: wi,k

denotes the required amount of work of τi,k, and Pi,k

denotes the maximal degree of parallelism of τi,k, i.e., the
phase can scheduled on at most Pi,k processors simulta-
neously and the speedup is assumed to be the number of
assigned processors (i.e., fully parallelism is assumed). This
model is presented in [4].

In this work we assume that the number of CPUs can
vary inside a phase, and that each task could be assigned
to a fractional number of processors at each time instant.
Preemptions, migrations, and parallelism changes can occur
at any (rational) time. Finally, we assume that the character-
istics of the system are given by rational numbers (wi,k, D,
etc.). While these assumptions can seem theoretical, an exact

feasibility test in this model gives a necessary condition for
more realistic models, as a system which is infeasible even if
we assign fractions of processors to each task, will certainly
not be feasible in a more constrained setting.

III. DEFINITIONS AND PROPERTIES

A. Schedule and trajectory

Our main idea to derive feasibility tests is to apply our
reasoning on schedules and trajectory functions:

Definition 1: A schedule {ςi,k(x)} is a set of
∑n

i=1 qi
functions giving for each phase τi,k and any time x the
number of processors allocated to this phase. More formally,
ςi,k(x) ∈ [0,m] ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , qi}.

Notice that, since we consider identical multiprocessors
and the fact that preemption/migration costs are neglected,
without loss of generality we do not need to specify in Def. 1
on which processor[s] a phase is executed.

Definition 2: A schedule is said to be valid if (Eq. 1) it
respects all the deadlines, (Eq. 2) respects the precedence
constraints, (Eq. 3) does not use more resources than avail-
able, (Eq. 4) and tasks do not use more processors than what
their parallelism allows:

∀i ∈ {1, . . . , n}, k ∈ {1, . . . , qi} :
∫ D

0

ςi,k(x)dx = wi,k

(1)

∀i ∈ {1, . . . , n}, k ∈ {1, . . . , qi − 1},∃x such that
∀x′ ≥ x : ςi,k(x′) = 0 ∧ ∀x′ ≤ x : ςi,k+1(x′) = 0 (2)

∀x ∈ [0, D] :
n∑

i=1

qi∑
k=1

ςi,k(x) ≤ m (3)

∀i ∈ {1, . . . , n}, k ∈ {1, . . . , qi}, x ∈ [0, D], ςi,k(x) ≤ Pi,k.
(4)

Definition 3: Given a schedule, the trajectory σi,k(x) of a
phase τi,k is a continuous, monotonic function x→ σi,k(x) :
[0, D]→ [0, wi,k], giving the total amount of work that the
phase performed until time x. More formally: σi,k(x) def=∫ x

0
ςi,k(t) dt.

33

P1,1 = 4

D = 80

min

max

Figure 1. A single task composed of one phase (τ1 =< {4, 4} >), and
its corresponding minimum and maximum trajectories.

Notice that1: σi,k(0) = 0, ∀x ∈ (0, D] : d−

dx σi,k(x) ≤ Pi,k

and ςi,k = d−

dx σi,k.
Definition 4: A valid trajectory is a trajectory σi,k such

that there exists a valid schedule in which there is a function
ςi,k with ςi,k = d−

dx σi,k.
Notice that if a trajectory is valid, then σi,k(D) = wi,k.

Of course, different valid schedules for the same system
imply the existence of different valid trajectories. Fig. 1
shows the example of a system composed of a single task,
which is itself composed of a single phase: τ1 =< {4, 4} >
(4 units of work to be run on at most 4 processors). We
would like to run this system on 4 processors, with a
deadline D = 8. We identified the minimum and maximum
trajectories for this phase (see Fig. 1).

The minimum valid trajectory is such that the quantity of
work σ1,1(x) is minimized over each time instant. As the
function is monotonic and has to reach σ1,1(D) = w1,1, the
minimum valid trajectory is uniquely defined. Another con-
straint is that the maximum derivative of the function is P1,1.
The maximum valid trajectory is defined symmetrically.

B. Bounds

Definition 5: UBi,k(x) (resp. LBi,k(x)) denotes, for any
x ∈ [0, D], an upper bound (resp. a lower bound) on the
amount of work which can be processed in the interval [0, x]
for the phase τi,k.

A very trivial value for those two bounds is UBi,k(x)←
wi,k, and LBi,k(x)← 0. For one phase, as explained above
and illustrated on Fig. 1, we can provide better bounds:

LBi,k(x)←

{
0 x < D − wi,k

Pi,k

Pi,k · (x−D) + wi,k otherwise.
(5)

UBi,k(x)←

{
x · Pi,k x <

wi,k

Pi,k

wi,k otherwise.
(6)

Lemma 1: Any valid trajectory σi,k(·) is such that
LBi,k(x) ≤ σi,k(x) ≤ UBi,k(x) ∀x ∈ [0, D], where LBi,k

and UBi,k are defined by Eq. (5) and (6).

1In this document d−

dx
denotes the left-sided derivative. Remark that

the derivative is not defined at instants where the number of processors
allocated to a task changes. We avoid this issue by using the left-sided
derivative, which is always defined except for x = 0.

Proof: First we prove that a valid trajectory cannot
be less than the lower bound. By contradiction, imagine
there is a valid trajectory σi,k(·) such that, for some x ∈
[0, D], LBi,k(x) > σi,k(x). Notice that this implies that
x > D − wi,k

Pi,k
, because when x ≤ D − wi,k

Pi,k
, 0 ≤ σi,k(x)

and LBi,k(x) = 0 which means that σi,k(x) ≥ LBi,k(x).
As the derivative is upper bounded by Pi,k,

σi,k(D) ≤ σi,k(x) + Pi,k(D − x)
< LBi,k(x) + Pi,k(D − x) = wi,k

and thus σi,k(·) is not valid, a contradiction.
It remains to prove that a valid trajectory cannot be more

than the upper bound, also by contradiction: imagine that
for some x ∈ [0, D], UBi,k(x) < σi,k(x). This implies that
x <

wi,k

Pi,k
, as σi,k(x) ≤ wi,k. Thus:

σi,k(0) ≥ σi,k(x)− x · Pi,k

> UBi,k(x)− x · Pi,k = 0

and σi,k(·) is not valid, a contradiction.

IV. ONE TASK, ONE PHASE

We will now consider a very simple system with only
one task, containing one phase, τ1,1. The feasibility of such
a system is of course trivial, but we will formalize several
notions that we will then extend to more general systems.

In fact, if we have a single phase, as there are no other
constraints, the lower and bounds we gave in Eq. (5) and
(6) of that phase completely characterize the set of valid
schedules in the following sense: any trajectory, contained
inbetween the lower and the upper bound, is valid.

Lemma 2: Given a feasible system composed of a single
phase, and given a point p = (p1, p2) such that LB1,1(p1) ≤
p2 ≤ UB1,1(p1), there exists a valid trajectory such that
σ1,1(p1) = p2.

Proof: First notice that in the case of a single phase,
LB1,1(·) and UB1,1(·) given by Eq. (5) and (6) are
valid trajectories: these are monotonic functions, such that
LB1,1(0) = 0 = UB1,1(0) and LB1,1(D) = w1,1 =
UB1,1(D), and whose derivative is at most P1,1. As long
as P1,1 ≤ m, the derivative of these functions is a valid
schedule for one phase.

Let t1 be the smallest value such that UB1,1(t1) = p2 and
t2 be the greatest value such that LB1,1(t2) = p2. We define
a new function f(·) as follows:

f(x) =

UB1,1(x) if x < t1

LB1,1(x) if x > t2

p2 otherwise.

We claim that f(p1) = p2 and that f(·) is a valid
trajectory. Indeed, t1 ≤ p1 ≤ t2, by definition of t1 and
t2, therefore f(p1) = p2, as claimed. It remains to show

34

that f(·) is a valid trajectory: f(·) is continuous, monotonic,
f(0) = 0 and f(D) = w1,1, and

d−

dx
f(x) ≤ max

{
d−

dx
UB1,1(x),

d−

dx
LB1,1(x)

}
from which we deduce that the corresponding schedule is
valid.

It remains to show a full characterization of valid trajec-
tories:

Theorem 1: Given a system composed of a single phase,
a trajectory σ1,1(·) is valid if and only if :

∀x ∈ [0, D] : LB1,1(x) ≤ σ1,1(x) ≤ UB1,1(x)

where LB1,1 and UB1,1 are defined in Eq. (5) and (6).
Proof: The theorem is a direct consequence of Lem-

mas 1 and 2: any trajectory for which ∀x : LB1,1(x) ≤
σ1,1(x) ≤ UB1,1(x) is valid (Lem. 2), and any trajectory for
which there exists an x such that either LB1,1(x) > σ1,1(x)
or UB1,1(x) < σ1,1(x) is not valid (Lem. 1).

Corollary 1: Given a system composed of a single phase,
it is feasible if and only if

∀x ∈ [0, D] : LB1,1(x) ≤ UB1,1(x)

Proof: This is easily deduced form Thm. 1: if
LB1,1(x) ≤ UB1,1(x), there exists a trajectory LB1,1(x) ≤
σ1,1(x) ≤ UB1,1(x), which is valid. If not, by Lem. 1, no
valid trajectory exists.

V. SEVERAL PHASES, SEVERAL TASKS

In the general case, Thm. 1 is not sufficient anymore: our
bounds are not tight and need to be improved. We will first
define two operators that can be applied to our upper and
lower bounds, to deduce tighter bounds.

Consider that we have a lower bound LBi,k(x) on the
minimum trajectory of some phase τi,k, and that we know
(we will see later how) that the minimum reaches at least a
value v at time u. Then, we can deduce a new lower bound,
LB′i,k(·), such that LB′i,k(u) ≥ v, as illustrated on Fig. 2.
However, we have more information: as we know that a
trajectory is monotonic and that its derivative is bounded
by the maximum number of processors on which the phase
can be scheduled (Pi,k), we deduce that updating the lower
bound at coordinate x implies that
• ∀x < u, LB′i,k(x) ≥ Pi,k(x − u) + v, because the

derivative is at most Pi,k.
• ∀x > u,LB′i,k(x) ≥ v, because the function is mono-

tonic;
From this we can define the new lower bound, combining

an LB function with a point (u, v). Therefore, we define an
operator

∧
receiving a lower bound trajectory function and a

point, and resulting in a new lower bound trajectory function:

∧
{LBi,k, (u, v)}(x)

def=

max{Pi,k · (x− u) + v,LBi,k(x)}

if x < u

max{v,LBi,k(x)} otherwise.

v

u
Figure 2. Updating the minimum of a lower bound on a trajectory at
instant u might imply to update an interval of values.

Similarily, we define an operator
∨

:

∨
{UBi,k, (u, v)}(x)

def=

min{v,UBi,k(x)} if x < u

min{Pi,k · (x− u) + v,UBi,k(u)}
otherwise.

Even though a trajectory is a continuous function, it is
piecewise linear, and updating lower or upper bounds
implies to add at most two segments to the function. We
can thus, using an appropriate data structure, maintain
lower and upper bounds such that the space required is
linear in the number of updates.

A. Phase precedence

As defined by our model, each task is composed of a
certain number of phases, which have to be executed se-
quentially. This implies that the first phase must be finished
before any subsequent phase of the same task starts, and
every phase has to wait for the completion of previous phases
before starting. This can be translated into the following
facts:

Fact 1: Let u be the last instant where LBi,k(u) = 0.
Then, u is also the latest time at which every phase τi,k′ ,
with k′ < k has to finish, and σi,k′(u) = wi,k′ .

Indeed, u is the latest time at which it is possible that
τi,k has not started yet, therefore, it is also the latest time
at which every phase τi,k′ , with k′ < k has to finish.

Fact 2: Let u be the earliest instant where UBi,k(u) =
wi,k. Then, every phase τi,k′ with k′ > k cannot have started
yet, and σi,k′(u) = 0.
This follows from the fact that the earliest time at which the
task τi,k could possibly have finished its work is u. These
two facts can be translated in terms of a rule allowing to
update the bounds:

Rule 1: (Precedence Rule)
∀i ∈ {1, . . . , n}, k ∈ {qi − 1, qi − 2, . . . , 1} : LBi,k ←∧
{LBi,k, (u,wi,k)}, where u = max{x | LBi,k+1(x) = 0}.
∀i ∈ {1, . . . , n}, k ∈ {2, . . . , qi} : UBi,k ←∨
{UBi,k, (u, 0)}, where u = min{x | UBi,k−1(x) =

wi,k−1}.
Notice that the rule has to be applied as in the definition
with k going from qi − 1 down to 1 for the first part, and
from 2 up to qi. If not, the rule needs to be applied several
times until stabilization.

If our system is composed of a single task with multiple
phases, the precedence rule gives necessary and sufficient

35

conditions on the schedulability of the system:
Theorem 2: Given a system composed of a single task τ1

with q1 phases, a trajectory σ1,k(·) is valid if and only if :

∀x ∈ [0, D], 1 ≤ k ≤ qi : LB1,k(x) ≤ σ1,k(x) ≤ UB1,k(x)

where LB1,k and UB1,k are defined according to Eq. (5)
and (6) and Rule 1.

Proof: A system with one task is feasible if and only
if all its phases can be achieved sequentially. After applying
Rule 1, LB1,k(·) and UB1,k(·) are valid trajectories, as
long as ∀x : LB1,k(x) ≤ UB1,k(x). Indeed, these are
monotonic functions, such that LB1,k(0) = 0 = UB1,k(0)
and LB1,k(D) = w1,k = UB1,k(D), and whose derivative
is at most P1,k, and such that each phase does not start as
long as all other phases τi,k′ with k′ < k could not have
finished their work. We deduce from this that the condition
is sufficient.

To prove that it is also necessary, we simply notice that a
valid trajectory for which there exists an x such that either
LB1,k(x) > σ1,k(x) or UB1,k(x) < σ1,k(x) contradicts
Fact 1 or 2, which are necessary conditions.

Corollary 2: Given a system composed of a single task,
it is feasible if and only if ∀x ∈ [0, D], 1 ≤ k ≤ qi :
LB1,k(x) ≤ UB1,k(x)

B. Task interactions
From the upper and lower bounds on a phase, we can also

deduce the minimum and the maximum quantity of work
that has to be achieved by a phase over some interval. For
all x and x′, such that 0 ≤ x ≤ x′ ≤ D, the minimum of
work to be done by phase τi,k over the interval [x, x′] is

minwork
i,k

(x, x′) def=

LBi,k(x′)− UBi,k(x)

if LBi,k(x′)− UBi,k(x) ≥ 0,
0 otherwise.

while the maximum is maxwork
i,k

(x, x′) def= UBi,k(x′) −
LBi,k(x).

Fact 3: If a trajectory does not perform at least
minworki,k(x, x′) and at most maxworki,k(x, x′) units of
work over the interval [x, x′], the trajectory is not valid.

Therefore, ∀x ≤ x′,∀i, i′, k, k′ :

maxwork
i,k

(x, x′) ≤ m(x′ − x)−
∑

i′ 6=i,k′

minwork
i′,k′

(x, x′) .

And thus, if we know that there is some value v such
that maxworki,k(x, x′) ≤ v, we get that UBi,k(x′) ≤
UBi,k(x)+v, and LBi,k(x) ≥ LBi,k(x′)−v. These conditions
translate into the following rule:

Rule 2: (Interaction Rule) ∀x ≤ x′,∀i, i′, k, k′ :

LBi,k ←
∧
{LBi,k, (x,LBi,k(x′)− v)},

UBi,k ←
∨
{UBi,k, (x′,UBi,k(x) + v)}

where v = m(x′ − x)−
∑

i′ 6=iminworki′,k′(x, x′).

VI. FEASIBILITY

Theorem 3: If after applying rules 1 and 2 a certain
number of times on the bounds given by Eq. (5) and (6), it
occurs that it is not possible, for a task τi,k to find any valid
trajectory in the area defined by UBi,k and LBi,k, then the
system is not feasible. In other words: ∃x, i, k : UBi,k(x) <
LBi,k(x)⇒ the system is not feasible.

Proof: Applying rules 1 and 2 is equivalent to giving
bounds where Fact 1, 2 and 3 are verified. As these facts are
necessary conditions for a trajectory to be valid, the theorem
is a necessary condition for schedulability.

VII. ONGOING WORK

Let UB∞i,k(x) and LB∞i,k(x) be the bounds we obtain
by applying Rules 1 and 2 until stabilization, meaning
that applying one of the rules on the bounds will not
change them anymore2. Let UB(x) def=

∑
i,k UB∞i,k(x) and

LB(x) def=
∑

i,k LB∞i,k(x). Let UB∗(x) be the maximal
monotonic function such that

∀x : UB∗(x) ≤ UB(x), and ∀x > 0 :
d−

dx
UB∗(x) ≤ m

and symmetrically LB∗(x) be the minimal monotonic func-
tion such that

∀x : LB∗(x) ≥ LB(x), and ∀x > 0 :
d−

dx
UB∗(x) ≤ m.

Conjecture 1:

∀x, i, k : UB∗(x) ≥ LB∗(x)⇔ the system is feasible

We conjecture that, after applying our rules, it is possible
to decide if a system is feasible by simply comparing two
functions. This would provide an exact feasibility test.

Acknowledgment: We would like to thank Prof. S. Baruah,
for posing the problem and for interesting discussions.

REFERENCES

[1] T. P. Baker and S. K. Baruah, Handbook of Real-Time and Em-
bedded Systems. Chapman and Hall, 2007, ch. Schedulability
Analysis of Multiprocessor Sporadic Task Systems, pp. 3–1 –
3–15.

[2] T. P. Baker, “An analysis of EDF scheduling on a multiproces-
sor,” IEEE Trans. on Parallel and Distributed Systems, vol. 15,
no. 8, pp. 760–768, 2005.

[3] S. Collette, L. Cucu, and J. Goossens, “Integrating job
parallelism in real-time scheduling theory,” Information
Processing Letters, vol. 106, no. 5, pp. 180–187, May 2008.
[Online]. Available: http://arxiv.org/abs/0805.3237

[4] J. Edmonds, “Scheduling in the dark,” Theor. Comput. Sci.,
vol. 235, no. 1, pp. 109–141, 2000.

2Of course, we have to prove that we can reach the stable state in finite
time, implying that (1) the process converges and (2) that the order in which
the rules are applied does not change the result.

36

Virtual Timers in Hierarchical Real-time Systems
Martijn M.H.P. van den Heuvel, Mike Holenderski, Wim Cools, Reinder J. Bril and Johan J. Lukkien

Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Abstract—Hierarchical scheduling frameworks (HSFs) provide
means for composing complex real-time systems from well-
defined subsystems. This paper describes an approach to provide
hierarchically scheduled real-time applications with virtual event
timers, motivated by the need for integrating priority processing
applications in an HSF. Specifically, the paper proposes a tech-
nique to minimize the overhead of event handling in HSFs and
outlines a simple implementation.

I. INTRODUCTION

The increasing complexity of real-time systems demands
for a decoupling between (i) development and analysis of
individual applications and (ii) integration of applications
on a shared platform, including the analysis at the system
level. Hierarchical scheduling frameworks (HSFs) have been
extensively investigated as a paradigm to facilitate this de-
coupling, see for example [1]. In this paper we consider a
two level HSF, where a system is composed of a set of
independent applications, each of which is composed of a
set of tasks. A server is allocated to each application. A
global scheduler is used to determine which server should be
allocated the processor at any given time. A local scheduler
determines which of the chosen application’s tasks should
actually execute.

Multimedia applications define a well-studied class of real-
time applications. To enable cost-effective media processing
in software, scalable video algorithms (SVAs) have been
developed that allow trading quality for resource needs. The
principle of priority processing provides optimal real-time
performance for scalable video algorithms on programmable
platforms even with limited system resources [2]. According to
this principle, SVAs provide their output strictly periodically
and processing of images follows a priority order. Hence,
important image parts are processed first, followed by less
important parts in a decreasing order of importance. After
creation of an initial output by a basic function, processing
can be preliminary terminated at an arbitrary moment in time,
yielding the best output for given resources, see Figure 1.

To distribute the available resources, i.e. CPU-time, among
independent priority processing algorithms, an application
specific strategy has been developed [3]. This strategy is
implemented in a decision scheduler and aims at maximizing
the total relative progress of the SVAs. The relative progress
of an algorithm is defined in terms of the fraction of the
performed work relative to the consumed budget and the total
amount of work to be done in a video frame.

As a leading example, we consider a priority processing
application, composed of multiple independent SVAs and a de-

Basic Analyse Enhance
time

basic
quality
(0%)

100%

en
h
an

ce
d

q
u
al
it
y

prel. termination

Fig. 1. Priority processing, as a function of time consumption versus output
quality, can be divided in three time-frames: 1) produce a basic output at the
lowest quality level; 2) Identify the most important image content; 3) Enhance
the quality of the output by processing the most important picture parts first.

cision scheduler, which divides the available virtual processor
resources among the SVAs, as described in [4]. They assume
that the application has the full processor at its disposal.

A. Problem Description

In this paper we consider the scenario in which a priority
processing application is provided a virtual share of the avail-
able processor resources, by assigning the decision scheduler
and the SVAs a single virtual processor.

The decision scheduler implements the control strategy
and divides the available processor time within the applica-
tion budget into fixed-sized quanta termed time-slots of the
size ∆ts. The control strategy selects the SVA to execute next
upon completion of a time-slot, i.e. synchronous with virtual
time. Activation of the decision scheduler is triggered by the
depletion of a time-slot. Hence, the application requires virtual
timers to trigger timed events relative to the consumed budget,
to activate the decision scheduler for monitoring the progress
of the SVAs.

B. Contributions

Given the need for virtual timer events on shared virtual
platforms, we outline a low-overhead implementation of vir-
tual timers, targeted at embedded systems. Additionally, the
outlined solution aims at minimizing the overhead of handling
events of inactive applications in HSFs.

C. Outline

The remainder of this paper is as follows. Section II
describes the related work. Section III describes the virtual

37

platform model used as a reference for our implementation
directions. Section IV describes an approach to realize virtual
timed events. Finally, Section V concludes the paper.

II. RELATED WORK

The notion of a virtual timer within an application already
exists for POSIX-compliant operating systems [5]. Each pro-
cess running on such a platform has the availability of a
virtual timer that counts processor time used by that process.
When the virtual timer expires, a signal is sent to the process.
Upon expiration of a timer, the corresponding signal is queued
for the corresponding process, whereas arrival of a signal
depends on the granularity of the kernel clock. Signals, as
described in the POSIX standard, are a form of inter-process
communication. Processes are the primitive units for allocation
of system resources. Each process has its own address space
and one thread of control. When considering our priority
processing application, it is natural to map the application on a
single process. The decision scheduler and the SVAs are each
mapped on its own thread contained in the process, whereas
a thread is used as a scheduling unit. We require signalling of
the decision scheduler’s thread upon expiration of the virtual
timer, instead of the main process. Although the concept is
similar, we require a more general notion of virtual timers.

Partitioning the system to independent subsystems, which
are each provided with a virtual platform, is currently re-
searched in two slightly different directions. On the one
hand, directions go towards hierarchical scheduling schemes.
Hierarchical real-time system development is based on sound
analysis and well-defined application interfaces [1]. On the
other hand, virtual real-time operating systems (RTOSs) are in-
vestigated to obtain a strong partitioning of the system [6], [7].
Main challenges with respect to satisfying real-time constraints
in virtualizing a RTOS are (I) increasing responsiveness with
respect to hardware interrupts and (II) synchronization of
virtual machine related timer events. Both issues require a
low level virtual machine monitor to manage interrupts and
events messages [7]. Issue (I) includes the problem that an
interrupt can be generated for a particular virtual machine
which is not assigned to the processor at that moment in time.
The virtual RTOS is not allowed to disable interrupts, which
entails additional demands on the virtual machine’s monitoring
layer. The virtual machine monitor has to queue all interrupts
for an inactive RTOS and block the interrupts for an RTOS
when it requests to temporarily disable interrupts. Issue (II)
relates to managing event queues. When a virtual RTOS is
active, it can handle all timer events directly. All queued timer
events for a particular inactive virtual RTOS, as addressed by
issue (I), must be synchronized with the local event queue
upon activation of the virtual machine. Support for virtual
timers, as required by our priority processing application, is
lacking in the description in [6], [7].

[8] presents a novel design for managing timed event
queues, RELTEQ, applicable for embedded operating systems
demanding low memory and processor overhead. Reservation
based real-time systems provide applications with the facility

to request their remaining budget within the current replenish-
ment period. Reservation based kernels rely on mechanisms
for admission control, scheduling, monitoring and enforce-
ment [9]. Note that virtual timed events are different from
monitoring the consumed budget within an application. Al-
though RELTEQ can be exploited to support budget monitor-
ing, it does not support the generalized concept of virtual timed
events. Enforcement of budgets requires expiration of timers
upon depletion of the budget. [10] implemented enforcement
timers by setting a single timer on activation of a server, indi-
cating the depletion of the server’s budget. The enforcement
timer is set to the minimum value of the remaining budgets of
all levels in the hierarchical resource chain, e.g. levels in an
HSF. Every budget has its own replenishment timer. Finally,
all timers are added to a single global event queue.

[11] keeps track of budget depletion by using separate event
queues for each server in the HSF by means of absolute times.
On activation of a server, an event indicating the depletion of
the budget, i.e. the current time plus the remaining budget, is
added to the server event queue. On preemption of a server,
the remaining budget is updated according to the time passed
since the last server release and the budget depletion event
is removed from the server event queue. When the server’s
budget depletion event expires, the server is removed from
the server ready queue, i.e. it will not be rescheduled until the
replenishment of its budget.

In this paper we show how to extend the RELTEQ [8]
approach to manage virtual timed event queues.

III. VIRTUAL PLATFORM MODEL

Given an HSF mapped on a single processor, we consider a
priority processing application, attached to a server within the
HSF. For simplicity, we assume an idling periodic server [12],
however the proposed approach is expected to be easily
adaptable to other server types. We say that tasks assigned to a
server consume processor time relative to the server’s budget
to signify that the consumed processor time is accounted to
(and subtracted from) that budget.

Given the priority processing application, the decision
scheduler task is assigned the highest priority, such that upon
activation it can immediately preempt the SVAs. The SVAs
are each mapped on a strictly periodic task. All SVAs are
synchronous with the same period, Pf , i.e. each period the
SVAs start with a new video frame and at the end of a
period the processing is terminated. The SVAs are not blocked
by their input and output and share no resources except
the processor. All tasks comprising the priority processing
application are assigned to the same server.

A server has a replenishment period, Pb, and a budget, Qb.
Activation of the decision scheduler, i.e. a virtually timed
event, is triggered after consumption of a time-slot, ∆ts,
relative to the budget Qb. For convenience we assume that Pf

is a multiple of Pb and has the same phasing. For example,
the video frame rate Pf = 20ms, the application is provided
with a budget Qb = 5.5ms every period Pb = 10ms, and
∆ts = 1ms. This scenario is sketched in Figure 2.

38

20 ms

10 ms 10 ms

Legend:

server execution

task deadline

task arrival

expiration of a virtual
time slot event

Fig. 2. Example of budget replenishments and virtual events, with Pf =
20ms, Pb = 10ms, Qb = 5.5ms, and ∆ts = 1ms.

IV. PROPOSED APPROACH

We start this section by summarizing the RELTEQ [8]
approach to multiplexing timed events on a single hardware
timer. Then we describe how RELTEQ can be extended to
support hierarchical scheduling. Finally, we outline an efficient
RELTEQ implementation of virtual timers.

A. Basic RELTEQ timer management

RELTEQ stores the arrival times of events relative to each
other, by expressing the arrival time of an event relative to
the arrival time of the previous event. The arrival time of
the head event is relative to the current time, as shown in
Figure 3. While RELTEQ is not restricted to any specific
hardware timer, in this paper we assume a periodic timer. At
every tick of the periodic timer the time of the head event in
the queue is decremented.

Two operations can be performed on an event queue: new
events can be inserted and the head event can be popped. When
a new event ei with absolute time ti is inserted, the event
queue has to be traversed, accumulating the relative times of
the events until a later event ej is found, with ti < tj , where ti
and tj are both absolute times. When such an event is found,
then (i) ei is inserted before ej , (ii) its time is set relative to
the previous event, and (iii) the arrival time of ej is set relative
to ei. If no later event was found, then ei is appended at the
end of the queue, and its time is set relative to the previous
event.

12 4 5 5 10

e1 e2 e3 e4 e5

absolute time1002

event time

1006 1011 1016 1026990

now

Fig. 3. Example of the RELTEQ event queue.

The first event: The arrival time of the first event is
expressed in absolute time. To prevent the first event from
overflowing, RELTEQ inserts dummy events at times when
the absolute time would overflow, as shown in Figure 4.

The time will overflow once in 2n ticks (assuming an n-
bit time representation), requiring to insert one dummy event
every 2n ticks. Since the number of proper events within that
time interval is likely to be high, the overhead of using dummy
events to handle absolute time overflows is small.

[8] also describes how to use dummy events to provide
unbounded interarrival times between events.

0 2n time

(a)

0 2n time

(b)

2n - 20 2n + 25

2n - 20 252n

Legend:

current time

dummy event

proper event

Fig. 4. Example of (a) overflowing absolute time of the first event (b)
RELTEQ inserting a dummy event to handle the overflow.

B. Extending RELTEQ with hierarchical scheduling

The original description of RELTEQ [8] revolved around
a periodic hardware timer driving a single event queue. To
support hierarchical scheduling, we add an additional server
queue for each server, to keep track of the events local to the
server. At any time at most one server can be active; all other
servers are inactive. The additional server queues make sure
that the events local to inactive servers do not interfere with
the currently active server.

In this new configuration the hardware timer drives two
event queues:

1) the system queue, keeping track of events such as
replenishment of periodic servers,

2) the server queue of the active server, keeping track of
events such as task deadlines or the arrival of periodic
tasks.

At every tick of the periodic timer the heads of both
queues are decremented. The inactive server queues are left
untouched.

When the active server is switched out (e.g. a higher priority
server is resumed, or the active server gets depleted) then the
active server queue is replaced by the queue belonging to the
new active server. As a result, the queue of the switched out
server will be “paused”, and the queue of the switched in
server will be “resumed”.

To keep track of the time which has passed since the last
server switch, we introduce one additional stopwatch queue.
Initially it contains a single “dummy” event with time 0. At
every tick of the periodic timer the head of the stopwatch
queue is decremented. Time overflows are handled by setting
the overflowing event to −2n and inserting a new “dummy”
event at the head of the queue with time equal to the overflow.

When the active server is switched out, the head event in
the server queues of all inactive servers is decremented with
the sum of all event times in the stopwatch queue, and the stop
watch queue is reset to a single “dummy” event with time 0.
Time overflows in the server queues are handled by inserting
dummy events at the head of the queue, similar to handling
overflows of the stopwatch queue.

When an inactive server is switched in, all leading events in
its server queue are handled, until the head points to an event
with a positive absolute event time. The absolute event times
are computed in the same way as in the original RELTEQ,

39

by accumulating the relative times of subsequent events in the
queue.

When the server budget is depleted an event must be
triggered, to guarantee that a server does not exceed its budget.
We could resolve the budget depletion events in a way similar
to [11]. Because their approach requires to remove the budget
depletion event from the server queue every time the server is
switched out and to insert it back when the server is switched
in, we opt for an alternative approach.

C. Extending RELTEQ with virtual timers

In Section I we have identified the need for “time-slot”
events, which expire at times relative to the consumption of the
server budget. In this section we present a general approach
for handling both budget depletion and time-slot events and
introduce the notion of virtual timers. Our approach avoids
removing virtual events upon server switching and is therefore
more efficient than that of [11].

We can implement virtual timers by adding a virtual server
queue for each server. In this new configuration, at every
tick of the periodic timer the heads of all four queues are
decremented: system queue, active server queue, stopwatch
queue, and active virtual server queue.

Similarly to the server queues introduced earlier, when a
server is switched out, the active virtual server queue is paused
and the switched in virtual server queue is resumed. The
difference is that the stopwatch time is not subtracted from
the head of the virtual server queue, since during the inactive
period a server does not consume any of its budget.

An example of the proposed RELTEQ extension with hier-
archical scheduling and virtual timers is shown in Figure 5.

56 4 5 3 10system queue

74 21 4active server
queue

-9 2 15 7
inactive server

and virtual server
queues

37 4

Legend: N event decremented upon every tick N event not decremented

27 5 101active virtual
server queue

-7 -2nstopwatch queue

Fig. 5. Example of RELTEQ based implementation of reservations.

V. CONCLUSION

This paper generalizes the concept of a virtual timer to
hierarchical real-time systems. Specifically, the paper proposes

a technique to minimize the overhead of event handling in
hierarchical scheduling frameworks that may be used in com-
positional design and analysis of complex real-time systems.
In such systems, several applications execute on a shared
processor where each application is given a virtual share of
the processor and is responsible for local scheduling of tasks
within itself. We outlined an implementation of hierarchical
scheduling and virtual timers based on the RELTEQ approach
to multiplexing timed events on a single hardware timer. The
proposed implementation aims at minimizing the overhead of
handling events belonging to inactive servers. In the future we
would like to further investigate trade-offs between different
design and implementation alternatives of HSFs with virtual
timers in RELTEQ.

Our current research on providing temporal isolation be-
tween applications in real-time systems focusses on two-level
HSFs. In the future work we would like to extend the proposed
approach to multi-level hierarchical scheduling, where the
hardware timer is driving a server queue for each server in
the hierarchy of currently active servers.

REFERENCES

[1] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. 24th IEEE Real-Time Systems Symposium (RTSS),
Dec. 2003, pp. 2–13.

[2] C. Hentschel and S. Schiemenz, “Priority-processing for optimized real-
time performance with limited processing resources,” in Proc. 26th IEEE
Int. Conference on Consumer Electronics (ICCE). Digest of Technical
Papers., Jan. 2008.

[3] S. Schiemenz, “Echtzeitsteuerung von skalierbaren Priority-Processing
Algorithmen,” in Tagungsband ITG Fachtagung - Elektronische Medien,
March 2009, pp. 108 – 113.

[4] M. van den Heuvel, R. J. Bril, S. Schiemenz, and C. Hentschel, “Dy-
namic resource allocation for real-time priority processing applications,”
in Accepted for 28th IEEE Int. Conference on Consumer Electronics
(ICCE). Digest of Technical Papers., Jan. 2010.

[5] GNU-Project. (2009, Sep.) Setting an alarm - the gnu c
library. [Online]. Available: http://www.gnu.org/s/libc/manual/html
node/Setting-an-Alarm.html

[6] S. Yoo, M. Park, and C. Yoo, “A step to support real-time in virtual ma-
chine,” in Proc. 6th IEEE Consumer Communications and Networking
Conference (CCNC), Jan. 2009, pp. 1–7.

[7] D. Kim, Y.-H. Lee, and M. Younis, “Spirit-µkernel for strongly parti-
tioned real-time systems,” in Proc. 7th Int. Conference on Real-Time
Computing Systems and Applications., 2000, pp. 73–80.

[8] M. Holenderski, W. Cools, R. J. Bril, and J. J. Lukkien, “Multiplexing
real-time timed events,” in Proc. 14th IEEE Int. Conference on Emerging
Technologies and Factory Automation (ETFA), July 2009.

[9] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels: A
resource-centric approach to real-time and multimedia systems,” in Proc.
SPIE, Vol. 3310, Conference on Multimedia Computing and Networking
(CMCN), January 1998, pp. 150–164.

[10] S. Saewong and R. Rajkumar, “Hierarchical reservation support in
resource kernels,” 2001. [Online]. Available: http://www.cs.cmu.edu/
afs/cs/project/rtml-2/Papers/hrsv.ps.gz

[11] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards
hierarchical scheduling on top of VxWorks,” in Proc. 4th Int. Workshop
on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), July 2008, pp. 63–72.

[12] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedul-
ing,” in Proc. 26th IEEE Int. Real-Time Systems Symposium (RTSS), Dec.
2005, pp. 389–398.

40

Analysis of Latest Defer Time for Fixed-Priority Scheduling Algorithm with Dual
Priority

Chiahsun (Alex) Ho and Shelby Funk
Computer Science Department

University of Georgia
Athens, GA, USA

{ho,shelby}@cs.uga.edu

Abstract

We present an online adjustment method to discover the
latest defer time for each job using Fixed Priority scheduling
algorithm. By deferring the preemption of lower priority jobs
by higher priority jobs until the latest defer time, we reduce
the overhead caused by preemptions while still ensuring
every job meets its deadline. We present our ongoing work
which modifies dual priority of Fixed-Priority scheduling
using the worst case response time. Thus we find each task’s
latest defer time by subtracting its deadline from its worst
case response time offline. Then for each job’s release time,
we adjust the latest defer time online. In this manner, we can
then reduce certain amount of preemptions hence reduce the
overhead.

1. Introduction

In real-time systems, correct behavior depends not only
upon logical correctness, but also upon temporal correctness.
In these systems, all jobs have deadlines. In a hard real-
time system, each job must be completed no later than
its deadline. Even so, there may be times when we might
deliberately delay the execution of a job provided it will
not cause a deadline to be missed. In this paper, we present
an off-line analysis with modified Fixed-Priority scheduling
using Dual Priority. This method originally introduced by
Davis, et al. [1], calculates a duration during which we can
safely delay a preemption. We propose an online method
of improving their work by adjusting the preemption defer
interval as tasks release new jobs.

Preemption occurs when a higher priority task arrives
while a lower priority task is executing. In much of the
literature, the cost of preemption is assumed to be included
within the worst case execution time (WCET) (or sometimes
ignored altogether). However, in actual implementations,
preemption does incur overhead. These costs occur for
two reasons. First, registers of the currently executing (low
priority) task must be stored to ensure proper operation upon
resumption of execution. Second, the high priority task may
cause the contents of the cache to be overwritten, leading

to cache misses that would not have occurred without the
preemption. Davis, et al., proposed to incorporate deferred
preemption into existing scheduling algorithms. The goal is
to defer enough that the low priority job finishes executing
before the preemption occurs. We propose to extend the du-
ration of the deferred preemption to increase the likelihood
that the preemption will no longer be necessary.

The example below illustrates while some preemptions
cannot be avoided without causing deadlines to be missed,
others could be avoided.

Example 1. Consider a system of four jobs J1, J2, J3 and
J4 that arrive at times 2, 4, 6 and 0, respectively, and
have deadlines 3, 7, 8 and 9, respectively. J4 executes
for 5 time units and jobs J1, J2 and J3 each execute for
1 time unit. Figure 1 illustrates two schedules for these
jobs. Figure 1(a) shows that the preemptive schedule causes
3 preemptions: J1, J2 and J3 each preempt J4. The first
preemption is unavoidable — J1 must execute as soon as
it arrives. However, the preemptions caused by J2 and J3

can be avoided without missing any deadlines. Figure. 1(b)
illustrates that by deferring those jobs J2 and J3, we
can reduce the number of preemptions while maintaining
feasibility.

In Robert Davis and Andy Wellings [1], they presented
the dual priority scheduling algorithm and find the worst
case response time by Time Demand Analysis (TDA) [2].
We extend their work to calculate the worst case response
time by checking the worst case arrival pattern at each job’s
release time. Hence we want to make the deferral interval
as long as possible but without missing any deadlines.

The remainder of this paper is organized as follows.
Section 2 introduces our model and defines important terms
to be used in this paper. Section 3 recaps the related work
done by Davis et al. Section 4 introduces our extension work
for online adjustment. Finally, Section 5 concludes our work
and discusses future avenues of research.

41

Total number of preemptions = 3

J4 J1 J2 J3

D1 D2 D3 D4

(a) Preemptive schedule.

!"# !$# !%# !&#

'$# '%# '&# '"#

()*+,#-.//012)3#3405/.#6#$#
78)9:+5,/#1.//012)3;#!%#+3:#!.//01*#!"#
<3+8)9:+5,/#1.//012)3;#!$#1.//01*#!"#

(b) Deferred preemptive schedule.

Figure 1. Two valid schedules.

2. Model and Definitions

We consider a method of reducing preemptions when
scheduling periodic [3] or sporadic [4], [5] tasks. Below
we introduce the terms and notation we will be using in the
following sections.

Periodic and sporadic tasks: The periodic [3] and
sporadic [4], [5] task models have proven very useful for
the modeling and analysis of real-time computer application
systems. In this model, real-time processes recur at regular
intervals. Each periodic or sporadic task Ti is characterized
by two parameters — a worst case execution requirement
(ei) and a period (pi). Accordingly, we will model a real-
time system τ ≡ {T1, T2, . . . , Tn} as being comprised of a
collection of n periodic or sporadic tasks.

In this paper, we will assume that all the system param-
eters — the number of tasks in the system, the execution
requirement and period parameters of each task — are a
priori known. Each periodic or sporadic task Ti generates an
infinite sequence of jobs Ti,0, Ti,1, . . . , Ti,k, We denote
the arrival time and deadline of a job Ti,k to be ai,k and
di,k, respectively. A job does not necessarily start at its
arrival time. We let si,k denote the time when job Ti,k

first starts to execute. A periodic task Ti = (pi, ei) with
execution requirement parameter ei and period parameter pi

generates a job Ti,k that arrives at time ai,k = k · pi. Each
job Ti,k needs to execute for ei units of time by its deadline
of di,k = (k + 1) · pi, for all non-negative integers k. For
sporadic tasks, pi indicates the minimum amount of time
between two jobs. If a sporadic task generates a job Ti,k at
time ai,k = t, then that job needs to execute for ei units of
time by its deadline of di,k = t+pi, and Ti’s next job Ti,k+1

can arrive no earlier than t + pi — i.e, ai,k+1 ≥ ai,k + pi

for all k ≥ 0.
For both periodic and sporadic tasks, we denote the worst

case response time for each task Ti as ri.

Latest Defer Time: The latest defer time, Λi, for a task
τi is the latest time τi can defer (relative to its arrival time)
and ensure it will meet its deadline di – i.e., if τi defers more
than Λi, there exists some arrival patterns that will cause τi

to miss its deadline. We denote each job Ti,k’s latest start
time λi,k — thus, λi,k = ai,k + Λi.

We assume a preemptive schedule. Thus, if a job arrives
while another job is executing, if the newly arrived job has
a higher priority it can interrupt (or preempt) the currently
executing job. The costs associated with preemption are
generally assumed to be included in the tasks worst case ex-
ecution times. We let Thp

i denote those tasks whose priority
are the same or higher than task Ti, i.e., Thp

i = {Tj | j ≤ i}.
Similarly, the tasks whose priority are lower than task Ti are
denoted Tlp

i where Tlp
i = {Tj | j > i}.

Deferred preemption intervals: This paper introduces a
strategy for reducing the number of preemptions by delaying
preemptions when higher priority jobs arrive. We discuss
how to incorporate this strategy into Fixed-Priority schedul-
ing algorithm. We define deferral durations as follows.

Let τ = T1, T2, . . . , Tn be a task set. Assume task Tr

is executing and task Tx generates a higher priority job at
time t. We define the latest defer time Λx as longest deferal
preemption interval that lower priority jobs can execute. I.e.,
the algorithm opts to allow task Tr to continue to executing
for an additional Λx time units even though Tx has higher
priority. When this occurs, we say Tx defers its preemption
of Tr, or, alternatively, Tr forces Tx to defer its preemption.

Clearly, we would like to make Λx large enough that task
Tr is able to finish executing before task Tx has to preempt.
Thus, we want the value of Λx to be as large as possible
but not cause any deadlines to be missed.

3. Dual Priority Scheduling

Our goal is to reduce preemptions without sacrificing
schedulability. The approach we pursue is to determine the
value of Λx, a safe amount of time to defer preemptions (i.e.,
a duration that will not cause any deadlines to be missed).
We begin by discussing how to find the latest defer time.

We say a job Ti,h is in elevated state if si,h ≥ λi,h. We
first present Fixed-Priority with Dual Priorities introduced
by Davis et al. Once Ti,k has deferred its preemption by

42

Λi amount of time, it becomes more urgent than it used
to be. Hence, we use the dual priority scheduling method.
When a higher priority task Tx allows a lower priority task
to execute for its maximum defer length Λx it becomes move
urgent that Tx must execute. If this occurs we elevate Tx’s
priority. In this method, we use an elevated flag to indicate
if a task has higher priority than its original priority. The
tasks in elevated state have higher priority than the tasks
in their original unelevated state, for instance: T1 normally
has higher priority than T2. However if T2 is in elevated
state and T1 is not, then T2 has higher priority than T1. If a
task has not started to execute before the end of its deferral
interval, then its elevated flag is set, giving it higher priority.
After the elevated task has completed then the elevated flag
will set back to false.

In Section 3.5 of [1], Davis et al. have analyzed the latest
defer time (which they call the priority promotion time). Let
Λi be the latest defer time for task τi, ri is the worst case
response time and di is the deadline of Ti. Then Davis et
al. [1] showed Λi + ri = di. Furthermore, there exists a
scenario in which τi finishes exactly at its deadline when its
priority is elevated Λi time units after it arrives. The worst
case arrival pattern during lower priority task’s execution
window has also been analyzed by Davis et al. in [1] section
3.2 by using Time Demand Analysis (TDA). With this in
mind, let Λi be the latest defer time length for τi. A critical
instant occurs for Ti if during [ai, λi,k] only tasks in Tlp

i or
tasks with elevated priority execute and at time λi,k all tasks
in Thp

i have their priorities elevated. The following example
illustrates the concept of extending deferral time.

Example 2. Consider a system of four tasks T1, T2, T3 and
T4 shown in Figure 2. The first and the last jobs of T1 do
not execute while T3 is active. Therefore, we can move T3s
elevation point from 6 to 7, allowing T4 to complete without
being preempted. The worst case response time r3 = 14 =
d 146 e · 1 + d 1410e · 2 + 7.

4. Extending the priority elevation point

The TDA equation in [2], wi(t) =
∑i

j=1 cj · dt/Tje
gives the cumulative demands on the processor made by
higher priority tasks over [0,t]. If r is the WCRT then
w(r) = r. Notice that d pi

pj
e measures the number of times Ti

interferes with Tj — i.e., Ti executes while Tj is in the wait
queue. By using TDA to determine the worst case response
time ri for each task, we can then find the corresponding
Λi. TDA certainly shows how many interferences between
higher priority tasks and lower priority tasks. However
the calculation may be too pessimistic. There exist arrive
patterns in which some of the interferences of higher priority
tasks do not need to be counted against a task’s worst case

response time. Specifically, let [λj,k, dj,k] be the interval
during which Tj is in elevated state.

We observe that the number of times that Ti interferes
with Tj’s execution during this interval can be reduced
whenever two conditions hold. Let Xi,j be the number of
times Ti interferes with Tj in the calculation of ri. If we
can be certain that current conditions will result in fewer
then Xi,j interferences, then we can increase λj . If the first
and last job of Ti that overlap with [λj , dj] execute outside
of that interval then we can be sure that the response time
of Tj,k will be no more than rj − ei. Specifically, let Ti,h1

and Ti,h2 be the jobs of Ti that overlap with λj,k and dj.k

respectively. If Ti,h1 executes before λj,k and if Ti,h2 does
not devote its priority before dj,k then λj,k can be increased
by ei. The example below shows the idea by shifting higher
priority tasks could reduce the number of interference.

Example 3. Consider the following example shown in
Figure 3, a system of 2 tasks: Ti = (9, 4) and Tj = (15, 6).
The number of interferences during [13, 28] as illustrated
is only one (because the first and last interferences can be
removed), however, by using TDA after taking ceiling the
number of interferences are three instead.

Lower Priority task’s
execution window

Λj

t t + pi

aj

cj

Tj

Ti

First	
Interference	 job	 	

Last	
Interference	 job	

Interference Job

Figure 3. Adjusting response time based on task ar-
rivals

Hence we perform an online adjustment in each job’s
release time for every task. For each higher priority task,
if both circumstances above hold we can reduce the number
of interference by one. Which allows us to increase the defer
time.

To implement this, we add two new arrays-Arr that
contain the arrival time of the current job of each task
and Comp is a Boolean array which is true for each task
whose current job has finished executing. In addition to Λi,
each task Ti has an associated array [xi,1, xi,2, ..., xi,i−1]

43

T1 (6,1)

T2 (10,2)

T3 (15,7)

T4 (35,3)

(a) Deferral Time without extended

T1 (6,1)

T2 (10,2)

T3 (15,7)

T4 (35,3)

(b) Deferral Time with extended

Figure 2. Extending Deferral Time

containing the number of times the higher priority tasks
interfere with Ti when Ti suffers its worst case response
time. This is illustrated in Figure 3. and the algorithm is
also presented in Algorithm 1. The algorithm is called once
at time λi,k. Once the defer interval his been extended,
Algorithm 1 is not called again.

Algorithm 1 Online Adjustment of λi,k

for all higher priority task Tj ,∀1 < j ≤ i− 1 do
if comp[j] and (Arr[j]+xi.j · pj + Λj ≥ di,k) then
λi,k = λi,k + ej

end if
end for

5. Summary and Future Work

In this paper we have presented a method of extend-
ing dual priority scheduling with Fixed-Priority scheduling
algorithm. When a job’s priority is about to be elevated
we apply our online adjustment method to increase the
defer time. In future we will simulate our online adjustment
method to have experimental data for comparing the result
with original. In Bril’s [6] work, their offline analysis
demonstrates that the worst case response time of a higher
priority job blocked by lower priority job is based on the
amount of time that a task τx with a lower priority executes
non-preemptively. As to our ongoing work is an online
extension approach. We would like to extend our work to
dynamic-priority scheduling algorithm, such as EDF as well.
We also hope to apply this work to systems executing on
multiprocessors.

References

[1] R. Davis and A. Wellings, “Dual priority scheduling,” in IEEE
Real-Time Systems Symposium, Dec. 1995, pp. 100–109.

[2] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm: Exact characterization and average case
behavior,” in Proceedings of the Real-Time Systems Symposium
- 1989. Santa Monica, California, USA: IEEE Computer
Society Press, Dec. 1989, pp. 166–171.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment,” Journal
of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[4] M. Dertouzos and A. K. Mok, “Multiprocessor scheduling in
a hard real-time environment,” IEEE Transactions on Software
Engineering, vol. 15, no. 12, pp. 1497–1506, 1989.

[5] M. Dertouzos, “Control robotics : the procedural control of
physical processors,” in Proceedings of the IFIP Congress,
1974, pp. 807–813.

[6] R. J. Bril and W. F. Verhaegh, “Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with
deferred preemption revisited,” in Proceedings of the 19th
Euromicro Conference on Real-Time Systems. IEEE Computer
Society Washington, DC, USA, 2007.

44

Real-time Scheduling of periodic tasks
in a monoprocessor system with rechargeable energy storage

Maryline Chetto and Hussein El Ghor
IRCCyN - University of Nantes

1 Rue de la Noë, F-44321 Nantes FRANCE
maryline.chetto@univ-nantes.fr, elghorh@irccyn.ec-nantes.fr

Abstract—We are interested in a real-time computing system
that is powered through a renewable energy storage device.
In this context, two constraints need to be addressed: energy
and deadlines. Classical task scheduling, in particular Earliest
Deadline First, only accounts for timing parameters of the
tasks and consequently is not suitable when considering energy
constraints. We show here how to modify Earliest Deadline so
as to account for the properties of the energy source, capacity of
the energy storage as well as energy consumption of the tasks.
We present a scheduling framework called EDeg (Earliest
Deadline with energy guarantee) and an exact feasibility test
that decides for periodic task sets, whether they can be
scheduled without deadline violations. To this end, we introduce
the concepts of energy demand and slack energy.

Keywords-scheduling; periodic tasks; earliest deadline; re-
newable energy;

I. INTRODUCTION

The problem of scheduling tasks on one processor to
meet deadlines and energy constraints has been the focus of
great interest for about ten years. However, few papers have
been devoted to emerging harvesting systems which need
to operate perennially thanks to the environmental energy.
A key consideration that affects power management in an
energy harvesting system is that instead of minimizing the
energy consumption and maximizing the lifetime achieved as
in classical battery operated devices, the system operates in
an energy neutral mode by consuming only as much energy
as harvested.

The system we target here consists of a processing unit,
an energy harvester such as a solar panel or a furl cell, and
a rechargeable energy storage such as a battery or a super-
capacitor. We consider a single processor that has to execute
a set of independent periodic tasks.

So the problem we have to deal with is: How can we
schedule the tasks so as to guarantee their timing constraints
perpetually by suitably exploiting both the processor and the
available ambient energy.

The goal of this work is first to construct an opti-
mal scheduling algorithm and second, to provide an exact
schedulability test. Finally, we show how to dimension the
capacity of the storage unit, provided that the worst case
recharging rate of the storage unit is enough for ensuring
neutral operation.

II. RELATED WORKS

In [1], the authors are interested in the problem of schedul-
ing periodic tasks in the so-called frame-based systems with
a rechargeable battery. In this model, all task periods are
identical, all task deadlines are equal to the common period.
Consequently, the order of task execution within a frame
is not crucial for whether the task set is schedulable or
not. Moreover, the power scavenged by the energy source
is assumed to be constant and all tasks consume energy
at a constant rate. A solution is presented that schedules
tasks in such a way that the wasted recharging energy
is minimized and the battery level is at all times within
two limits, starting with a battery fully charged. The idea
behind this algorithm is to insert as little idle time as
necessary for recharging the battery and minimizing the
length of the schedule. This work is certainly the first one
to concentrate on a rechargeable system with hard real-time
constraints. However, the solution only deals with frame
based systems under the restrictive hypothesis that each
task is characterized by an instantaneous consumption power
which is constant along time.

More recently, in [7] the so-called LSA scheduling algo-
rithm was proved to be optimal under a more generalized
model including hard deadline tasks, periodic or not. LSA is
a variation of the famous Earliest Deadline First scheduler:
the system starts executing a task only if the task is ready
and has the earliest deadline among all ready tasks and the
system is able to keep on running at the maximum power
until the deadline of the task. In that work, the consumption
power of the computing system is characterized by some
maximum value which implies that for every task, its total
energy consumption is directly connected to its execution
time through the constant power of the processing device.

However, in practice, the total energy which can be
consumed by a task has no correlation with the worst
case execution time [6]. For every task, the worst case
instantaneous consumption power depends on the circuitry
that is used by the task. It clearly appears as impractical to
determine the energy consumption of a task from the worst
case consumption power for the computing system. While it
is easy to determine the average consumption power of a task

45

(given by the execution time and the energy consumption),
this parameter is of no interest in the so-called hard real-time
applications.

Furthermore, some recent studies focused on how to
precisely compute the energy that is consumed by a program,
independently of the average or the worst case consumption
power of the computing system. More particularly, in [6]
a bound on worst-case energy consumption of a task is
computed through a static analysis by estimating an upper
bound on the energy consumption of all individual basic
blocks that make up the task.

III. MODEL AND TERMINOLOGY

A. Task Set

We study the case of a Hard Real-Time system which
is composed of periodic tasks. The arrival times, energy
demands and deadlines of these tasks are known in ad-
vance. Such a periodic task set can be denoted as follows:
τ = {τi, i = 1, . . . , n}. A four-tuple (Ci, Ei, Di, Ti) is
associated with each τi. In this characterization, task τi

makes its initial request at time 0 and its subsequent requests
at times kTi, k = 1, 2, ... called release times. The least
common multiple of T1, T2, . . . , Tn (called the hyperperiod)
is denoted by TLCM . Each request of τi requires a Worst
Case Execution Time (WCET) of Ci time units and has a
Worst Case Energy Consumption (WCEC) of Ei. We assume
that the WCEC of a task has no relation with its WCET.
A deadline for τi occurs Di units after each request by which
task τi must have completed its execution. We assume that
0 < Ci ≤ Di ≤ Ti for each 1 ≤ i ≤ n. We define:

• the processor utilization as Up =
∑n

i=1
Ci

Ti
.

• and the energy utilization as Ue =
∑n

i=1
Ei

Ti

A job is any request that a task makes. A four-tuple
(rj , Cj , Ej , dj) is associated with a job Jj and gives its
release time, worst case execution time, worst case energy
consumption and (absolute) deadline respectively. A job can
be preempted and later resumed at any time and there is no
time or energy loss associated with such preemption.

B. Energy

Our system uses an energy storage unit that has a nominal
capacity, namely E, corresponding to a maximum energy
(expressed in Joules or Watts-hour). The energy level has
to remain between two boundaries Emin and Emax with
E = Emax − Emin. If the storage is fully charged, and we
continue to charge it, energy is wasted. In contrast, if the
storage is fully discharged, no task can be executed.

In order to characterize the energy source, we define the
WCCR (Worst Case Charging Rate), namely Pr, which is
a lower bound on the harvested source power output. Pr

is then the instantaneous charging rate that incorporates all
losses caused by power conversion and charging process.

We assume that energy production times can overlap with
the consumption times.

C. Definitions

• A schedule Γ for τ is said to be valid if the deadlines
of all tasks of τ are met in Γ, starting with a storage
fully charged.

• A task set τ is said to be temporally-feasible if there
exists a valid schedule for τ without considering its
energy constraints.

• A task set τ is said to be feasible if there exists a valid
schedule for τ with considering its energy constraints.

• A scheduling algorithm will be called optimal if it finds
a valid schedule whenever one exists.

IV. BACKGROUND MATERIALS

The problem of scheduling periodic tasks on one pro-
cessor with no energy constraint has been an active area
of research for more than thirty years (see, e.g., [3]). In
[5], Dertouzos showed that Earliest Deadline First (EDF) is
optimal among all preemptive scheduling algorithms. EDF
schedules at each instant of time t, the ready task (i.e the
task that may be processed and is not yet completed) whose
deadline is closest to t. The EDF algorithm is typically
preemptive, in the sense that, a newly arrived task can
preempt the running task if its absolute deadline is shorter.
This dynamic priority assignment allows EDF to exploit
the full processor, reaching up to 100% of the available
processing time.

In general, the implementation of EDF consists in execut-
ing tasks according to their urgency, as soon as possible with
no inserted idle time. Such implementation is known as EDS
(Earliest Deadline as Soon as possible). Nevertheless, in
some applications, it can be preferable to postpone execution
of periodic tasks, executing them by the so called EDL
(Earliest Deadline as Late as possible) strategy, for exam-
ple when some additional aperiodic tasks with unexpected
arrival times require to be run as soon as possible [4].

V. FEASIBILITY ANALYSIS UNDER ENERGY
CONSTRAINTS

In order to develop a procedure for the feasibility assess-
ment of a periodic task set with energy constraints, we give
some definitions. Let us consider the periodic task set τ and
the interval [t1, t2).

• The processor demand of τ in [t1, t2), is
h(t1, t2) =

∑
Di≤t2−t1

(
1 +

⌊
t2−t1−Di

Ti

⌋)
Ci

• The energy demand of τ in [t1, t2), is
g(t1, t2) =

∑
Di≤t2−t1

(
1 +

⌊
t2−t1−Di

Ti

⌋)
Ei

The processor demand (resp. the energy demand) is a
measure of how much computation (resp. energy) is re-
quested by all the jobs which have both their release times
and their deadlines, in a given interval of time. It is clear

46

that for a given time length and among all intervals, the
initial one has the maximum fraction of processor and energy
demanded by the jobs i.e. h(t1, t2) ≤ h(0, t2 − t1) and
g(t1, t2) ≤ g(0, t2 − t1).

For simplicity, we respectively denote as h(t) and g(t)
the processor demand and the energy demand of the task
set τ in [0, t). So, h(t) =

∑
Di≤t

(
1 +

⌊
t−Di

Ti

⌋)
Ci and

g(t) =
∑

Di≤t

(
1 +

⌊
t−Di

Ti

⌋)
Ei.

Without energy constraint, the exact schedulability analy-
sis is based on the processor demand criterion and is stated
as follows [2]:

Theorem 1. A task set τ is temporally-feasible if and only
if Up ≤ 1 and ∀t > 0, h(t) ≤ t.

This exact feasibility test is of pseudo-polynomial com-
plexity since the points in which the test has to be performed
correspond to deadlines within the hyperperiod TLCM . Sug-
gestions for practical improvements in testing Theorem 1
have been given in [8] and [9].

Here, we extend Theorem 1 to account for energy con-
sumption:

Theorem 2. A task set τ is feasible if and only if
• τ is temporally-feasible,
• Ue ≤ Pr and ∀t > 0, g(t) ≤ E + Prt

VI. THE OPTIMAL SCHEDULING ALGORITHM

The intuition behind the scheduling algorithm is to run
tasks according to the earliest deadline first rule. However,
before authorizing a task to execute, the storage level must
be sufficient to provide energy for all future occurring tasks,
considering their timing and energy requirements and the
replenishment rate of the storage unit. And if this condition
is not verified, the processor has to be idle so that the storage
unit recharges as much as possible and as long as the system
will be able to meet all the deadlines i.e. the system will have
available time to remain idle. Following the idea described
above, we propose the EDeg (Earliest Deadline with energy
guarantee) algorithm. To formally present the algorithm, we
need to introduce two concepts:

• The slack time of the system at current time t, is
the length of the longest interval starting at t during
which the processor may be idle continuously while
still satisfying all the timing constraints.

• The slack energy of the system at current time t, is
the maximum amount of energy that can be consumed
from t continuously while still satisfying all the timing
constraints.

In the following description, t is the current time, E(t)
is the residual capacity of the storage unit at time t i.e.
the energy that is currently stored. Slack.energy(t) and
Slack.time(t) are respectively the slack energy and the
slack time at time t. PENDING is a boolean which equals

true whenever there is at least one job in the ready list queue.
We use the function wait() to put the processor to sleep and
function execute() to put the processor to run the ready job
with the earliest deadline.

The framework of the optimal scheduling algorithm is as
follows:

Algorithm 1 Earliest Deadline with energy guarantee algo-
rithm (EDeg)

while (1) do
while PENDING=true do

while (E(t) > Emin and Slack.energy(t) > 0) do
execute()

end while
while (E(t) < Emax and Slack.time(t) > 0) do

wait()
end while

end while
while PENDING=false do

wait()
end while

end while

We notice that:
• EDeg degenerates to an EDS policy if Emax = 0 and

an EDL (Earliest Deadline as Late as possible) policy
if Emax = ∞.

• We never run out of storage (that is, we never dispatch
tasks when there is no energy); this is obvious from the
algorithm that does not allow tasks to run after Emin.

• We start charging the storage unit when, either it is
empty or there is no more sufficient energy to guarantee
the feasible execution of all future occurring tasks i.e.
the system has no more slack energy.

• the charging process aims to charge at the maximum
level provided there is sufficient slack time.

• We only waste recharging power when there are no
pending tasks and the storage unit is full.

As a consequence, we can prove the following theorem.

Theorem 3. Algorithm EDeg is optimal.

VII. PRACTICAL CONSIDERATIONS

The computations of Slack.energy(t) and Slack.time(t)
are thus the keys to the operation of the EDeg algorithm.
As shown in [10], the slack time of a periodic task set at
a given time instant can be obtained on-line by computing
the dynamic EDL schedule, with complexity O(K.n). n is
the number of periodic tasks, and K is equal to �R/p�,
where R and p are respectively the longest deadline and the
shortest period of current ready tasks.
The slack energy at time t is computed only when there is
at least one job, say Jj which will be released after t and
has a deadline dj that is less than or equal to that of the

47

highest priority job, ready at t. For such job, we compute
Slack.energy(Jj ,t), given by E(t)+Pr(dj−t)−Aj where Aj

is the processor demand within [t, dj). Slack.energy(Jj ,t)
clearly represents the amount of energy surplus in the
storage that can be used from t until the start time of Jj

while still guaranteeing its timing and energy requirements.
The slack energy of the system is determined by the
minimum slack energy of all the jobs. The complexity for
computing the slack energy is O(K.n) too.

A suggestion to improve the efficiency of the scheduler
in terms of overhead is to compute statically a lower bound
on the slack time and a lower bound on the slack energy
and use them instead of exact values which are computed
on-line. The effect will be only, first to stop charging earlier
and second to stop executing tasks earlier. As a consequence,
decreasing the processor overheads due to computations will
cause increasing the number of tasks preemptions.

VIII. ILLUSTRATIVE EXAMPLE

Consider a task set τ that is composed of the tree follow-
ing tasks: τ1(2, 16, 7, 20), τ2(2, 10, 4, 5) and τ3(1, 6, 9, 10).
The storage capacity is E = 10 and we assume that
Emin = 0 and Emax = E. The recharging power Pr is
constant and equal to 4. To simplify the illustration, we
assume that tasks consume energy at constant rate. We note
that the processor utilization and the energy utilization are
respectively 0.6 and 3.4, consequently no more than 1 and
4. By scheduling the task set τ according to EDF on the
first hyper-period i.e. from 0 to 20, we can verify that τ is
temporally-feasible. The schedule which is produced by the
EDeg scheduler for τ in the first hyper-period is described on
(Figure 1). Let us explain how this schedule is constructed
in the first steps.

At time 0, the storage is full. τ2 is the highest priority
task, executes until time 2 and consumes 10. At time 2,
E2 = 8. τ1 is the highest priority task and the slack energy
is undefined (no job released after 2 with deadline less than
4). τ1 executes completely until time 4 and consumes 16.
8 units of energy are produced. At time 4, E4 = 0. The
processor has to remain idle as long as the storage has not
refilled it (predicted at time 6.5) and the latest start time has
not been attained (at time 6 which is computed using EDL).
At time 6, E6 = 8. τ2 is the highest priority task, executes
until time 8 and consumes 10. At time 8, E8 = 6. τ3 is the
highest priority task, executes and completes exactly at time
9 that coincides with its deadline.

IX. CONCLUSION

We have presented the framework of a monoprocessor
preemptive scheduling algorithm, namely EDeg, that is a
variation of EDF able to cope with energy constraints. EDeg
has been designed to schedule any set of time critical tasks,
periodic or not, given any energy source profile with constant

Figure 1. The EDeg schedule

power production or not and given an energy storage unit
with limited capacity. Proof of optimality and validation
of the exact feasibility condition attached to EDeg are the
object of a Work in Progress.
This paper specifically focussed on a system that receives
energy at constant rate and has to run periodic tasks with
non related computation and energy requirements.

REFERENCES

[1] A. Allavena and D. Moss, ”Scheduling of Frame-based Embedded
Systems with Rechargeable batteries”, Workshop on Power Manage-
ment for Real-Time and Embedded Systems, 2001.

[2] S.K. Baruah, A.K. Mok and L.E. Rosier, ”Preemptively Scheduling
Hard Real-Time Sporadic Tasks on One Processor”, Proc. 11th IEEE
Real-Time System Symp., pp. 182-190, 1990.

[3] G.C. Buttazzo, Hard Real-Time Computing Systems, Springer, 2005

[4] H. Chetto, M. Chetto, ”Some Results of the Earliest Deadline
Scheduling Algorithm”. In Proceedings of the IEEE Transactions on
Software Engineering, Vol. 15, No. 10, pp 1261-1269, 1989.

[5] M.L. Dertouzos, ”Control Robotics: The Procedural Control of Phys-
ical Processes”, Proc. Int’l Federation for Information Processing
Congress, pp. 807-813, 1974.

[6] R. Jayaseelan, T. Mitra, X. Li, ”Estimating the Worst-Case Energy
Consumption of Embedded Software,” 12th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS’06), pp.81-
90, 2006

[7] C. Moser, D. Brunelli, L. Thiele, L. Benini, ”Real-time scheduling
for energy harvesting sensor nodes”, Real-Time Systems, Volume 37
, Issue 3, Pages: 233 - 260,December 2007

[8] I. Ripoll, A. Crespo and A.K. Mok, ”Improvement in Feasibility
Testing for Real-Time Tasks”, Real-Time Systems 11, 1996.

[9] F. Zhang and A. Burns, ”Schedulability Analysis for real-time sys-
tems with EDF scheduling”, IEEE Transactions on Computers, Vol.
58, N 9, September 2009.

[10] M. Silly, ”The EDL Server for Scheduling Periodic and Soft Ape-
riodicTasks with Resource Constraints”, Real-Time Systems, Volume
17 , Issue 1, July 1999.

48

Network-Aware, Energy-Conscious, Fair Service
for Real-Time Applications on Multiprocessor SoC∗

Thidapat Chantem†, X. Sharon Hu†, Christian Poellabauer†, Jun Yi† and Liqiang Zhang‡

†Department of CSE
University of Notre Dame

Notre Dame, IN 46556
{tchantem, shu, cpoellab, jyi}@cse.nd.edu

‡Department of CIS
Indiana University South Bend

South Bend, IN 46634
liqzhang@iusb.edu

Abstract

We consider systems consisting of wireless nodes that ex-
ecute CPU intensive applications on multiprocessor system-
on-a-chip (MPSoC) and must transmit packets over the net-
work in a timely manner. Existing methods do not consider
packet deadlines in conjunction with energy and real-time
task performance, making it hard to predict system behav-
ior. We present an energy-aware adaptive CPU scheduling
algorithm to maximize the number of packet deadlines met
in a fair manner and discuss future work.

1 Introduction and Related Work

Wireless networks are now common in a variety of ap-
plications, e.g., [3, 5]. While many wireless sensor nodes
typically require minimum hardware to perform lightweight
tasks (e.g., periodically waking up to sense and transmit
data), powerful processing nodes can also be found in cer-
tain applications for executing computationally intensive
tasks and transmitting packets over the network. Example
applications are surveillance and mobile gaming systems.
In a surveillance system, a wireless node periodically cap-
tures a video, processes the frames and transmits them to
clients. As for the gaming system, the processor is kept
busy with a large number of tasks (e.g., rendering graphics)
while a large amount of data is sent to the user’s opponents.

To cater to the high computing demand imposed by
the applications mentioned above, one alternative is to use
high-end, power-hungry, processors. Since wireless nodes
are generally battery powered, to save energy and prolong
the lifetime of these nodes, multiprocessor system-on-chips
(MPSoCs) present a better alternative for wireless nodes
requiring higher computational power. More work can be
completed by running processor cores in parallel at lower

∗This work is supported in part by NSF under grant numbers CNS-
0834180 and CNS-0834230.

voltage and frequency, thus saving energy. The parallel ex-
ecution capabilities of such MPSoC-based wireless nodes,
however, introduces new challenges in terms of reducing
energy consumption while satisfying real-time constraints.

There is a large research body on energy minimization in
multiprocessors running real-time applications, e.g., [1, 2],
though the majority of the work solely focuses on optimiz-
ing real-time task performance without any consideration
for packet deadlines. Meeting packet deadlines is important
in ensuring performance requirements such as data fresh-
ness. At the same time, network-aware work usually fo-
cuses on trading network energy with packet latency us-
ing packet scheduling and ignores task deadlines [7, 8]. To
the best of our knowledge, the work by Yi et al. is the
only energy-aware solution that explicitly considers packet
deadlines on uniprocessor architectures executing real-time
tasks [9]. However, it is unclear how the proposed solution
may extend to multiprocessor architectures. Additionally,
in the approach of [9], it is difficult, if not impossible, to
predict which packets will miss their deadlines. This could
lead to unfairness in packet transmission. That is, some
tasks may consistently be able to successfully transmit their
packets while the packets of other tasks starve.

In this work, we design an adaptive CPU scheduling al-
gorithm that maximizes the number of packets that meet
their deadlines in a fair manner. Fairness is used to ensure
that each task has an adequate number of successfully trans-
mitted packets relative to their importance. The main idea
of our work is to prevent executions of jobs whose packets
will be dropped to save CPU energy while allowing spe-
cific packets to be sent. Using a network reservation-based
approach in [9], network energy is also managed.

2 Preliminaries

We consider a set of n independent periodic real-time
tasks. Each task τi is described by its worst-case execution

1

49

time Ci and period Ti. All tasks are synchronous. The j-
th instance (job) of task τi is denoted by τi,j . We assume a
partitioned scheduling approach in which tasks are assigned
to their respective cores using the algorithm in [2] and that
the tasks on each core are schedulable using the algorithm
in [6]. No job or task migration is allowed.

Two types of tasks are considered: packet-generating
and non packet-generating. Non packet-generating tasks are
hard real-time tasks. Without loss of generality, we assume
that every job of packet-generating tasks generates a packet
at the end of its execution. Packets have firm real-time
deadlines, i.e., they must be transmitted by their deadline
or they will be dropped. Packets from different instances of
the same task are equal in size while packets from differ-
ent tasks may vary in size. A packet Pj is described by its
deadline Xj and worst-case transmission time Zj .

The MPSoC consists of m homogeneous cores, each of
which can run at k discrete speed levels. Cores can indepen-
dently change speed. We assume that transition overheads
associated with switching from one speed to another have
been included in the task worst-case execution times.

The processor cores share a network card. Packets
are transmitted in an earliest-deadline first (EDF) man-
ner. Transmissions are preemptable at some minimum unit.
Since packets that cannot meet their deadlines are dropped,
the number of packets transmitted is used interchangeably
with the number of packets that meet their deadlines.

Each node uses TDMA-like periodic time slots to send
and receive packets. No network communication takes
place outside of these time slots. The time slots, described
by a period Tts and length Cts , may change over time to
reflect different network usage levels. We assume that in-
coming packets are buffered at the sender and arrive at the
beginning of each time slots during which the wireless node
avoids transmitting any packets.

We are interested in solving the following problem:
Given the real-time task set, MPSoC, network card and
transmission models described above, determine an exe-
cution pattern for packet-generating jobs such that all non
packet-generating jobs meet their deadlines, the number of
packets transmitted over the network is maximized in a fair
manner, and the energy consumption is minimized.

3 Motivations

We use a simple example to motivate our problem. As-
sume that we have a set of four tasks as shown in Table 1. In
addition, our MPSoC consists of four identical cores, m1,
m2, m3, and m4. Using the approximation algorithm in [2],
each core is assigned a task to execute.

For this example, we assume that jobs always require
their worst-case execution times, that cores can adjust their
speeds in a continuous manner, and that the network card is

Table 1. Example Task Set
Task C T Packet? X Z
τ1 1 2 Yes T + 1 0.5
τ2 1 3 Yes T + 2 1
τ3 2 6 Yes T + 2.3 1
τ4 3 12 Yes T + 2.3 1

allowed to transmit packets whenever it wishes. It must be
noted, however, that these assumptions are made for ease
of explanation and that we do not rely on any such assump-
tion to solve our general problem. Using LaEDF [6], each
job finishes its execution right before its deadline. The cor-
responding processor and network card states are shown in
Figures 1(a) and 1(b), respectively.

As shown in Figure 1(b), no packets generated by tasks
τ3 and τ4 were transmitted. This is unfair because all pack-
ets generated by tasks τ1 and τ2 were sent. What is worse,
the same pattern will persist to the future, which means that
packets generated by τ3 and τ4 will never be transmitted and
the energy used to execute instances of τ3 and τ4 is wasted.

Now, suppose that we had a mechanism to select jobs
to execute in a fair manner. The resultant MPSoC and net-
work card state might be as shown in Figures 2(a) and 2(b),
respectively. The total number of packets transmitted does
not change but some packets generated by τ3 and τ4 can
now be transmitted. In addition, the CPU does not waste
energy executing jobs whose packets are not transmitted.

4 Network-Aware Adaptive CPU Scheduling

We provide our general approach, discuss the fairness
metric, and give a detailed explanation of our algorithm.

4.1 Overview

The main component of our algorithm is the manager
task (MT), which runs on one of the cores, is a periodic
task, and competes for resource. Let us define an obser-
vation window (ObsWin) to be the least common multiple
of the task hyperperiod and Tts . In an ObsWin, the network
card monitors the packet transmission pattern and sends this
information to the MT, which will then use it to compute the
current system fairness level. The MT also compiles a list
of tasks whose packets are being transmitted more than it
should and send it to the cores. In the next ObsWin, the
scheduler on each core avoids executing jobs of these tasks
during high interference time intervals (defined below), thus
allowing packets from other tasks to be transmitted.

Since cores execute jobs using dynamic voltage scal-
ing (DVS) and some jobs are dropped, processor energy is
saved. At the same time, since these jobs are dropped in a
controlled manner, packets will be transmitted fairly. Note

2

50

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6

τ2,1 τ2,2 τ2,3 τ2,4

τ3,1 τ3,2

τ4,1

m1

m2

m3

m4

2 4 6 8 10 12 0

0

0

0

6

6

12

12

12

3 9

(a) Processor state.

2 4 6 8 10 12 0 3 9

1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4

NET

(b) Network state, each box indicates packet by τi,j is transmitted.

Figure 1. System state without network-
aware scheduling.

that we focus on CPU energy and not network energy, as
the network energy has already been managed during the
negotiation of the periodic time slots [9].

Our algorithm is adaptive in the sense that it may take a
number of ObsWins for the packet transmission pattern to
stabilize. However, the system can perform exactly as it has
in the previous ObsWin once this is the case until, say, a
new task joins the system or the period or length of the time
slot changes. In such cases, the MT is reactivated until the
system stabilizes yet again.

4.2 Fairness Metric

Although our algorithm is independent of the specific
fairness metric used, we use Jain’s fairness index [4] to mea-
sure system fairness level in this work. Jain’s fairness index
F can be defined as follows.

F =

(∑
τi∈G(wiλi)

)2

|G| ·
∑

τi∈G(wiλi)2
≤ 1 (1)

where wi is the weight of task τi, G is the set of packet-
generating tasks, and λi denotes the packet deadline meet
ratio of packet-generating task τi.

4.3 Algorithm Details

The relevant parts of our proposed algorithm are shown
in Algorithm 1, with checkpoints omitted for brevity.

To observe the original system behavior during the first
ObsWin (e.g., where packet deadline misses occur, if any),
all jobs are executed using LaEDF and the network card
transmits as many packets as possible while keeping track
of the deadline miss ratios λ, as well as HT, which is a list

τ1,1 τ1,2 τ1,4 τ1,5

τ2,1 τ2,3

τ3,1 τ3,2

τ4,1

m1

m2

m3

m4

2 4 6 8 10 12 0

0

0

0

6

6

12

12

12

3 9

(a) Processor state.

2 4 6 8 10 12 0 3 9

1,1 1,2 1,4 1,5 2,1 3,1 2,3 3,2

NET

4,1

(b) Network state.

Figure 2. System state with network-aware
scheduling.

of high interference time intervals [ts, te] where ts is the re-
lease time of a packet whose deadline is missed and te is its
deadline. If there is no packet deadline miss, our algorithm
is not activated and the system continues as before.

Using λ, the MT computes F as in (1). The objective of
the MT is to improve the system fairness level by identify-
ing tasks which have had an unfair access to the network.
That is, we wish to reduce the number of packets transmit-
ted by such tasks so that the number of packets transmit-
ted by other tasks (which have been disadvantaged) can be
increased. Specifically, we use two embedded loops that
iterate through packet-generating tasks, one following the
non-increasing order of meet ratios and the other in reverse.
The goal is to find pairs of tasks, one with a higher meet ra-
tio and another with a lower meet ratio, whose packets will
likely interfere with one another. The MT then determines
how the system fairness level will change should the num-
ber of packets of the task with a higher (lower) meet ratio
is decreased (increased) by one. If the system fairness level
will increase, the task with the higher meet ratio is added
to the set TL, which will be used by the scheduler on each
core to determine which jobs to drop.

As for the scheduler on each core, its only duty is to
determine whether to execute the next ready job. This is
accomplished by examining whether the associated task of
the current job appears in TL and determining whether the
job deadline falls within one of the high interference time
intervals. Here, the idea is to balance energy consumption
with useful work completed by the processor cores.

5 Summary and Future Work

We proposed an energy-aware adaptive CPU scheduling
algorithm to maximize the number of packets transmitted

3

51

Algorithm 1 Energy-Aware Adaptive CPU Scheduling
Upon end of each ObsWin

if at least one packet missed its deadline then
execute MT with λ and HT from network card

Upon each execution of MT
compute F // current fairness level of system
R ← packet-generating tasks sorted in a non-increasing
order of wλ
R′ ← inverse(R)
for each task τi ∈ R do

λi ← num packets transmittedi−1
num packets generatedi

for each task τj in R′ do
if τi.deadline and τj .deadline ∈ HT then

λj ←
num packets transmittedj+1

num packets generatedj

compute F ′ // using new values for λi and λj

if F ′ > F then
TL← TL ∪ τi

F ← F ′

send TL(m) and HT (m) to m, for all cores m
Upon each scheduling point on core m

j ← next ready job // using LaEDF
if j.deadline ∈ HT and j.getTask ∈ TL then

drop j

over the network in a fair manner for real-time applications
running on MPSoCs. Our algorithm is independent of the
fairness metric used and requires minimum interactions be-
tween the network card and the processor cores.

As this work is ongoing, there are still many improve-
ments to be made and several challenges to be solved. For
instance, the observation window is currently defined to be
the least common multiple of the task hyperperiod and Tts.
While this definition of ObsWin allows the MT to easily de-
termine which jobs should not execute and when, the actual
length of ObsWin in practice may be too large since it is a
function of the task hyperperiod. Using a large ObsWin has
several drawbacks. For instance, changes may take place
very slowly, prohibiting the system from responding to dy-
namic perturbations in a timely manner. Also, a long Ob-
sWin entails that the size of HT will be large, requiring
a large amount of memory space and causing long latency
when executing our algorithm.

In the current version of the algorithm, some jobs are
dropped even if their packets may in reality not interfere
with the other packets because of the high variation in job
execution times. In other words, the current algorithm may
too aggressively drop jobs. A heuristic is needed to deter-
mine whether such jobs should be executed based on their
expected execution times and network state. Also, job mi-
gration may help to further improve the system fairness
level, as well as energy saving, and is worth exploring.

An implicit philosophy behind the proposed algorithm
is the minimization of the interactions between the network
card and processor cores, as a constant update from the net-
work card regarding its status can incur unacceptable over-
heads. However, due to the lack of constant communica-
tions, the cores do not have full knowledge of the network
state, which could greatly help in improving performance.
At the same time, the use of the MT requires that both TL
and HT be shared, possibly via cache. This means that our
algorithm may require that the memory management unit
arbitrates the access of these shared information (and possi-
bly causing delays in some job executions when the MT is
executing). Determining the “right” amount of status update
from the network card and the best way to share information
among cores are subject to ongoing investigation.

Finally, once all the above challenges have been ad-
dressed, we plan on evaluating our work against the work
in [9] for uniprocessor architectures and against the state-
of-the-art energy-aware algorithm that does not consider
packet deadlines for MPSoC cases.

References

[1] H. Aydin and Q. Yang. Energy-aware partitioning for mul-
tiprocessor real-time systems. In Proc. of the Int. Symp. on
Parallel and Distributed Processing, page 113.2, Apr. 2003.

[2] J.-J. Chen, C.-Y. Yang, H.-I. Lu, and T.-W. Kuo. Approxima-
tion algorithms for multiprocessor energy-efficient schedul-
ing of periodic real-time tasks with uncertain task execution
time. In Proc. of the Real-Time and Embedded Technology
and Applications Symp., pages 13–23, Apr. 2008.

[3] T. H. et al. VigilNet: An integrated sensor network system
for energy-efficient surveillance. Trans. on Sensor Networks,
2(1):1–38, Feb. 2006.

[4] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of
fairness and discrimination for resource allocation in shared
computer systems. Technical report, DEC Research Report,
1984.

[5] A. Mainwaring, J. Polastre, R. S. D. Culler, and J. Anderson.
Wireless sensor networks for habitat monitoring. In Proc. of
the Int. Workshop on Wireless Sensor Networks and Applica-
tions, pages 88–97, Sept. 2002.

[6] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. Operating Sys-
tems Review, 35(5):89–102, Oct. 2001.

[7] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. Srivas-
tava. E2WFQ: An Energy Efficient Fair Scheduling Policy for
Wireless Systems. In Proc. of the Int. Symp. on Low Power
Electronics & Design, page 30.

[8] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal. Energy-
efficient packet transmission over a wireless link. Trans. on
Networking, 10(4):487–499, Aug. 2002.

[9] J. Yi, C. Poellabauer, X. Hu, J. Simmer, and L. Zhang.
Energy-conscious co-scheduling of tasks and packets in wire-
less real-time environments. In Proc. of the Real-Time and
Embedded Technology and Applications Symp., pages 265–
274, Apr. 2009.

4

52

Leakage-Aware Real-Time Scheduling For Maximal
Temperature Minimization

Gang Quan
Electrical and Computer Engineering Department

Florida International University
gang.quan@fiu.edu

Shangping Ren
Department of Computer Science

Illinois Institute of Technology
ren@iit.edu

Abstract—Thermal management problem has become a promi-
nent issue as power consumption continues to grow exponentially.
The leakage/temperature dependency becomes critical in power
and thermal aware design as the processor continues to evolve
into the the deep sub-micron domain. This paper seeks to explore
fundamental principles in thermal aware design when taking
the leakage/temperature dependency into considerations. We
show and formally prove that, under certain realistic conditions,
using the lowest constant processor speed that can guarantee
deadlines of all real-time tasks is an optimal method to minimize
the maximal temperature for a real-time system. We also use
empirical results to justify the validation of this conclusion. We
then discuss the possible future extension of this work.

I. INTRODUCTION

The power consumption of the processors has been grow-
ing exponentially with each technology generation, and is
expected to continuously grow rapidly in the future [1]. The
soaring power consumption of processors has posed challenges
not only on how to provide enough power source for a system,
and but also how to manage the heat generated by the system.
The escalating heat has directly led to high packaging and
cooling costs, and threaten to significantly degrade the per-
formance, life span, and reliability of computing systems, or
even cause the system to fail [2], [3]. Therefore, as processors
power consumption continues to rise, the thermal management
problem has become an ever increasingly critical issue in the
design of computing systems.

As semiconductor technology continues to scale down, the
leakage plays a more and more important role [4], [5]. This is
particularly true since the leakage power consumption is com-
parable or even dominates the dynamic power consumption
in the deep sub-micron IC circuits. High power consumption
causes high temperature, and high temperature increases leak-
age power and thus the overall power consumption. A thermal-
conscious or power-conscious technique becomes ineffective
if this temperature/leakage relation is not properly addressed
in the deep sub-micron domain.

While reducing power consumption in general helps to
lower the temperature, the temperature-constrained schedul-
ing problem is drastically different from the energy-aware
scheduling problem, as evidenced in recent studies [6], [7],
[8], [9]. Therefore, new guidelines and principles on thermal
aware computing need to be developed. Taking the leak-
age/temperature dependency into considerations makes the

thermal aware design problem even more complex.

Consider a real-time job with deadline of t = D and execu-
tion time of E. A well-known principle to reduce the energy,
as shown by schedule S1 in Figure 1, is to apply the lowest
constant speed (i.e. v0) within the entire interval so that the task
just meets its deadline. Note that, when the leakage is taken
into consideration [10], [11], S1 is not necessarily optimal in
terms of the overall energy reduction. In addition, previous
researches [7], [8], [12] have shown that an optimal solution
for energy minimization is not necessarily the optimal solution
for peak temperature minimization. It is very suspicious that
such a schedule has the lowest peak temperature. Alternative
schedules include the one (i.e S2) that first runs with a lower
speed (i.e v1 < v0) and then a lower speed (i.e v2 > v0), or
vice versa (S3). When considering the leakage/temperature
dependency, each schedule seems to have its own reasons
to decrease or increase the maximal temperature. Then, the
questions are: How should we execute the task judiciously
such that the maximal temperature within the interval can
be minimized? Are there any general guidelines that we can
follow or we will have to deal with different scenarios case
by case?

In this paper, we show that, under some realistic conditions,
using the constant speed is the best way to minimize the peak
temperature within an interval. We formulate this conclusion
as a theorem and formally prove it. We also use empirical
results to justify the conditions in the theorem. In the rest of
the paper, Section II introduces system models and motivates
our research. Section III presents our theorem and proof, as
well as the empirical results to justify our theorem. We draw
conclusions and point out our future work in Section IV.

Fig. 1. Three schedules for a job set with deadline D and total execution
time E.

53

II. SYSTEM MODEL

We consider a real-time application consisting of n jobs, i.e.
J = {J0,J1, · · · ,Jn−1}, and all jobs have a common deadline
D. Each job Ji has a worst case execution cycle of ei, and the
total workload of the job set is denoted as E. Since all jobs
have the same deadline, we can equivalently treat the model as
a single job with deadline D and work load E, and E = ∑

n−1
i=0 ei.

A. Thermal Model

The thermal model used in our paper is similar to that in
Shadorn et al. [13]. Specifically, assuming a fixed ambient
temperature (Tamb), let T (t) be the temperature at time t, and
we have

RthCth
dT (t)

dt
+T (t)−RthP(t) = Tamb, (1)

where P(t) denotes the power consumption (in Watt) at time
t, and Rth, Cth denote the thermal resistance (in J/oC) and
thermal capacitance (in Watt/oC), respectively. We can then
scale T such that Tamb is zero and get

dT (t)
dt

= aP(t)−bT (t), (2)

where a = 1/Cth and b = 1/RthCth. For the rest of the paper,
we assume that the initial temperature for the processor equals
to its ambient temperature.

B. Power Model

According to Liao et al. [4], the leakage power can be
estimated by

Pleak = Ngate · Ileak · v (3)

where Ngate is the total number of gates, Ileak is the leakage
current, v is the supply voltage, and

Ileak = Is · (A ·T 2 · e((α·v+β)/T) +B · e(γ·v+δ)) (4)

where Is is the leakage current based on a pre-determined
reference temperature and supply voltage, T is the system’s
operating temperature, and A, B, α, β, γ, and δ are technology
dependent constants. Some researches, such as that by Bao
et al. [14], employ equation (4) directly to capture the leak-
age/temperature dependency in scheduling analysis. However,
due to the non-linear and high-order magnitude terms in
equation (4), such a model or tool can be too complex and
cumbersome to be used for more rigorous real-time analysis
and scheduling technique development.

Liu et al. [12] showed that, for a given supply voltage, the
leakage changes with temperature super linearly. Based on
this observation, a number of researches (such as [15], [16])
adopt a simple temperature/leakage linear model that assumes
the leakage current changes linearly only with temperature.
However, as can be seen from equation (4), leakage varies
not only with temperature but also supply voltage as well. We
thus approximate the leakage power for a processor with the
following linear function

Pleak(t) = c0v(t)+ c1T (t)· (5)

where c0 and c1 are constants, and v(t) is the supply voltage
at time t. Constants c0 and c1 can be determined by curve
fitting based on equation (4). As can be seen from equation
(5), we model the leakage such that it changes with both the
temperature and supply voltages.

For dynamic power, we assume [17]

Pdyn(k) = c2 · v3(t) (6)

c2 is also a constant and can be determined through profiling.
Based on equation (5), (6), and (2), we have

dT (t)
dt

= A(v(t))−BT (t) (7)

where
A(v(t)) = a(c0v(t)+ c2v3(t)) (8)

and
B = (b−ac1). (9)

Furthermore, if the processor runs at a constant speed v(t) = v
during the interval [t0, te], let the starting temperature be T0, by
solving equation (2), the ending temperature can be formulated
as below:

Te = G(v)+(T0 −G(v))e−B(te−t0) (10)

where
G(v) =

A(v)
B

. (11)

0
10

20
30

40

2

2.5

3
35

40

45

50

55

60

x−−−execution timey−−−voltage speed

z−
−

−
fin

al
 te

m
pe

ra
tu

re

Fig. 2. Temperature varies with different supply voltages.

C. Motivating Example
We are not sure if there exist some general guidelines

or we have to develop appropriate scheduling techniques
case by case to minimize the peak temperature when the
leakage/temperature relationship is taken into considerations.
Therefore, we conducted some experiments to obtain some
intuitions. We generated a large number of different schedules
for a real-time job with deadline D = 50 and total workload
as E = 125. We simulated the maximal temperature for each
schedule and the results are shown in Figure 2.

From Figure 2, we can see that the peak temperatures
by different schedules exhibit a ”U” shape, and the peak
temperature reaches its minimum when the lowest constant
speed is applied. This seems to imply that using the lowest
constant speed can minimize the maximal temperature. In
what follows, we formulate this conclusion into a theorem
and formally prove its correctness.

54

III. MINIMIZE PEAK TEMPERATURE

The experiments conducted in previous section seem to
indicate that executing a real-time job with the lowest constant
speed minimizes the peak temperature. This observation is
valid under certain conditions. We formulate the conclusion
by Theorem 1.

Theorem 1: Given a real-time job set J , its deadline D and
total execution time E, assume that the processor speed is
continuously changeable. Then using the lowest constant speed
that meets the deadline, i.e., v0 = E/D, is the optimal schedul-
ing solution in terms of minimizing the maximal temperature,
if the following condition hold:

• B > 0 ;
• G(v) is a non-negative, monotonically increasing, and

convex function of v,
where B,G are defined in equation (9) and (11), respectively.
Proof Sketch: Due to page limit, we only prove the case
that, for the two schedules S1 and S2 shown in Figure 1, the
temperature by S1 at t = D is no greater than that by S2. For
simplicity, we set D = 1 and also assume that Tamb = 0.

Let T (S1) and T (S2) be the ending temperatures for S1 and
S2, respectively. Then from equation (10), we have

T (S1) = G(v0)(1− e−B),
T (S2) = G(v2)(1− e−B(1−x))+G(v1)(1− e−Bx)e−B(1−x).

To prove that T (S1) ≤ T (S2), we only need to show that

G(v0)(1− e−B) ≤ G(v2)(1− e−B(1−x))
+ G(v1)(1− e−Bx)e−B(1−x),

(12)

Or
G(v0) ≤ kG(v1)+(1− k)G(v2), (13)

where

k =
e−B(1−x)− e−B

1− e−B ,1− k =
1− e−B(1−x)

1− e−B . (14)

Since
v0 = v1x+ v2(1− x), (15)

and Gi is a convex function, we have

G(v0) ≤ xG(v1)+(1− x)G(v2). (16)

Therefore, to show that equation (13) holds, we only need to
show that

xG(v1)+(1− x)G(v2) ≤ kG(v1)+(1− k)G(v2), (17)

or
(G(v1)−G(v2))(x− k) ≤ 0. (18)

As Gi is monotonically increasing and v1 < v2, so we have
G(v1) ≤ G(v2), and thus we only need to prove that

x ≥ k = 1− 1− e−B(1−x)

1− e−B . (19)

Or, equivalently,

1− e−B(1−x)

1− e−B ≥ 1− x. (20)

Now consider function

F(z) =
1− e−Bz

1− e−B − z. (21)

with 0 ≤ z ≤ 1. We can readily show that function F(z) is
a concave function since F ′′(z) < 0. Note that the curve F(z)
passes two points, i.e. (0,0) and (1,0), as F(0) = 0 and F(1) =
0. Let H(z) be the line that crosses these two points. Since F(z)
is concave, we have F(z)≥H(z) = 0 for 0≤ z≤ 1. Therefore,

F(1− x) =
1− e−B(1−x)

1− e−B − (1− x) ≥ 0. (22)

As a result, we prove that equation (19) and thus equation (19)
holds. �

A. Justifications for Theorem 1

Theorem 1 holds only when several conditions are satisfied.
In this subsection, we justify these conditions.

Consider equation (5). Note that c0v(t) represents the leak-
age power at the ambient temperature, and c1T (t) represents
the increased leakage power consumption as temperature rises
above the ambient temperature. From equation (4), it is not
difficult to see that the leakage current increases as the
temperature increases. Therefore, constants c0 and c1 must be
non-negative and thus A(v(t)) > 0.

Moreover, based on (7), if B = b−ac1 < 0, we would have

dT (t)
dt

= A(v(t))−BT (t) > 0, (23)

and temperature will continue to increase indefinitely. This
occurs only when the processor heat generation surpasses its
heat removal capability, and thus the temperature will continue
to rise and eventually cause the processor to break down. This
scenario is called the “thermal run-away” [4]. Processor with
this characteristic cannot work stably. Therefore, to avoid this
scenario, B > 0 must hold. As a result, we can also conclude
that

G(v) =
A(v)

B
≥ 0. (24)

Theorem 1 also requires that G(v) is a convex function of
v. However, it is difficult to analytically prove that G(v) is
a convex function, since the temperature invariants c0 and
c1 depend not only on the supply voltages but also on the
technology parameters. Furthermore, c0 and c1 are obtained
through curve-fitting rather than a closed analytical formula.
In what follows, we try to make the justification empirically.

We built our processor model based on the work by Liao
et al. [4] using the 65nm technology. We used (4) to compute
the leakage currents for temperature from 40oC to 110oC
with step size of 10oC, and supply voltage from 0.65Volt to
1.05Volt with step size of 0.05V. These results were used to
determine the temperature invariants c0 and c1 in (5) through
curve-fitting. To obtain the leakage power consumption, the

55

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
6

8

10

12

14

16

18

20

22

voltage (V)

F
un

ct
io

n
F

(v
)

Function F(v)

Fig. 3. Function G(v) based on 65nm technology.

total number of gate, i.e., Ngate in (3), was set to be 106.
The dynamic power consumption (and thus constant c2) was
determined based on the experimental results reported in [4]
on benchmark gcc. For the thermal constants, we selected
Rth = 0.8K/W , Cth = 340J/K [2], and the ambient tem-
perature was set to 25oC. Figure 3 depicts the behavior of
function G(v) based on our experimental set up. We can
clearly see from Figure 3 that function G(v) is a non-negative,
monotonic increasing, and most importantly, convex function.
This justifies the conditions in Theorem 1.

IV. CONCLUSIONS AND FUTURE WORK

As semiconductor technology continues to scale down in
size, the positive feedback loop between the temperature and
leakage becomes a critical issue not only for the power/energy
minimization problem, but also for the temperature constrained
design problem. In this paper, we intend to explore some
fundamental principles that can be used when considering the
leakage/temperature dependency in thermal aware real-time
analysis. Our experimental results reveal that using the lowest
constant speed is the optimal method to reduce the maximal
temperature. We formulate this observation into a theorem
and prove it formally. We also use empiric results to justify
the conditions we present in the theorem. The significance
of our work is that it clearly demonstrates the feasibility to
incorporate the leakage/temperature into a more rigorous and
analytical system level analysis. It also reveals a fundamental
principle which can be applied in analyzing and developing
leakage-aware temperature-constrained real-time scheduling
techniques.

Our work can be extended in a number of ways. First, in this
paper, we develop our theorem based on a processor model
with continuously supply voltage. We want to extend this
principle for processor models with discrete level of supply
voltages. Second, this paper uses a very simple real-time
model. How to extend the real-time model to a more practical
and complex ones, such as those with priority assignments
and preemption effects, will be an interesting problem. Note
that, while our theorem seems to be very close to the well-

known principles in power-aware scheduling, it does not mean
that the existing methods for reducing energy consumption can
be readily migrated for maximal temperature constraint. How
to develop more effective techniques based on the principle
we formulate in this paper will be an important future work
for us. Third, our theorem is based on 65nm technology.
As technology continues to scale down, it is not clear if all
conditions supporting our theorem will still hold. Our next
task is to study these cases.

ACKNOWLEDGMENT

This work is supported in part by NSF under Grants CNS-
0545913, CNS-0917021, and CNS-0746643.

REFERENCES

[1] ITRS, International Technology Roadmap for Semiconductors (2005
Edition). Austin, TX.: International SEMATECH, http://public.itrs.net/.

[2] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” ICSA, pp. 2–13,
2003.

[3] L.-T. Yeh and R. C. Chu, Thermal Management of Microelectronic
Equipment: Heat Transfer Theory, Analysis Methods, and Design Prac-
tices. New York, NY: ASME Press, 2002.

[4] W. Liao, L. He, and K. Lepak, “Temperature and supply voltage aware
performance and power modeling at microarchitecture level,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 7, pp. 1042 – 1053, 2005.

[5] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“Hotleakage: a temperature-aware model of subthreshold and gate
leakage for architects,” University of Virginia Dept. of Computer Science
Technical Report, 2003.

[6] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware computer systems: opportunities and
challenges,” IEEE Micro, vol. 23, no. 6, pp. 52–61, 2003.

[7] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling to manage energy
and temperature,” Journal of the ACM, vol. 54, no. 1, pp. 1–39, 2007.

[8] G. Quan, Y. Zhang, W. Wiles, and P. Pei, “Guaranteed scheduling
for repetitive hard real-time tasks under the maximal temperature con-
straint,” ISSS+CODES, 2008.

[9] S. Zhang and K. S. Chatha, “Approximation algorithm for the
temperature-aware scheduling problem,” in ICCAD, 2007, pp. 281–288.

[10] R. Jejurikar, C. Pereira, and R. Gupta, “Dynamic slack reclamation with
procrastination scheduling in real-time embedded systems,” DAC, 2005.

[11] G. Quan and L. Niu, “Fixed priority scheduling for reducing overall
energy on variable voltage processors,” RTSS’04, Dec 2004.

[12] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, “Thermal vs
energy optimization for dvfs-enabled processors in embedded systems,”
in ISQED, 2007, pp. 204–209.

[13] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic tech-
niques and thermal-rc modeling for accurate and localized dynamic ther-
mal management,” in HPCA ’02: Proceedings of the 8th International
Symposium on High-Performance Computer Architecture, 2002, p. 17.

[14] M. Bao, A. Andrei, P. Eles, and Z. Peng, “On-line thermal
aware dynamic voltage scaling for energy optimization with fre-
quency/temperature dependency consideration,” in Design Automation
Conference, 2009, pp. 490–495.

[15] J.-J. Chen, S. Wang, and L. Thiele, “Proactive speed scheduling for
real-time tasks under thermal constraints,” RTAS, vol. 0, pp. 141–150,
2009.

[16] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-aware global
real-time scheduling on multicore systems,” RTAS, vol. 0, pp. 131–140,
2009.

[17] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits:
A Design Perspective. Prentice Hall, 2003.

56

Leakage-Aware Scheduling for Real-Time Embedded Systems with
QoS Guarantee

Linwei Niu
Department of Math and Computer Science

Claflin University
Orangeburg, SC 29115
linwei.niu@claflin.edu

Abstract—In this paper, we propose a dynamic approach to
reduce both the dynamic and leakage energy consumption for
real-time systems while ensuring the Quality of Service (QoS)
guarantee. The QoS requirements are deterministically quantified
with the window-constraints, which require that at least m out
of each non-overlapped window of k consecutive jobs of a task
meet their deadlines. Necessary and sufficient conditions for
checking the feasibility of task sets with arbitrary service times
and periods are developed to ensure that the window-constraints
can be guaranteed in the worst case. And efficient scheduling
techniques are proposed to merge the idle intervals. Through
extensive simulations, our experiment results demonstrate that
the proposed techniques significantly outperformed previous
research in both overall and idle energy reduction.

I. INTRODUCTION
Power aware computing has come to be recognized as a

critical enabling technology in the design of pervasive real-
time embedded systems. Many dynamic voltage scaling (DVS)
based real-time scheduling techniques have been proposed
to reduce energy. However, the energy saving achievable
via voltage scaling is becoming severely limited with the
dramatic increase of the leakage power consumption. To obtain
the maximal reduction in the overall energy consumption,
some researchers have also proposed more advanced DVS
scheduling techniques, e.g. [1], [2], to reduce dynamic power
and leakage power simultaneously. Most of them have targeted
the hard real-time systems.

In recent years, there has been increasing interest that
incorporates DVS scheduling techniques to deal with the
power/energy conservation with regard to Quality of Service
(QoS) guarantee. Two well known deterministic QoS guarantee
models are the (m,k)-model [3] and the window-constrained
model [4]. The (m,k)-model, proposed by Hamdaoui et al. [3],
requires that m jobs out of any sliding window of k consecutive
jobs of the task meet their deadlines, whereas the window-
constrained model requires that m jobs out of each fixed
and nonoverlapped window of k consecutive jobs meet their
deadlines. The (m,k)-model adopts very strong constraints
which may over-specify the QoS requirements for some appli-
cations. For example, some packet streams over the network
can be logically divided into segments, and in each segment
a minimum number of jobs must be completed in time. In
this case, the (m,k)-model imposes a minimum requirement
of job completions on each and every overlapped window of
k jobs, regardless whether these jobs in different windows
are logically related or not, which can be over stronger than

necessary. The window-constrained model, on the other hand,
is more appropriate for such kind of applications. In [5], Mok
et al. proved that the general window-constraint scheduling
problem for arbitrary service time and request period is NP-
hard in the strong sense. So far, deterministic assurance with
this model can only be guaranteed for very limited range
of systems, such as those with all tasks having the same
request periods and unit size execution times [5]. Note that
the scheduling problem with (m,k)−guarantee is also NP-hard
in the strong sense [6]. To guarantee the (m,k)-constraints,
Ramanathan et al. [7] proposed to partition the jobs into
mandatory and optional jobs. The mandatory jobs are jobs
that must meet their deadlines in order to satisfy the (m,k)-
constraints, while the optional jobs can be executed to further
improve the QoS or simply be dropped. Inspired by that, we
will also adopt the same strategy, i.e., to partition the jobs
into mandatory and optional jobs, in dealing with the problem
of scheduling with window-constraints guarantee for task sets
with arbitrary execution times and periods.

In this paper, we study the problem of reducing both the dy-
namic and leakage energy consumption for real-time systems
with window-constraints guarantee. We propose an online
algorithm to partition the jobs into mandatory/optional jobs
dynamically according to the runtime environment such that
the window-constraints can be guaranteed and no redundant
jobs need to be executed. Moreover, scheduling techniques
combining DVS and processor shut-down strategy are pro-
posed to minimize the overall energy consumption.

The rest of the paper is organized as follows. Section II
introduces the system models and some preliminaries. Sec-
tion III introduces our pattern variation strategy and algorithm
to reduce energy. The effectiveness of our approach is demon-
strated using simulation results in section IV. In section V, we
offer the conclusions.

II. PRELIMINARIES
A. System model

The real-time system considered contains n independent
periodic tasks, T = {τ0,τ1, · · · ,τn−1}, scheduled according to
the earliest deadline first (EDF) policy. Each task contains
an infinite sequence of periodically arriving instances called
jobs. Task τi is characterized using five parameters, i.e., (Ti,
Di, Ci, mi, ki). Ti, Di(Di ≤ Ti), and Ci represent the period, the
deadline and the worst case execution time for τi, respectively.
The window-constraint requirement for τi is represented by a

57

1 0 0

Window 1

00 11 1 0 000 11

Window 2

...

Fig. 1. The job patterns satisfy the (m,k)−constrait (3,7) but fails to satisfy
the window-constraint (3/5) in Window 2.
pair of integers, i.e., (mi/ki) (0 < mi ≤ ki), which require that,
within each non-overlapped window of ki jobs of τi, at least mi
jobs meet their deadlines. The jth job of task τi is represented
with Ji j and its arrival time, actual execution time and absolute
deadline is represented by ri j, Ci j and di j.

The system contains a DVS processor which can be in one
of the three states: the active, idle and sleeping states. When
the processor is idle, the major portion of the power consump-
tion comes from the leakage which increases rapidly with
the dramatic increasing of the leakage power consumption.
Shutting-down strategy, i.e., put the processor into its sleeping
state, can greatly reduce the energy consumption when the
processor is idle. However, it has to pay extra energy and
timing overhead to shut down and later wake up the processor.
Assuming that the power consumptions of a processor in its
idle state and sleeping state are Pidle and Psleep, respectively,
the energy overhead of shutdown/wakeup is Eo, and the timing
overhead is to. Then, the processor can be shut down with
positive energy gains only when the length of the idle interval
is larger than Tth = max(Eo

Pidle−Psleep
, to). We call Tth as the shut

down threshold interval.
When the processor is active, the speed that can mini-

mize the overall active energy for tasks is called the critical
speed [1] and denoted as scrit . Suppose the lowest possible
speed for job Jk to finish by its deadline is sk, then the optimal
speed to execute job Jk should be s∗k = max{scrit ,sk}.

B. Motivations
In [4], West et al. tried to establish the corresponding

relationship between the window-constrained model and the
(m,k)−model. They found that window-constrained model
can be transferred into (m,k)−model, which can be sum-
marized as follows: given a window-constraint (mi/ki), its
corresponding (m,k)−contraint is (mi,2ki−mi). However, the
other transferring direction is not true, i.e., given job patterns
that can satisfy the (m,k)−contraint (mi,2ki −mi), they do
not necessarily satisfy the window-constraint (mi/ki), which
is shown by the example in Figure 1. In Figure 1, the job
patterns (in which “1” represents the mandatory job and “0”
represents the optional job) can satisfy the (m,k)−constraint
of (3,7) in sliding windows, however, they cannot satisfy
the window-constraint (3/5) because in the second separate
window, i.e., “Window 2”, there are only 2 mandatory jobs
out of 5 jobs. To find the exact equivalence relationship be-
tween window-constraint and (m,k)−contraint for the general
case is a challenging problem and needs further theoretical
exploration. However, one closely tight sufficient condition to
transfer (m,k)−contraint into window-constraint can be stated
as follows:

Lemma 1: If the mandatory jobs for task τi can just satisfy
the (m,k) constraint (mi,ki), then it can also satisfy the
window-constraint of (mi/ki) and there is no redundant job.

Lemma 1 shows that the (m,k)−constraint (mi,ki) can
directly be transferred into the window-constraint of (mi/ki).
Since the (m,k)−constraint is stronger than the window-
constraint, then one intuitive thought is that if a task set is

4
T1

(a)
0

T2

128 16

8 16

1 10 0

1 0

pattern

4
T1

(b)
0

T2

128 16

8 16

1 10 0

1 0

4
T1

(c)
0

T2

128 16

8 16

1 10 0

1 0 deadline miss

1 10 0 0 01 1

0 10 1

48403224

32 48 48

48403224

48403224

32

32 48

1 0 0 1

0 1

Window 1 Window 2

Window 3���������� ����idle
interval

Fig. 2. (a) The task set (τ1 = (4,4,3,2,4); τ2 = (8,8,5,1,2)) schedule with
E-pattern satisfies the (m,k)−constraints; (b) After pattern variation, the same
task set schedule does not satisfy the (m,k)−constraints but still satisfies the
window constraints; (c) The task set failed to be schedulable under arbitrary
window constrained pattern;
schedulable under the (m,k)−pattern, it is also schedulable
under any window-constraint pattern of the same window size.
However, this does not necessarily hold. As shown in Figure 2,
the task set {τ1, τ2} is schedulable under (m,k)−constraints
with the patterns defined in Figure 2(a), but is NOT schedu-
lable with the patterns defined in Figure 2(c), although the
patterns in Figure 2(c) can satisfy the window-constraints.

As shown, to reduce the overall energy consumption for
real time systems with window-constraints guarantee, one has
to deal with two highly co-related problems: (1) How to
determine if a job should be mandatory or optional, and (2)
How to schedule these jobs most efficiently. Two special stat-
ically defined mandatory/optional job partitioning strategies
(patterns) were reported in literature. The first one is called
the deeply-red pattern or R-pattern, which defines the pattern
πi j for a job Ji j, i.e., the jth job of task τi, by

πi j =
{

1 if 0≤ j mod ki < mi
0 otherwise j = 0,1,2, · · · (1)

The second one is called the evenly distributed pattern or E-
pattern [7], which defines the pattern πi j for a job Ji j, by

πi j =
{

1 if j = bd j×mi
ki
e× ki

mi
c

0 otherwise j = 0,1,2, · · · (2)

The mandatory/optional job partitions according to equation
(2) has the interesting property that it spreads out the manda-
tory jobs evenly in each task along the time. Moreover, it has
the following interesting properties:

Lemma 2: Let the mandatory jobs for task τi be determined
by equation (2). Then for any subsequence of task τi, the num-
ber of consecutive mandatory jobs is no more than d mi

ki−mi
e.

Although E-pattern has very good schedulability [8], it also
has the problem that it will generate a lot of scattered idle
intervals during which the leakage or the processor shut-
down energy overhead will be considerable. For example, in
Figure 2(a), the task schedule according to E-pattern generates
two idle intervals within the first two windows. However, after
careful pattern adjustment as shown in Figure 2(b), the idle
intervals are merged into one and all mandatory jobs can
still meet their deadlines. One interesting thing is that in the
schedule in Figure 2(b) the (m,k)−constraint of task τ1 is vio-
lated in Window 3 due to the strictness of (m,k) requirement,
but the window-constraints are still satisfied in two separate
windows Window 1 and Window 2, and thus all the time. Note
that the pattern variation cannot be done arbitrarily as it will
possibly make the resulting mandatory job set unschedulable.
For example, the varied patterns in Figure 2(c) still satisfy the

58

Ni 1'
tt0

... 0 1 1 11..1 1...0 0 1 0..1 1...

Window j Window j+1

...0
s

......

Fig. 3. The E+ pattern for task τi starting at t0

window-constraints, but the deadline missing on mandatory
jobs of task τ2 can not be avoided.

III. DYNAMIC PATTERN VARIATION
As shown by the motivation example in Figure 2(b), dy-

namically varying the pattern can merge the idle intervals
effectively. However, variation cannot be done arbitrarily.
Otherwise, even the window-constraints can be satisfied, the
schedulability of the mandatory job set in the resulting patterns
cannot be guaranteed, as shown in Figure 2(c). Then the
problem is: how to vary the pattern dynamically to merge
the idle intervals without causing any deadline missing on
mandatory jobs while still ensuring the window-constraints?

A. Pattern rotation − a guaranteed approach
To solve the problem above, some static analysis needs

to be performed first. Due to the excellent scheduability
of E-pattern, our pattern variation strategy is based on E-
pattern. Moreover, close-form feasibility analysis based on
E-pattern is provided in [8], which is very useful for us to
set up the guarantee criteria. To explore how to vary the
mandatory/optional job patterns based on E-pattern, we first
introduce the following definitions:

Definition 1: The Dynamic Sub-Window of τi (denoted as
DW (k′i)) is defined as the sub-window of the current window from
τi (denoted as DW (ki)) such that it contains only the rest k′i patterns
in DW (ki) starting from current time t to the end of DW (ki).

Definition 2: The Critical Mandatory(or Optional) Point of
τi at time t (denoted as CMTi(t,DW (k′i)) for mandatory or
COTi(t,DW (k′i)) for optional) is defined as the time point t ′ such that
at t ′ the number of consecutive mandatory (or optional) jobs arriving
at or after t within the Dynamic Sub-Window DW (k′i) is maximized.

With the above definitions, our pattern variation strategies
can be summarized in the following Pattern Rotation Poli-
cies. Specifically, given the current time t,

• (Policy I) If the processor starts to idle at time t, for each task
τi, rotate the patterns in its Dynamic Sub-Window DW (k′i) such
that |t−COTi(t,DW (k′i))| is minimized. If the idle interval after
rotation reaches the end of the current window DW (ki), also
rotate the patterns in next window −−→DW (ki) following DW (ki)
such that |t−COTi(t,

−−→DW (ki))| is minimized;
• (Policy II) If the idle period expired at time t, for each task

τi, rotate the patterns in its Dynamic Sub-Window DW (k′i) such
that |t−CMTi(t,DW (k′i))| is minimized. If the busy period after
rotation reaches the end of the current window DW (ki), also
rotate the patterns in next window −−→DW (ki) following DW (ki)
such that |t−CMTi(t,

−−→DW (ki))| is minimized;
• (Policy III) If an optional job Ji j ∈ τi meets its deadline at

time t, rotate the patterns of τi in its Dynamic Sub-Window
DW (k′i) (in this case Ji j should also be included) such that
|ri j−CMTi(t,DW (k′i))|= 0, while for each other task τ j(6= τi),
rotate the patterns in its Dynamic Sub-Window DW (k′j) such
that |t−CMTj(t,DW (k′j))| is minimized.

The purposes of our pattern rotation policies are to make op-
tional jobs and mandatory jobs from different tasks overlapped
to the maximal extent such that the processor can be kept idle
or busy for the longest time. Based on the pattern rotation
policies, our online algorithm is presented in Algorithm 1.

B. E+-pattern
It doesn’t escape from our attention that the worst case of

patten rotation is that: as shown in Figure 3, at time t = t0,

the maximal number of consecutive mandatory jobs within
the Dynamic Sub-Window were move to the right end of the
current window and might “interfere” with the mandatory jobs
in the following window from other tasks. From Lemma 2,
we know that there are at most Ni = d mi

ki−mi
e consecutive

mandatory jobs within the Dynamic Sub-Window of each task.
The worst situation happens when, at time t = t0, the Ni
consecutive mandatory jobs from each task τi were rotated to
the right end of its current window simultaneously. That will
form a very interesting pattern phenomenon that, as shown
in Figure 3, starting from t0, there are Ni consecutive “1”s
followed by the E-pattern for each task. To be convenient, we
call it E+-pattern. Without loss of generality, the E+-pattern
can also be defined statically as followed: let the pattern πi j
for job Ji j, i.e., the jth job of task τi, be defined by

πi j =

{
1 if j < Ni or (j−Ni) = bd (j−Ni)×mi

ki
e× ki

mi
c

0 otherwise j = 0,1,2, · · · (3)

For a mandatory job set determined with E+-pattern, to check
its schedulability, we have the following theorem:

Algorithm 1 The online algorithm. (Algorithm LCDW)
1: Upon job completion:
2: if the processor is idle then
3: Rotate patterns for each task according to Policy I;
4: tcur = the current time;
5: LST = the earliest arrival time for the upcoming mandatory

jobs;
6: if LST − tcur > Tth then
7: Shut down the processor and set up the wake up timer to

be (LST − tcur);
8: else if the optional job queue Qp is not empty then
9: Select and run Ji ∈ Qp with scrit non-preemptively;

10: if Ji is completed by its deadline then
11: Rotate patterns for each task according to Policy III;
12: end if
13: end if
14: end if
15:
16: Upon expiration of timer:
17: Rotate patterns for each task according to Policy II;

Theorem 1: Given system T = {τ0,τ1, ...,τn−1}, let E+ be
the mandatory job set according to their E+-patterns, L be
either the ending point of the first busy period or the least
common multiple of Ti, whichever is smaller. Let Ni = d mi

ki−mi
e

and Wi(0, t) represent the total mandatory work demand from
task τi that arrive at or after time 0 and with deadlines less
than or equal to t, i.e.

Wi(0, t) =

(1+b t−Di
Ti
c)Ci, if t < NiTi

(Ni + dmi
ki

(1+ b t−NiTi−Di
Ti

c)e)Ci, Othewise
(4)

Then all mandatory jobs in E+ can meet their deadlines iff

∑
i

Wi(0, t)≤ t (5)

for all t ≤ L.

59

(a) (b)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.0 -
0.1

0.1 -
0.2

0.2 -
0.3

0.3 -
0.4

0.4 -
0.5

0.5 -
0.6

0.6 -
0.7

0.7 -
0.8

0.8 -
0.9

0.9 -
1.0

N
o

rm
a

li
ze

d
 T

o
ta

l
E

n
e

rg
y

DVS CSDVS HYB_E{R}
DVSLK LCDW

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 -
0.1

0.1 -
0.2

0.2 -
0.3

0.3 -
0.4

0.4 -
0.5

0.5 -
0.6

0.6 -
0.7

0.7 -
0.8

0.8 -
0.9

0.9 -
1.0

N
o

rm
a
li
ze

d
 I
d

le
 E

n
e
rg

y

CSDVS DVSLK LCDW

Fig. 4. (a) The total energy comparison; (b) The idle energy comparison.

From theorem 1, to check the feasibility of the E+ manda-
tory job set, we only need to check condition (5) on all
deadlines of the mandatory jobs within the first busy period.
And it guarantees that the window-constraints could be satis-
fied dynamically with our pattern rotation policies. Moreover,
during the execution of the mandatory jobs, more advanced
techniques can be adopted to reduce the energy further (will
be discussed in a full version of this paper).

IV. EXPERIMENTAL RESULTS
For fair comparison, we only compare the energy perfor-

mance of our approach with the approaches that can guarantee
the window-constraints for arbitrary execution times and
periods. For the first approach, the task sets are statically
partitioned with E-pattern, and the mandatory jobs are exe-
cuted with the highest processor speed. We refer this approach
as NoDV S and use its results as the reference results. For
the second approach DV S, the speeds of the tasks are scaled
down as low as possible. For the third approach, the speeds of
the tasks are scaled down to s∗k = max{scrit ,sk}. We call this
approach CSDV S. The fourth approach HY BER is the hybrid
approach in [8] but with processor speeds scaled down to no
less than the critical speed scrit . For the fifth approach DV SLK,
the mandatory job set and the processor speeds are determined
in the same way as CSDV S. But when the processor is idle,
the upcoming mandatory jobs are delayed with the approach in
[2] (We didn’t compare with CS−DV S−P in [1] because its
procrastination algorithm based on utilization is not applicable
when window-constraints are imposed). The sixth approach,
namely LCDW , is our approach introduced in Section III. The
processor model used in our experiments is the same as that
in [1]. The periodic task sets tested were generated with the
periods and the worst case execution times randomly chosen in
the range of [10ms,50ms] and [1ms,10ms], respectively. The
deadlines of the tasks were set to be less than or equal to
their periods. The mi and ki for the window-constraints were
also randomly generated such that ki is uniformly distributed
between 2 to 10, and mi < ki. The energy consumption for each
approach was normalized to that by NoDV S, and the results
are shown in Figure 4(a) and (b).

From Figure 4(a), voltage scaling without considering leak-
age will cause dramatic increase in the total energy consump-
tion. For example, when the utilization is between [0.0, 0.1],
the energy consumption by DV S is more than 60% of that
by NoDV S. On the contrary, voltage scaling with leakage in
mind can reduce the total energy consumption significantly.
Procrastinating the mandatory jobs without pattern adjustment
can help reduce the total energy further. For example, com-
pared with CSDV S, DV SLK can reduce the total energy by up
to 12%. However, with our pattern rotation and delay strategy,

the energy reduction can be achieved more significantly. For
example, the energy reduction by LCDW over CSDV S can
be up to 28% and that by LCDW over DV SLK can be up
to 20%. Also note that although HY BER can reduce the
dynamic energy efficiently as shown in [8], its performance
degrade severely when both dynamic and leakage energy are
considered. For example, when the utilization is between [0.2,
0.6], the total energy consumption by HY BER is even higher
than that by CSDV S. This is mainly because HY BER optionally
executed quite a few redundant jobs whose energy cost cannot
be compensated by the savings in dynamic energy alone.
Obviously pattern variation without leakage in mind becomes
insufficient in terms of overall energy reduction.

With the scaling of IC technology and the dramatic in-
creasing of the leakage, the energy consumption during the
processor idle times will soon become a significant part of the
total energy consumption. Figure 4(b) shows the average idle
energy consumptions by the different approaches. Note that,
our approach, i.e., LCDW can always lead to much better idle
energy savings than the previous approaches. As seen in Fig-
ure 4(b), LCDW can save around 80% idle energy compared
with CSDV S and more than 50% idle energy compared with
DV SLK. This is because, by rotating the pattern adaptively
and delaying the mandatory jobs, LCDW can merge the idle
intervals more aggressively than the other approaches. As a
result, the processor can stay in the sleeping mode for much
longer time.

V. CONCLUSIONS
In this paper, we propose a dynamic approach to minimize

the overall energy consumption for real-time systems while
guaranteeing the given QoS requirement in terms of window-
constraints. Different from the previous work which can only
guarantee the window-constraints for tasks with the same pe-
riods and unit size execution times, our approach can support
task sets with arbitrary service times and periods. Moreover,
we present efficient scheduling techniques to reduce the overall
energy by varying the job patterns and procrastinating the
execution of mandatory jobs and thus to merge the idle
intervals. The effectiveness of our approach was demonstrated
by the experimental results.

REFERENCES

[1] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” DAC, 2004.

[2] L. Niu and G. Quan, “Reducing both dynamic and leakage energy
consumption for hard real-time systems,” CASES’04, Sep 2004.

[3] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m,k)-firm deadlines,” IEEE Transactions on
Computes, vol. 44, pp. 1443–1451, Dec 1995.

[4] R. West, Y. Zhang, K. Schwan, and C. Poellabauer, “Dynamic window-
constrained scheduling of real-time streams in media servers,” IEEE
Trans. on Computers, vol. 53, no. 6, pp. 744–759, June 2004.

[5] A.K.Mok and W.Wang, “Window-constraint real-time periodic task
schedulling,” RTSS, 2001.

[6] G. Quan and X. Hu, “Enhanced fixed-priority scheduling with (m,k)-firm
guarantee,” in RTSS, 2000, pp. 79–88.

[7] P. Ramanathan, “Overload management in real-time control applications
using (m,k)-firm guarantee,” IEEE Trans. on Paral. and Dist. Sys., vol. 10,
no. 6, pp. 549–559, Jun 1999.

[8] L. Niu and G. Quan, “Energy minimization for real-time systems
with (m,k)-guarantee,” IEEE Trans. on VLSI, Special Section on Hard-
ware/Software Codesign and System Synthesis, pp. 717–729, July 2006.

60

An Adaptive Approach to Reduce Control Delay Variations

Shengyan Hong and Xiaobo Sharon Hu
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556
{shong3,shu}@nd.edu

M.D. Lemmon
Department of Electrical Engineering

University of Notre Dame
Notre Dame, IN 46556

lemmon@nd.edu

Abstract—For many control systems, control performance is
strongly dependent on delay variations of the control tasks. Such
variations can come from a number of sources including task
preemptions, variations in task workloads and perturbations
in the physical environment. Existing work has considered
improving control task delay variations due to task preemption
only. This paper presents a general adaptive framework that
incorporates a powerful heuristic aiming to further reduce
delay variations. Preliminary results indicate that the heuristic
significantly improves existing approaches.

I. INTRODUCTION

For many cyber-physical systems, intelligent coordination
between control design and its corresponding computer imple-
mentation can lead to improved control performance and/or
reduced resource demands [1], [11], [14]. A prime exam-
ple that benefits from such coordination is regulating delay
variations (jitter) in control tasks. For many control systems,
control performance strongly depends on delay variations
in control tasks. Such variations can come from numerous
sources including task preemptions, variations in task work-
loads and perturbations in the physical environment, and can
cause degraded control system performance, such as sluggish
response and erroneous behavior.

There are a number of published papers related to reducing
delay variations. In [2], [5], the authors proposed a task
decomposition based approach where each task is partitioned
into three subtasks, i.e., Initial, Mandatory, and Final Subtasks
(referred as the IMF model), and the delay variation of the
final subtask (corresponding to control update) is minimized.
A somewhat indirect way of reducing delay variations is
to reduce task deadlines, which has been investigated by
many researchers, e.g., [3], [4], [7], [12]. A common theme
of all these methods is to focus on reducing deadlines of
either tasks or subtasks. Because deadlines are only allowed
to be reduced, these methods cannot effectively explore the
design space where deadlines of certain tasks/subtasks may
be increased (within some upper bounds) to reduce the overall
delay variations.

The task-decomposition based methods [2], [5] suffer less,
but still obvious performance degradation (compared with
direct deadline reduction methods) when deadlines are only
allowed to be decreased greedily. The decomposition task
model is acceptable for control tasks where only a small
amount of data needs to be passed to control update subtasks,
otherwise context switching cost could be prohibitive. In

addition, these methods require repeated worst-case response
time computation under EDF, which can be time consuming
and unsuitable for on-line use. On-line adjustment is needed to
reduce delay variations when parameters such as task periods
change in response to environment perturbations.

In this paper, we propose an on-line adaptive approach
which directly minimizes delay variations for both decompos-
able and non-decomposable control tasks simultaneously. The
approach leverages the IMF based task model for both types of
tasks and formulates the delay variation minimization problem
as an optimization problem. An efficient algorithm is designed
based on the generalized elastic scheduling heuristic [10].
The efficiency of the algorithm readily supports an adaptive
framework which can adjust deadlines of control tasks on-line
in response to dynamic changes in workloads.

II. PRELIMINARIES

In this section, we first introduce necessary notation and
scheduling properties and then present some motivation for
the problem to be solved.

A. System Model

We consider a computer system which needs to handle a set
Γ of N real-time control tasks, {τ1, τ2, · · · , τN}, each with
the following attributes: (Ci, Di, Pi), where Ci is the worst
case execution time (WCET) of τi, Di is τi’s deadline, Pi

is its period, and Ci ≤ Di ≤ Pi. Without loss of generality,
we adopt the IMF task modeling approach introduced in [5].
Specifically, we let τi be composed of three subtasks, the
initial part τii for sampling input data, the mandatory part
τim for executing the control algorithm, and the final part τif

to deliver the control action. Thus, a task set ΓIMF consists of
3N subtasks (τ1i, τ1m, τ1f , ..., τNi, τNm, τNf), each with the
following parameters

τii = {Cii, Dii, Pi, Oii}
τim = {Cim, Dim, Pi, Oim}
τif = {Cif , Dif , Pi, Oif}

where Oi? is the offset of the corresponding subtask. Note that
in order for the IMF model to faithfully represent the original
task set, each τii must be executed before τim, which must
in turn be executed before τif . For a non-decomposable task,
say τi, we simply have Cii = Cim = Dii = Dim = 0, and
Cif = Ci. Some tasks may also be partially decomposable,
i.e., we may have non-zero Cii and Dii but Cim = Dim = 0.

61

TABLE I
A MOTIVATIONAL EXAMPLE CONTAINING FOUR TASKS WITH THE FIRST TWO TASKS BEING INDECOMPOSABLE.

Original New Delay Variations Delay Variations
Computation Delay Delay Variations (%) before Reassignment (%) after Reassignment (%)

Task name Exec. time Deadline Period Variations (%) DRB / TBB / ADVR DRB / TBB / ADVR DRB / TBB / ADVR
Speed 5000 27000 27000 18.52 38.98 / 18.52 / 3.7 38.98 / 18.52 / 3.7 41.48 / 18.52 / 3.7

Strength 8000 30000 320000 1.56 2.89 / 1.56 / 3.37 28.91 / 15.63 / 33.68 31.25 / 15.63 / 22.81
Position 10000 45000 50000 32 31.75 / 26 / 0.27 31.75 / 26 / 0.27 34 / 26 / 2.34
Sense 13000 60000 70000 40 32.86 / 20 / 8.57 32.86 / 20 / 8.57 32.86 / 20 / 8.57

To achieve desirable control performance, control actions
should be delivered at regular time intervals periodically.
However, preemptions, variations in task workloads, and per-
turbations in the physical environment make each instance of
the control actions experience different delays. Similar to [5],
we define the delay variation as the difference between the
worst and best case response times of the same final subtask
relative to its period, i.e.,

DVi =
WCRTif −BCRTif

Pi
, (1)

where WCRTif , BCRTif are the worst case response time
and best case response time, respectively. The definition of
delay variation gives information on the delay variance that a
task will suffer in the control action delivery within a period.
Our problem then is to minimize the delay variations of all
the final subtasks.

We use Earliest Deadline First (EDF) scheduling algorithm.
A necessary and sufficient condition for a synchronous task
set to be schedulable under EDF is given below.

Theorem 1. A set of synchronous periodic tasks with relative
deadlines less than or equal to periods can be scheduled by
EDF if and only if ∀L ∈ K · Pi + Di ≤ min(Lip,H,Bp) the
following constraint is satisfied,

L ≥
N∑

i=1

(bL−Di

Pi
c+ 1) · Ci (2)

where Lip =
PN

i=1(Pi−Di)Ui

1−U , Ui = Ci

Pi
, U =

∑N
i=1

Ci

Pi
,

K ∈ N (the set of natural numbers including 0), H is the
hyperperiod, and Bp is the busy period [6], [9].

For an asynchronous task set, the condition in Theorem 1
can be used as a sufficient condition [6].

B. Motivation

We use a simple robotic example, similar to the one in [5],
to illustrate the deficiencies of existing approaches for delay
variation reduction. The example contains four control tasks,
i.e., the speed, strength, position and sense tasks. The tasks and
the original delay variations under EDF are shown in columns
1 to 5 of Table I. We consider two representative methods for
delay variation reduction: a deadline reduction based method
from [4], denoted as DRB, and a task decomposition based
method from [5], denoted as TBB.

Suppose that decomposing the speed and strength tasks
would cause non-negligible context switch overhead and we

opt to only partition the position and sense tasks according to
the IMF model. Assume that the IMF decomposition is made
considering that the initial and final subtasks consume 10% of
the execution time of corresponding control task. By applying
the DRB and TBB methods, new delay variation values are
obtained and are shown as the first two values in column 6
of Table I. It is easy to observe that the TBB method is more
effective in reducing delay variations than the DRB method
(which does not even provide much improvement over the
original delay variations). However, with the TBB method,
two tasks still suffer about 20% or more delay variation.

Now, assume that at some time interval, the execution rate
of the strength task increases by 10 times. If the same deadline
assignments are used for the tasks/subtasks, the delay variation
of the strength task increases to 28.91% and 15.63% for DRB
and TBB, respectively (see the first two values in column 7 of
Table I). Suppose we apply the DRB and TBB methods online
in response to the period change, the new delay variation
values are shown in column 8 of Table I. It turns out that
the TBB does not improve the delay variations while DRB
actually gives worse delay variations.

With our proposed approach (ADVR), better delay varia-
tions can be obtained for all the cases considered above. In
particular, for each respective scenario, we have applied our
approach and the delay variation values are shown as the third
number in columns 6-8 of Table I. Though for some tasks,
delay variations see a small increase, most of the tasks which
suffer from large delay variations due to the other methods are
now having much smaller delay variations.

III. OUR APPROACH

From the previous section, one can see that delay variations
could be improved significantly if more appropriate deadline
assignments can be identified. In this section, we describe
our proposed adaptive delay variation reduction (ADVR) ap-
proach. ADVR is built on three basic elements. First, the
general IMF model as given in the last section is used for both
decomposable and non-decomposable tasks. Second, the delay
variation reduction problem is formulated as an optimization
problem. Third, an efficient heuristic is developed to solve the
optimization problem. The heuristic is then incorporated into
a simple adaptive framework.

We adopt the generalized IMF task model described in
Section II to represent the task set under consideration.
The general IMF model allows both decomposable and non-
decomposable tasks to be treated equivalently. Given an IMF

62

task set, there may exist numerous sets of feasible dead-
lines (Dii, Dim, Dif) which allow the original task set to
be schedulable. However, different sets of deadlines could
lead to different delay variations of the original tasks. To
find the particular subtask deadline assignment that results
in the minimum delay variation, we formulate the deadline
selection problem as a constrained optimization problem.
Though existing work such as [10], [13] has considered the
deadline selection problem as an optimization problem, there
are two major differences between our present formulation
and theirs. First, our formulation directly minimizes delay
variations. Second and more importantly, our formulation
leverages special properties of the IMF task model and thus
allows much more effective delay variation reduction.

The delay variation minimization problem is to minimize
the total delay variation bounds of (1) subject to the schedu-
lability constraints as given in (2) while considering the IMF
task model. Specifically, we have

min:
N∑

i=1

wi(Dif − Cif)2 (3)

s.t.
N∑

i=1

[(bL−Dii

Pi
c+ 1) · Cii + (bL−Dim

Pi
c+ 1) · Cim

+(bL−Dif

Pi
c+1) ·Cif] ≤ L,∀L ∈ K · Pi + Di ≤ Lip, (4)

Dii = Dim, (5)

Cif ≤ Dif ≤ min (Dim, Di −Dim), (6)

Cim ≤ Dim ≤ Di − Cif , (7)

where Lip and K is defined in Theorem 1. If task τi is not
decomposable, (6) and (7) are replaced by

Cif ≤ Dif ≤ Di, (8)

Dim = 0. (9)

To see why the above formulation can lead to valid deadline
assignments that minimize delay variations, first note that
deadline Dif is the upper bound of the WCRT of the final
subtask of τi, and Cif is the lower bound of the BCRT of the
final subtask of τi. By setting wi = 1

P 2
i

, the objective function
in (3) is the upper bound on the delay variation squares as
defined in (1). (By using wi instead of 1

P 2
i

directly, we can
also capture the relative importance of control tasks in the
objective function.)

To guarantee schedulability under the IMF model, we have
introduced a set of constraints in our formulation. Constraint
(4) helps ensure the schedulability of the task set according to
Theorem 1. However, this constraint alone is not sufficient
since there exist dependencies when executing the initial,
mandatory and final subtasks of any decomposable task. Note
that ensuring the subtask dependencies during task execution
is straightforward. The difficulty lies in capturing this in the
schedulability test without being overly pessimistic.

� � � � �� �
� �	
 � � � � � � �

� �
Fig. 1. Feasible deadline region for mandatory/final tasks.

To handle the unique challenges due to the IMF task model,
we have added several more constraints in addition to (4). To
capture the fact that τii is always executed before τim, we can
set Dii ≤ Dim (and hence τii has a higher priority than τim

as long as Oii = Oim = 0). For simplicity, we let Dii = Dim,
assuming that a tiebreak goes to τii, which is constraint (5).

Since τif must start after τim is completed, we let Oif =
Dim. Furthermore, to guarantee that task τi finishes by its
deadline Di, we must have Oif + Dif ≤ Di. We thus have
Dif ≤ Di −Dim, which leads to one part of (6). The other
part of (6), i.e., Dif ≤ Dim reflects the desire that smaller
deadlines should be assigned to the final subtask compared
to that of the mandatory subtask so as to help the delay
variation reduction of the final subtask (as this would be the
delay variation of interests). (7) constrains the space of Dim

and is obtained simply by combining Dim ≤ Di − Dif and
Dif ≥ Cif .

Based on constraints (5)-(7), Figure 1 depicts the feasible
region of (Dim, Dif), which is bounded by M ABO. To make
our search more efficient, we would like to reduce our search
region as much as possible without sacrificing the optimization
solution quality. Theorem 2 provides the basis for reducing the
search region.

Theorem 2. Given a set ΓIMF of N tasks. If the necessary and
sufficient condition for schedulability in Theorem 1 is satisfied
for a synchronous task set ΓIMF with (Dii = Dim, Dim, Dif)
for i = 1, ..., N , then the same condition is satisfied for
a synchronous task set Γ

′
IMF with (D

′
ii, D

′
im, Dif), where

D
′
ii = D

′
im ≥ Dim for i = 1, ..., N .

Applying Theorem 2 to the search region depicted in
Figure 1, one can readily see that point M

′
on the segment

MI leads to a schedulable solution if point M leads to a
schedulable solution. Since Dim corresponding to M

′
is larger

than that of M , M
′

is a more desirable solution than M as
it leads to a smaller Dif . Based on this observation, we can
reduce the search region by 1/2 by replacing constraints (6)-(7)
in the optimization problem by the following:

Cif ≤ Dif ≤ Di −Dim, (10)

Di

2
≤ Dim ≤ Di − Cif , (11)

63

� � � � � � � � � � 	
 � � � � � � � � � �� � � � � � � � � � � ! " # $! %& ' (") % *
+ , - . . / , 0 1 1 2 1 3 4 56 7 8 9 9 : 7 ; 8 9 < = > ?@ A B C D E F G H I J K L M N K O GE P J K O Q J L RS T U V W X Y Z [\] ^_ `

Fig. 2. Adaptive framework for delay variation reduction.

If task τi is not decomposable, constraint (11) is replaced by

Dim = 0. (12)

Solving the optimization problem specified in (3) together
with (4), (5), (10), (11) and (12) is not trivial as it involves
dealing with a discontinuous function (the floor function).
Heuristic techniques such as the one presented in [10] can be
used to solve the problem, but it will take many iterations to
reach convergence. Besides, the simplified sufficient condition
adopted by [10] either fails to find a solution or finds a very
pessimistic solution for task sets with high utilization. We
are developing a better heuristic to avoid such problems. Our
heuristic first replaces constraint (4) by two related constraints

N∑

i=1

[(bL−Dii

Pi
c+ 1) · Cii + (bL−Dim

Pi
c+ 1) · Cim

+(bL−Dif

Pi
c+1)·Cif] ≤ L,∀L ∈ K · Pi + Di < Lip, (13)

N∑

i=1

[(
L−Dii

Pi
+ 1) · Cii + (

L−Dim

Pi
+ 1) · Cim

+(
L−Dif

Pi
+ 1) · Cif] ≤ L,∀L = Lip, (14)

where Lip and K are as defined in Theorem 1. It is easy to
see that (4) is equivalent to (13) and (14). We are still working
on devising our whole improved heuristic by making use of
some observations specific to the particular problem at hand
and also by designing a more effective search method. We
refer to this heuristic as ADVR.

As we have seen from the motivational example, dynamic
workload changes could cause larger delay variations if the
original task/subtask deadlines were used. It is desirable to
deploy an on-line adaptive framework to adjust task/subtask
deadlines when workloads change significantly. The key to
such an adaptive framework is an efficient method of solving
the optimization problem posed earlier. Based on prelimi-
nary results, our heuristic, ADVR, seems to satisfy such a
requirement. Hence, we propose an adaptive framework built
on ADVR. Our proposed framework is similar to the one
in [8] and is shown in Figure 2. In this framework, an on-line
monitoring mechanism in Kernel measures the mean execution
time ĉi and the maximum execution time Ĉi, and sends these
measured data to Execution Time Estimator. Execution Time

Estimator computes the current execution time estimate Qi and
forwards it to Trigger. Meanwhile, Plant also reports its error,
i.e. the difference between the actual and ideal performances
of Plant, and task period Pi to Trigger. When the error and
the changes of Qi and Pi reach some thresholds, Trigger will
signal ADVR algorithm to recompute the deadlines and send
the results to Kernel. With these new results, Kernel adjusts
Plant so as to reduce delay variations.

IV. SUMMARY AND FUTURE WORK

We have presented a new approach to reduce delay varia-
tions of control tasks. The approach formulates the delay vari-
ation reduction problem as an optimization problem that can
effectively handles both decomposable and non-decomposable
tasks. Based on several key observations, we are devising
an efficient heuristic to solve the optimization problem. The
efficiency of the heuristic will lead to an adaptive framework
that can dynamically readjust task/subtask deadlines to keep
delay variations small in the presence of environment pertur-
bations. As future work, we will implement and evaluate our
approach in a real-time operating system to control an actual
application. We will measure the effect of our algorithm on the
control performance of the application under various physical
perturbations. We will also test and improve the convergence
speed of our algorithm.

V. ACKNOWLEDGEMENT

This work is supported in part by NSF under grant numbers
CNS07-20457 and CNS09-31195.

REFERENCES

[1] P. Albertos, A. Crespo, I. Ripoll, M. Valles, and P. Balbastre, “Rt control
scheduling to reduce control performance degrading,” in ICDC ’00.

[2] P. Balbastre, I. Ripoll, and A. Crespo, “Control tasks delay reduction
under static and dynamic scheduling policies,” in RTCSA ’00.

[3] ——, “Optimal deadline assignment for periodic real-time tasks in
dynamic priority systems,” in ECRTS ’06.

[4] ——, “Minimum deadline calculation for periodic real-time tasks in
dynamic priority systems,” IEEE Trans. Comput., vol. 57, no. 1, pp.
96–109, 2008.

[5] P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo, “A task model to reduce
control delays,” Real-Time Syst., vol. 27, no. 3, 2004.

[6] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real-Time Syst., vol. 2, no. 4, 1990.

[7] E. Bini and G. Buttazzo, “The space of edf deadlines: the exact region
and a convex approximation,” Real-Time Syst., vol. 41, no. 1, pp. 27–51,
2009.

[8] G. Buttazzo and L. Abeni, “Adaptive workload management through
elastic scheduling,” Real-Time Syst., vol. 23, no. 1/2, pp. 7–24, 2002.

[9] G. C. Buttazzo, “Hard real-time computing systems: Predictable schedul-
ing algorithms and applications.” Springer, 2005.

[10] T. T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic
scheduling for real-time tasks,” IEEE Trans. Comput., vol. 58, no. 4,
pp. 480–495, 2009.

[11] A. Crespo, I. Ripoll, and P. Albertos, “Reducing delays in rt control:
The control action interval, decision and control,” in IFAC ’99.

[12] H. Hoang, G. Buttazzo, M. Jonsson, and S. Karlsson, “Computing the
minimum edf feasible deadline in periodic systems,” in RTCSA ’06.

[13] T. Kim, H. Shin, and N. Chang, “Deadline assignment to reduce output
jitter of real-time tasks,” in IFAC ’00.

[14] M. Lluesma, A. Cervin, P. Balbastre, I. Ripoll, and A. Crespo, “Jitter
evaluation of real-time control systems,” in RTCSA ’06.

64

Towards Timing Decomposition for Scalable Robot Control: Collision Detection
Analysis

Hoon Sung Chwa, Jinkyu Lee and Insik Shin
Dept. of Computer Science

KAIST, South Korea
chwahs@cps.kaist.ac.kr, jinkyu@cps.kaist.ac.kr, insik.shin@cs.kaist.ac.kr

Abstract—Scalable control over a large number of robots raises
many challenges. Several programming languages have been
proposed to support scalable robot programming paradigms,
where users can program the behavior of entire robots as a whole,
rather than the behavior of individual robots. Unfortunately,
such paradigms have little support on timing properties. For
example, users may want to specify real-time behavior of a group
of robots (i.e., moving all robots to the same destination in 10
seconds), hoping that such a system-level timing constraint can
be decomposed into the timing behavior of individual robots
(i.e., move a robot to the destination in 5 seconds and move
another robot to the same destination in 10 seconds, in order
to avoid a collision between these two robots). Our primary
goal is to develop a timing decomposition framework that can
decompose the system-level path & velocity planning on a
group of real-time robots into local path & velocity planning of
individual robots, preserving the real-time requirements imposed
to the system. Achieving such a goal involves many problems to
address. Typically, collision is one of the major obstacles to the
development of such a timing decomposition. This paper presents
our work in progress. We first present techniques to analyze
collision detection in an efficient manner. The proposed analysis
technique employs the notion of warning region, and this notion
helps to reduce search space from a 3-D coordinate system to
a 2-D coordinate system. Building upon this analysis, we then
consider velocity planning with power optimization. Specifically,
we want to determine the moving speed of individual robots such
that they can reach a destination within a global deadline while
minimizing the total power consumption.

I. I NTRODUCTION

There has been a growing attention to scalable control over
a very large number of robots, such as swarm robot [1] and
modular robotics [2]. Several studies (e.g., [3], [4]) have been
introduced for supporting scalable robot programming. For
instance, the Meld language [3] enables users to program
many robots as if the users control a single robot. However,
these studies did not yet pay much attention to accommodating
timing properties in a scalable manner. It lacks a system-
atic methodology that allows users to specify a system-level
(global) timing property of entire robots without having to
concern how to transform the system-level timing properties
into the local timing properties of all individual robots.

We aim at the development of scalable control methodology
that takes into account timing constraints. As an example,
let us consider an emergency evacuation problem as follows.
Suppose there are a large number of robots in a room, where

there is a single exit, and an emergency (i.e., fire) takes place
in the room. A user may want all the robots to evacuate out
of the room to be safe. The user can give to entire robots
a global operation such as “all robots go through the exit in
30 seconds.” Such a global operation needs to be decomposed
into local operations that individual robots can perform. Then,
the global operation needs to be transformed into the problem
of determining the moving speed of individual robots such that
all robots can move out of the room through the exit within
the deadline of 30 seconds without any collision. Towards this,
there are many problems to address. We need to address path
planning to find a path towards a destination. We also need
to resolve velocity planning to reach a destination within a
deadline with no collision. And this entails collision detection
analysis to see whether a collision will happen with a given
configuration of path and velocity.

Our primary goal is to address the above problems so as
to develop scalable control methods for real-time robots. In
this paper, we just present the current work in progress; We
introduce efficient techniques to analyze collision detection
as a basis for scalable control techniques. Collision detection
involves a large search space, which includes two-dimensional
physical space and one-dimensional time. Our collision detec-
tion technique consists of two steps: one step for physical
space and the other for time. Such decoupling inherently
allows efficient way of detecting collisions, mostly reducing a
3-D search space to 2-D search space. In addition to efficiency,
such decoupling also makes it easier to extend our techniques
for more sophisticated configurations. Building upon such
collision detection analysis techniques, we can then consider
many velocity planning issues with a variety of optimization
criteria, such minimization of the longest traveling time or
minimization of total power consumption subject to deadlines.
In this paper, we focus on velocity planning with power
optimization. We are currently working on the measurement
of power consumption of various DC motors to derive a trade-
off between motor speed vs. power consumption. We are
also working on the development of efficient way of finding
optimal solutions to the power minimization problem.

The rest of this paper is organized as follows. Section II
describes our system model. In Section III, we show how to
analyze collision detection. In Section IV, we present velocity
planning with power optimization based on collision detection

65

(SPi,x, SPi,y)

(DPi,x, DPi,y)

SPj

DPj

Rj

Ri

Starting Position

Destination Position

ri

Radius (m) Si

Speed(m/s)

Robot Ri Warning Region
with robot Rj

Wi,j

Ii,j

Oi : Offset

Di : Deadline

Intersection between robot
Ri and robot Rj

Robot Ri

SPi

DPi

Figure1. Notations

analysis. Finally, we conclude our paper with future work in
Section V.

II. SYSTEM MODEL

In this paper, we mainly consider collision detection and
velocity planning for robots. Here, we present the assumptions
and notations used throughout the paper (notations are also
illustrated in Figure 1):

1) Each robot has starting (SPi) and destination (DPi)
positions.

2) Each robot has a straight path and a constant fixed speed
(Si).

3) Each robot has an offset (Oi) which is the time to start.
4) The shape of each robot is circle with a different radius

(ri).
5) Each robot does not collide with the other robots when

they are at starting positions.

We define thepath function Pi of robot Ri to represent
the mapping from robot’s path to the global two-dimensional
(2D) coordinate system, and it is described as

Pi : li ∈ [0, Li] 7−→ Pi(li) = z ∈ Z (1)

whereLi is the total distance (Euclidean distance betweenSPi

andDPi) of robot Ri andz ∈ Z is a point in 2D-workspace.
When robotRi goes a distance ofli from a starting position,
the robot is located at

z : (SPi,x + li cos θ, SPi,y + li sin θ)

wherez is the point on 2D-workspace, andθ is the angle from
x-axis to the path.

The velocity profile function indicates the relationship
between robot traveling time and distance, and it is described
as

Vi : t ∈ [0, Ti] 7−→ Vi(t) = li ∈ [0, Li] (2)

with Vi(0) = 0 andVi(Ti) = Li. The total traveling timeof
robot Ri refers toTi = Li

Si
+ Oi. During t amount of time,

Rj

Ri

rj
ri

Wi,j

Wj,i

W S i , j
W F i , j

Figure2. Warning region

robot Ri travels

li =
{

Si · (t−Oi) if t−Oi > 0
0 otherwise.

The intersection between pathPi andPj is defined as

Ii,j = li ∈ [0, Li] s.t. Pi(li) = Pj(lj), lj ∈ [0, Lj]. (3)

Note thatIi,j refers to robotRi’s distance that intersects with
pathPj .

III. C OLLISION DETECTION

In this section, we study how we resolve the collision
detection problem. There are three factors that determine
collisions among robots; radius, angle between two paths, and
speed of robot. we divide the problem into two steps according
to the factors. The first step (called warning region analysis) is
connected with space, while the second step (called velocity
analysis) is related with time. The first step computes a region
where it is possible for two robots to collide, and it can be
determined by two factors, which are radius and angle between
two paths. The second step extends the first step by adding the
speed factor. This step checks whether there is a collision or
not by considering when robots enter and exit warning regions.
Designing it as a two-step approach inherently allows us to
reduce complexity and to enhance extensibility.

A. Step 1: Warning Region Analysis

For robotsRi and Rj , we define awarning region Wi,j ,
which is a set of all points on pathPi where it is possible to
collide with robotRj , described below:

Wi,j = {li| p Ii,j − li p ≤ ri + rj

cos(90− γ)
}

M= [WSi,j ,WFi,j] (4)

whereri and rj are radius of each robot, andγ (use vector
inner product) is the angle between two paths as shown in
Figure 2. We refer toWSi,j and WFi,j as theenteringand
exiting distance from a starting position of robotRi.

66

The length of warning region is

|Wi,j | = |Wj,i| = 2
(

ri + rj

cos(90− γ)

)
. (5)

B. Step 2: Velocity Analysis

Now, we add speed factor to the warning region (derived
from Step 1). We define acollision time interval Ci,j(Vi),
which is a time interval when robotRi and robotRj collide
with each other, described below:

Ci,j(Vi) = V −1
i (Wi,j)

= [V −1
i (WSi,j), V −1

i (WFi,j)] (6)

where V −1
i is the inverse function of robotRi’s velocity

profile and returns the time interval during whichRi passes
the warning regionWi,j . Note that thecollision time interval
of robots (denoted asCi,j(Vi) andCj,i(Vj)) can be different
according to their speed. The robotRi’s total traveling time
in the warning regionWi,j is

|Ci,j(Vi)| = |Wi,j |
Si

(7)

where |Wi,j | is the length of warning region, andSi is the
speed of robotRi.

Let CSi,j and CFi,j denote theenteringand exiting time
instants at which robotRi enters and exits warning region
Wi,j , and they are defined as

CSi,j = V −1
i (WSi,j) , CFi,j = V −1

i (WFi,j) (8)

whereV −1
i (WSi,j) andV −1

i (WFi,j) are described in Eq. (6).
The collision time interval (denoted as[CSi,j , CFi,j]) is
described as:

CSi,j = V −1
i (Ii,j)− |Ci,j(Vi)|

2
,

CFi,j = V −1
i (Ii,j) +

|Ci,j(Vi)|
2

(9)

where Ii,j is the intersection between pathPi and Pj , and
|Ci,j(Vi)| is the length of collision time interval.

With this collision time interval, we check whether the
collision between robotRi and robotRj occur or not. As
described in Figure 3, if two collision time intervals of each
robot are overlapped (non-overlapped), two robots collide (do
not collide) with each other.

In the non-overlapped case described in Figure 3(b), we
find the following relation:

CSm,n > CFn,m or CSn,m > CFm,n (10)

⇐⇒ No collision between robotRm andRn.

The following theorem offers conditions for collision de-
tection.

R o b o t R iR o b o t R j T i m eC i , j (V i)C j , i (V j)C S i , j C F i , jC S j , i C F j , i T iT jO j
(a) An overlapped caseR o b o t R mR o b o t R n C i , j (V m) C i , j (V n)C S m , n C F m , n C S n , m C F n , m T i m eT m T nO m O n

(b) A non-overlapped case

Figure 3. Velocity analysis

Theorem1: Given the starting and destination positions,
a speed, an offset, and a radius of each robot, there is no
collision between robots if

CSi,j > CFj,i or CSj,i > CFi,j , for 1 ≤ i < j ≤ N,

whereN is the number of robots.
Proof: Eq. (10) can be easily extended to the general

case of any arbitrary number of robots. The theorem then
immediately follows.

By defining warning region (Wi,j) and velocity analysis
(Ci,j(Vi)), we can check the collision between two robots
just comparing collision time interval ([CSi,j , CFi,j]) of them.
When checking collision, we do not have to examine all robots
for every time interval. It is sufficient to check the collision
time interval of two robots.

C. Discussion

In this subsection, we first discuss how efficient our pro-
posed collision detection analysis is. Through the two-step
analysis, we can reduce search space from a 3-D coordinate
system to a 2-D coordinate system. As shown in Figure 2, each
robot has 3-D coordinate consisting of its position (x, y) and
time t. Once we transform the original search space to what is
shown as in Figure 3, we only need to control its time and one-
dimensional position according to velocity (a 2-D coordinate
system). In addition to reducing the dimension of coordinates,
our analysis reduces search space even further. For the domain
of time, a naive approach would seek for collision every
time t. However, due to the velocity analysis, it is enough
to check collisions only when robots enter and exit collision
time intervals. Furthermore, when checking collisions, we do
not have to consider all the other robots. Due to the warning
region analysis, it is enough to consider only the robots
that are involved in the same warning region. This way, our
proposed analysis technique performs collision detection in

67

Figure4. Power consumption according to velocity

a very efficient way, and it is suitable for scalable collision
detection analysis.

Another direction of discussion is about how our assump-
tions can be relaxed. For clarity of presentation and space
limit of this paper, we assume a straight path and a constant
speed in Section II. When we relax these assumptions by
considering more sophisticated paths or a variety of speeds,
such relaxation would naturally require some extensions to
either of the warning region analysis step or the velocity
analysis step one by one, but not to both steps together. That
is, when we make changes to the assumptions on path, the
warning region analysis should be modified to accommodate
such changes, but we can keep the same velocity analysis
techniques. Similarly, variation of speed only affects the ve-
locity analysis step. Therefore, we can relax our assumptions
without having to change all the analysis steps, but some of
the steps only.

IV. V ELOCITY PLANNING WITH POWER OPTIMIZATION

With our collision detection algorithm, we can address
many kinds of optimization problems by controlling the speed
and offset of robots. One of the typical optimization problems
is minimizing total power consumption. We considerpower
optimization problem: when there are multiple robots that
have an initial configuration, such as starting and destination
positions, and a deadline, and a power vs. speed trade-off,
find each robot’s speed and offset that minimize total power
consumption.

We set up DC motors’ power model and analyze the trade-
off between power and speed. According to Figure 4 (we
obtain this figure from [5]), we denote the trade-off between
power and speed asρ(ν). We formulate power optimization
problem as

minimize
N∑

n=1

ρ(νn)× (Tn −On) (11)

subject to :

CSn1,n2 > CFn2,n1 or CSn2,n1 > CFn1,n2 (12)

for 1 ≤ n1 < n2 ≤ N,

0 ≤ Tn ≤ Dn (13)

where νn is robot Rn’s speed,Tn is total traveling time,
Eq. (13) is for collision detection, andTn is less than equal
to deadline (denoted asDn).

V. CONCLUSION AND FUTURE WORK

This paper presents collision detection analysis techniques.
The proposed techniques allow to check collisions in an
efficient manner. It employs two steps to decouple space and
time dimensions, and such decoupling allows a considerable
search space reduction in many aspects, including one from
3-D coordinates into 2-D coordinates. The proposed collision
detection techniques serve as a basis for many other robot
problems, such as velocity planning and path planning.

We are currently measuring a trade-off between speed and
power consumption for DC motors and plan to derive an
appropriate formula (ρ(νn)) on it. Given suchρ(νn), our
future work also includes developing efficient power opti-
mization algorithms to the problem given in Section IV. If
the formulation turns out to be a non-convex optimization
problem, we consider developing heuristics to find sub-optimal
solutions. We are also working on implementing a timing
decomposition framework with many robots.

ACKNOWLEDGEMENT

This research was supported in part by IT R&D program
of MKE/KEIT of Korea [2009-KI002090, Development of
Technology Base for Trustworthy Computing], National Re-
search Foundation of Korea (2009-0086964), and KAIST ICC,
KIDCS, KMCC, and OLEV grants.

REFERENCES

[1] G. C. Pettinaro, I. W. Kwee, L. M. Gambardella, F. Mondada,
D. Floreno, S. Nolfi, J. louis Deneubourg, and M. Dorigo,
“Swarm robotics: A different approach to service robotics,” in
Workshop on Self-Reconfigurable Robots/Systems and Applica-
tions at IROS ’02, 2002.

[2] M. P. Ashley-Rollman, M. D. Rosa, S. S. Srinivasa, P. Pillai,
S. C. Goldstein, and J. D. Campbell, “Declarative program-
ming for modular robots,” inWorkshop on Self-Reconfigurable
Robots/Systems and Applications at IROS ’07, 2007.

[3] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry,
and P. Pillai, “Meld: A declarative approach to programming
ensembles,” inProceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2007, pp. 2794–
2800.

[4] M. D. Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and
P. Pillai, “Programming modular robots with locally distributed
predicates,” inProceedings of the 2008 IEEE International
Conference on Robotics and Automation, 2008, pp. 3156–3162.

[5] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “Energy-efficient
motion planning for mobile robots,” inProceedings of the 2004
IEEE International Conference on Robotics and Automation,
2004, pp. 4344–4349.

68

Implementing Transactions in a Distributed
Real-Time System without Global Time

A. Burns and Y. Chen
Department of Computer Science

University of York, UK
email: burns@cs.york.ac.uk

Abstract—A simple algorithm is presented for implementing
and analysing real-time transactions executing on a distributed
platform. The algorithm does not require global time, but does
not suffer from excessive jitter.

I. INTRODUCTION

In distributed real-time systems it is necessary to implement
application code as transactions that incorporate processing
elements on one or more processors and communications
across one or more networks [3]. For distributed systems
built upon a time-triggered architecture [2] the implementation
and analysis of transactions is straightforward. With event-
triggered architectures that do not require or support a global
time base the implementation of transactions is not as simple
if output jitter needs to be controlled. In this short paper we
provide an implementation scheme and associated analysis for
event-triggered systems. Note even when the basic architecture
is event-triggered there will still be the need to support
periodic tasks and therefore periodic transactions. We therefore
assume the existence of local clocks on each node. Although
there is no global time service, any two clocks will be assumed
to have bounded drift.

To constraint the flow of work through the system some
form of flow control is needed. But again this does not
necessarily require global time. Also output jitter, at the end of
the transaction, need to be bounded. Issues of composability
require bounded behaviour at all nodes of the systems and
it can be argues that end-to-end latency can be trade again
composability [4] – this is not however discussed in this paper.

II. STANDARD ANALYSIS WITH GLOBAL TIME

Consider, as a means of illustrating the approach, a simple
periodic transaction that has two processing parts τ1 and τ2

executing on different processors, and a communication link
l. Task τ1 inputs data from the environment, does some initial
processing and then passes its ‘result’ to the link. Task τ2

takes this results, undertakes further processing and produces
an output for the environment. The transaction is simply: τ1

l→
τ2. Task τ1 is a pure periodic task that has a defined period T
and has a simple structure such as the following:

Start_Time := clock
write Start_Time to link
next_release := Start_Time
loop
input from environment
undertake processing

write result to link l
next_release := next_release + T
delay_until next_release

end loop

Using standard response time analysis it is possible to
calculate R1 the worst-case response time of this task. It
will also be possible to estimate the worst-case transmission
time for the link, Rl. The calculation of Rl will, of course,
depend upon the network protocol. Note the values R1 and Rl

will be known prior to execution and will constitute common
knowledge in the system.

In a time-triggered system any reading of a local clock is
defined to give a global value. The code for τ2 could therefore
take the following form:

read Start_Time from link
next_release := Start_Time + R_1 + R_l
loop
delay_until next_release
read from link l
undertake processing
write result to the environment
next_release := next_release + T

end loop

The advantage of this structure is that τ2 is immediately
executing with the right period and is guaranteed (within the
bounds of the analysis) to have data available on the link
when it executes the read operation. The read operation is
non-blocking; if when a read is attempted no data is available
then there is a fault that can, potentially, be dealt with.

The disadvantage comes from the need to support a global
time base and the pessimism that arises from assuming that
the communicated data can arrive as late R1 + Rl after the
release of τ1. Although both of these values are genuinely
worst-case, it is not in general true that a transaction can suffer
both worst-case situations at the same time. And hence there
may be pessimism in the offset value used to separate the
executions of τ1 and τ2.

When there is no global time base then all that is known at
the second processor is the common knowledge of the period
of the transactions. Any data arriving on the link may have
been transmitted early in the cycle or towards the actual worst-
case latency on transmission.

III. ANALYSIS WITHOUT GLOBAL TIME

The simplest way to implement a transaction on a dis-
tributed platform without global time is to allow each task
(apart from the first one) to execute the following simple loop.:

69

loop
read from link
undertake processing
write to next link

end loop

Unfortunately this suffers from extreme output jitter. It is
also difficult to derive an estimate of the worst-case behaviour
as transactions can catch up with one another. Typically some
form of rate control is applied to stop data been passed on
‘too early’. In the following this idea is extended to produce
a new protocol called NGT (No Global Time).

Assume that the read operation on the link has the following
semantics. It blocks until data is available, and it returns, as
well as the data, the earliest time the data was available to
be read. So if the data is already available when the call
of read is made, the operation succeeds immediately and the
time returned is the time that the network interface placed
the data in the appropriate buffer for the application code.
If the data is not available the call is held until the data is
communicated and the time returned is then the current clock
value. The code for τ2 is as follows (but note τ1 no longer
communicates its start time). The first task is assumes to start
at time 0; in the following t is the time returned from the link
(as defined above). A global set of times is used to illustrate
the behaviour of the protocol – but these values are not needed
or the protocol to function.

next_release := 0
read from link l returning t
loop
undertake processing
write result to the environment

(or next link)
next_release := max(next_release,t) + T
delay_until next_release
read from link l returning t

end loop

So the arrival of the data sets up the period of the task.
Initially, if the data arrives early in the cycle, the read operation
will subsequently block and the effective ‘period’ of the task
will be greater than T . But once the maximum latency for the
data has been experienced τ2 will behave as a purely periodic
task will period T .

For example, assume time starts at 0, the period of the
transaction is 20, the response times of τ1 are initially 5,
7, 7, 6, 8, 5 and the transmission times of the resulting
communication are 12, 13, 14, 14, 12, 12. Task τ2 would
behave as follows. Its first read operation would block until
the data arrive at time 17 (5+12). It would then calculate its
next release to be at time 37 (max(0,17)+20). Its second read
would again block until time 40 (20+7+13). The delay time
would now be 60 (max(37,40)+20).

The third data item arrives at time 61 (40+7+14) which
will force the following loop to start at time 81. But now the
worst case has been experienced. The 4th data message arrives
at time 80 (60+8+12), so the read operation at time 81 now
does not block and the task loops with a fixed period of 20 at
times 101, 121 etc. (ie. an offset of 21). As long as the worst-
case latency for the message has already been experienced
the loop will now be purely periodic and all read operations

will be non-blocking. Its start was however characterised by
periods of 37, 23, 21, and 20 before this 20 value became
fixed.

In terms of schedulability analysis, assuming a period of 20
is safe. The task will initially have a longer period, but this will
not undermine any guarantee delivered by the schedulability
test (as long as the test is sustainable[1] – which all standard
tests are).

To complete an assessment of the example, note that the
time triggered approach would require τ2 to have an offset
of 22. So it starts with a more regular execution but it has a
longer latency in its normal phase.

A. Clock drift and infrequent worst-case behaviour
To cater for clock drift an occasional slightly shorter period

can be added (i.e. a loop of 19). If this is too much the
algorithm will force a 21 value on the subsequent iteration.
Note if the clock drift is in the other direction (τ2’s processor
clock running quicker) then the the algorithm will automati-
cally extend one period by a small amount – a read operation
will block.

If the worst-case message delay occurs very infrequently an
application can decide to occasionally bring the period back
from its maximum value (for example a one-off 19). This
may result is a later period of 21 occurring. Overall jitter is
increased but average (and normal) latency is reduced.

B. Fault recognition
One advantage of the time-triggered approach is that a fault

(data not arriving) is immediately recognised. Without a global
time service this is not as straightforward. There are however
some bounds that can be derived. Once the algorithm has
stabilised then all reads should be non-blocking so any delay
can be interpreted as an error. However due to the reasons
outlined above (e.g. clock drift) it would be necessary to give
a tolerance on data arriving late.

A safe upper bound on a timeout value can be calculated
as follows. With no other knowledge of actual execution and
communication times the largest gap between two arrivals of
the data is 2T . Hence a timeout value of T is an upper bound
(i.e. delay in the loop is T after the first arrival, and then
wait up to T for the data to arrive). However an improvement
on this can be obtained if one records how early data does
arrive. If W is the maximum time that data has been in the
input buffer waiting to be read then the timeout value can be
reduced to T −W . The code would have the following form:

next_release := 0
read from link l returning t
W := 0
loop
undertake processing
write result to the environment
next_release := max(next_release,t) + T
delay_until next_release
select
read from link l returning t

timeout T-W
undertaken alternative action

W := max(W, clock-t)
end loop

70

IV. SIMULATION RESULTS

To evaluate the validity and performance of this NGT pro-
tocol a set of simulation experiments were undertaken. Here
we report on one such experiment. The hardware platform
was assumed to consist of ten nodes in a pipeline. A single
repeating transaction runs through these nodes, with a single
task per node. The period of the transaction (and hence the
‘period’ of each task) was 200ms. Each task had a maximum
response time of 180ms, and each communication link had
a maximum transmission time of 20ms. Actual response and
communication times were obtained from a normal distribution
constrained to have these maximum values.

Figure 1 illustrates the end-to-end latency values for the
first 5,000,000ms of execution (ie. 25,000 executions of the
transaction). Initially the latency is less than 1000ms, but
this value grows until an interval of approximately 1800ms
is obtained at the end of the simulation. For comparison it
should be noted that the time-triggered protocol (TTP) would
have a fixed latency of 1800ms plus the final task’s execution.
So an overall bound of 1980ms.

The NGT protocol produces a behaviour that approaches
that of the time-trigger protocol (TTP). It corresponds to the
worst-case actual behaviour of each task and communication
link. If each worst-case behaviour can reach its theoretical
limit then at that point NGT will give the same results as
TTP. In the simulations the worst-case can be reached and so
as the simulations continue the latency increases.

If the real upper bounds are below the ‘worst-case’ values
used in the static analysis (as will often be the case), NGT
will stabilise on a value below the theoretical worst-case. It
reflects only the worst-case situations actually experienced by
the system.

To reduce even this improved end-to-end latency, one can
apply the ‘recovery’ techniques described earlier. In Figure 2
the period of each task is reduced from 200ms to 199ms every
10 invocations if the data was found to have arrived within this
bound on each of these 10 invocations. Jitter is controlled by
only making a change occasionally, but as a result the end-to-
end latency is rarely above 1600ms.

V. CONCLUSION

A simple algorithm has been presented that allows a peri-
odic transaction to dynamically set its own parameters on a
distributed platform without a global time service. The tasks
of the transaction, once each has experiences its maximum
latency for its input data, will execute as regular periodic
tasks with a fixed period. An advantage of the proposed
scheme is that the maximum latency through the transaction
is minimised. There is no need to set a potentially pessimistic
offset for later components of the transaction. Rather the
protocol learn how long each task must wait to get a smooth
flow of data through the system.

The only requirement on the hardware platform is that data,
as it arrives on an input link, must be time-stamped with the
local time of arrival. This is a straightforward operation for a
network interface card.

The proposed scheme can deal with clock drift and is able to
respond to omission failures (of the input data). It is also able
to bring back the worst-case behaviour in a controlled way.
So, for example, if the communications media experience a
glitch that pushed the end-to-end latency out to an excessive
level then the protocol would, over time, bring this value back.
But would do so in a way that had a small effect on output
jitter.

REFERENCES

[1] S.K. Baruah and A. Burns. Sustainable schedulability analysis. In IEEE
Real-Time Systems Symposium (RTSS), pages 159–168, 2006.

[2] G. Fohler. Joint scheduling of distributed complex periodic and hard
aperiodic tasks in statically scheduled systems. In Proceedings 16th IEEE
Real-Time Systems Symposium, 1995.

[3] J.P. Gutierrez, J.G. Garcia, and M. González Harbour. On the schedu-
lability analysis for distributed real-time systems. In proceedings 9th
Euromicro Workshop on Real-Time Systems, pages 136–143, 1997.

[4] S. Matic and T.A. Henzinger. Trading end-to-end latency for compos-
ability. In RTSS, pages 99–110. IEEE, 2005.

71

Fig. 1. No Recovery

Fig. 2. With Recovery

72

Statistical-based Response-Time Analysis of Systems with Execution
Dependencies between Tasks

Yue Lu, Thomas Nolte, Johan Kraft and Christer Norström
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden
{yue.lu, thomas.nolte, johan.kraft, christer.norstrom}@mdh.se

Abstract

This paper presents a novel statistical-based approach
to Worst-Case Response-Time (WCRT) analysis of complex
system models. These system models have been tailored
to capture intricate execution dependencies between tasks,
inspired by real industrial control systems. The proposed
WCRT estimation algorithm is based on Extreme Value The-
ory (EVT) and produces both WCRT estimates together with
a predictable probability of being exceeded (i.e., 10−9). By
using the tools developed, we validate the proposed method
by evaluating a model taken from the real industrial control
system, and we show the results in comparison with other
four analysis methods.

1 Introduction

To date, most existing embedded real-time software sys-
tems have been developed in a traditional code-oriented
manner, i.e., making extensive use of legacy software.
Many such systems are maintained over extended periods
of time, sometimes spanning decades, during which the sys-
tems become larger and increasingly complex. The result is
that these systems are difficult and expensive to maintain
and verify. There are many embedded systems existing in
industry which consist of millions of lines of C code, cor-
responding to 50, or 100 tasks or more, where many tasks
have real-time constraints. The example of such systems is
the robotic control systems developed by ABB [1]. Looking
closer at these systems, contrary to the assumption in most
real-time theory, tasks exhibit strong temporal dependen-
cies, e.g., asynchronous message-passing, globally shared
state variables and runtime changeability of periods and pri-
orities of tasks, which vary the execution time of the tasks
radically.

One desirable approach to avoid the timing-related er-
rors in such complex systems is to use schedulability anal-

ysis methods, such as Response-Time Analysis (RTA) [2].
Nevertheless, RTA (and other schedulability analysis tech-
niques), although providing the prediction about timing be-
havior of execution in worst-case scenarios, rely on the ex-
istence of a fixed Worst-Case Execution-Time (WCET) of
the tasks. Correspondingly, the quality of the analysis is di-
rectly correlated to the quality of the WCET estimates. Un-
fortunately, in the above described systems, the WCET of
tasks obtained by static WCET analysis techniques may not
easily be bounded. Sometimes a pessimistic WCET bound
can be calculated based on maximum queue lengths. While
in other cases the WCET is completely unbounded until the
behavior of dependent tasks is known. Consider the follow-
ing example in Figure 1, taken from an industrial robotic
control system, where a task reads all messages buffered in
a message queue and processes them accordingly:

1 msg = recvMessage(MyMessageQueue);
2 while (msg != NO_MESSAGE){
3 process_msg(msg);
4 msg = recvMessage(MyMessageQueue);
5 }

Figure 1. Iteration-loop wrt. message passing

By using static WCET analysis, the upper bound of num-
ber of messages actually consumed is equal to the maximum
queue size. Furthermore, other tasks with a higher priority
may preempt the execution of the loop and refill the queue
at runtime. Looking further at the corresponding task peri-
odicity dependencies, the analysis performed at RTA level
also contributes to the pessimism as the number of loop it-
erations is not supposed to be bounded by the maximum
queue size when preemption occurs.

The other approach, which avoids the state-space explo-
sion issue raised by model checkers such as UPPAAL [3]
and TIMES [4], for instance, is to use simulation-based
methods that sample the state space. The first type of sim-
ulation technology to use is Monte Carlo simulation, which
can be described as keeping the highest result from a set of

73

randomized simulations. Several frameworks already ex-
ist in this realm, such as the commercial tool VirtualTime
[5] and the academic tool ARTISST [6]. However, the main
drawback of using Monte Carlo simulation is the low state-
space test coverage, which subsequently decreases the con-
fidence in the results of finding rare worst-case scenarios.
The other category is to apply an optimization algorithm
(e.g., (meta)heuristic search algorithm), on top of Monte
Carlo simulation, as in [7] and [8], which yield substan-
tially better results, i.e., tighter lower bounds of the WCRT
estimation.

Another approach is to use stochastic analysis of hybrid
task sets in priority-driven soft real-time systems, as in [9].
Nevertheless, this approach does not allow for dependencies
between tasks in the analysis, and the priority of jobs (a task
is comprised by a sequence of jobs) and task periods are
fixed.

In this paper, we present a novel statistical-based ap-
proach to response time analysis of systems with intri-
cate execution dependencies between tasks. The proposed
method uses samples collected by running Monte Carlo
simulation as the input, and produces WCRT estimates
on tasks along with a predictable probability of being ex-
ceeded, i.e., 10−9.

2 Modeling of Complex Real-Time Systems

The system model used in this work describes the de-
tailed execution dependencies between tasks with respect
to resource usage and interaction, e.g., Inter-Process Com-
munication (IPC), CPU execution time and logical resource
usage. Practically, the model is specified by the modeling
language used in RTSSim [10], which can be considered
as a domain-specific language describing both architecture
and behavior of task-oriented systems developed in C, and
running on a single processor. Its syntax and semantics are
as expressive as the C programming language, and include
the typical RTOS services to the task models, such as task
scheduling (e.g. Fixed-Priority Preemptive Scheduling),
IPC via message passing and synchronization (semaphore).
RTSSim employs a hierarchical model to specify the sys-
tem structure consisting of a number of tasks. Each task is
characterized by a period, a constant offset, a maximum jit-
ter, and a priority. Periods and priorities can be changed at
any time by any task in the application. Finally, each task
is composed of a number of jobs and invoked RTOS ser-
vices. The interested reader can refer to [10] for a thorough
description of RTSSim.

3 Extreme Value Theory

Extreme Value Theory (EVT) [11] is a separate branch
of statistics for dealing with the tail behavior of a distribu-

tion. It is used to model the risk of the extreme, rare events,
without the vast amount of sample data required by a brute-
force approach. The example applications are hydrology,
material sciences, telecommunications etc.

There are three models in EVT, i.e., the Gumbel (type I),
Frechét (type II) and Weibull distributions (type III), which
are intended to model random variables that are the maxi-
mum or minimum of a large number of other random vari-
ables. It is worth noting that the Frechét distribution is
bounded on the lower side (x > 0) and has a heavy up-
per tail, while the Weibull model relates to minima (i.e., the
smallest extreme value). Since the purpose of this work is
to find the higher response time of the tasks in rare worst-
case scenarios, we therefore use the maximum case in the
Gumbel distribution, referred to as the Gumbel Max in the
reminder of the paper.

4 WCRT Estimation Based on EVT

The proposed method, WCRTEVT is shown in Algo-
rithm 1. It is a recursive procedure which takes as argu-
ment m data sets, of which each contains N samples of the
response time of the task under analysis. The algorithm re-
turns the WCRT estimation with a predictable probability of
being exceeded (i.e., 10−9). It consists of the following two
steps: 1) construction of the referenced data sets, 2) WCRT
estimation of the referenced data sets using EVT.

4.1 The Referenced Data Sets

In order to construct the input data sets to the WCRTEVT,
there are m Monte Carlo simulations in RTSSim to run at
first. Then the n best simulations with the highest maximum
value of response times, are selected as the referenced data
sets. For each referenced data set, there are N (i.e., N is
no less than 9 000) samples of the response time taken from
the task under analysis. This sufficiently ensures making a
good estimate. The construction is showed in rows 1-3 in
Algorithm 1, where xi in line 3 is the highest response time
of the task under analysis observed in simulation per each
data set.

4.2 WCRT Estimation of the Referenced Data
Sets

4.2.1 Blocking of N Samples

In order to avoid the risk of mistakenly fitting raw response
time data that may not be from random variables, to the
Gumbel distribution, we use the method of block maxima
[11], as proposed in [12]. This is done by grouping N
response time samples in each referenced data set into
k blocks of size is b, and then choosing the maximum

74

value from each block to construct a new set of sam-
ple “block maximum” values, i.e., Y ← yi,1, ..., yi,k,
yi,k ← maxima(S) ← N(k−1)×b+1, ..., Nkb as shown
in row 6, 9 and 10 in Algorithm 1. The samples
at the end of the execution sequence in a simula-
tion that do not completely fill a block are discarded.
For instance, if there are 9 samples per data set, i.e.,
{1119, 1767, 2262, 2287, 1792, 2687, 1942, 1842, 1692},
and b (i.e., the size of the blocks) is 2, then the last sample
(i.e., 1692) in the sequence is discarded since it can not be

grouped in the 4 (i.e.,
⌊

9
2

⌋
) blocks. Furthermore, the initial

value of b is 100.

4.2.2 The Best-fit Gumbel Max Parameters Estimation

The estimation of the parameters of the Gumbel Max distri-
bution is the core of WCRTEVT, which is also an iterative
procedure as shown in rows 8-35 in Algorithm 1. The se-
lection of b is a trade-off between the quality of fit to the
Gumbel Max distribution, and the number of blocks (i.e.,
k) in each data set available used in the estimation of the
Gumbel parameters. In this paper, we introduce two proce-
dures using two different search algorithms, i.e., lwbsearch
and upbsearch which could find the proper value of b pro-
ducing the best-fit Gumbel Max parameters estimation. The
algorithm lwbsearch is invoked at first as shown in rows 8-
26 in Algorithm 1, which focuses on searching for the value
of b to be as low as possible. In this way, there are more
blocks, i.e., the bigger value of k, used as samples in the
estimation. However, in some cases, lwbsearch may fail in
finding such value of b in best-fit tests. If this is the case,
then upbsearch will be adopted, which is showed in rows
27-35 in Algorithm 1. Moreover, the best-fit test is in terms
of examining the estimated Gumbel parameters by using a
goodness-of-fit (GOF) test, i.e., Chi-square test. Note that
other more advanced (meta)heuristic search algorithms can
be applied. While the empirical results including the one
presented in Section 5 and the ones have not been included
in this paper due to space limitations, show that the two pro-
posed algorithms work well enough to reach the goal. There
is one more interesting point to highlight, i.e., the generally
accepted value of k is 30 as introduced in [12]. Therefore,
in this work, the size of blocks b should be smaller than⌊

N

30

⌋
. For the sake of space, we can not give the detailed

explanation about each search algorithm, as well as their
implementation.

4.2.3 The WCRT Estimations Formula

The two parameters of the Gumbel Max distribution: a lo-
cation parameter µ and a scale parameter β, are used in the
Gumbel percent-point function, which returns the WCRT

estimation that the block maximum Y cannot exceed with a
certain probability q, as shown in Equation 1.

est = µ− β × log(−log((1− Pe)b)) (1)

Algorithm 1 WCRTEV T (m)
1: RT ← rt1, ..., rtm ← MonteCarlo(m, rnd inst())

2: n ← m

100
3: X ← x1, ..., xi, ..., xn ← selectHRT (n, RT)
4: for all xi such that 1 ≤ i ≤ n do
5: b ← 100

6: k ←
⌊

N

b

⌋

7: success ← false
8: while k ≥ 30 and success = false do
9: S ← si,1, ..., si,k ← segment(N, b)

10: Y ← yi,1, ..., yi,k ← maxima(S)
11: if passChiSquareTest(Y) > 0 then

12: lwb ← b

2
13: upb ← b

14: b ←
⌊

lwb + upb

2

⌋

15: while success = false do
16: success ← lwbsearch(b, Y)
17: if success = true then
18: l, s ← ChiSquareTest(Y)
19: esti ← wcrtevt(b, l, s)
20: end if
21: end while
22: else
23: b ← 2× b

24: k ←
⌊

N

b

⌋

25: end if
26: end while
27: upb ← b

28: b ← b+ b
2

2

29: while success = false do
30: success ← upbsearch(b, Y)
31: if success = true then
32: l, s ← ChiSquareTest(Y)
33: esti ← wcrtevt(b, l, s)
34: end if
35: end while
36: end for
37: EST ← esti, ..., estn

38: rtest ← min(EST)
39: return rtest

4.2.4 Selecting the Lowest WCRT Estimation

As the last step in WCRTEVT, the lowest WCRT estimate
is selected as the WCRT estimate on all m data sets. This
is also confirmed by the empirical results presented in Sec-
tion 5.

75

5 Empirical Results

A validation model inspired by a real industrial control
system is constructed with the purpose to investigate how
close the response time given by WCRTEVT is to the ex-
act WCRT achieved by the simulation optimization-based
method, i.e., HCRR in [8]. Moreover, in order to make
the model analyzable by using basic RTA, the adhering task
execution dependencies are simplified in that the execution
time of the tasks is only varied by asynchronous message-
passing with the loop bounds manually added to the simula-
tion model. The results of five different methods are showed
in Table 1.

Table 1. The results comparison for the MV.

MC MABERA HCRR Basic RTA WCRTEVT
MV 4332 4332 4332 5982 4574.556

Clearly, the WCRT estimation achieved by WCRTEVT
is 5.6% (i.e., (4 574.556 − 4 332)/4 332 × 100%) more
pessimistic than the exact value derived by HCRR and
MC (Monte Carlo simulation), but 23.5% (i.e., (5 982 −
4 574.556)/5 982×100%) less pessimistic when compared
to the value obtained by basic RTA. Hence, we believe that
WCRTEVT has the potential to provide meaningful results,
i.e., tighter upper bounds of the WCRT estimation in the
analysis of the real-time systems with more complex execu-
tion dependencies between tasks.

6 Conclusions and Future Work

This paper has presented ongoing work towards perform-
ing response time analysis for system models with intricate
execution dependencies between tasks, by using the pro-
posed statistical-based method based on extreme value the-
ory. Specially, we have presented and validated the method
by using a model inspired by real industrial control systems,
which shows the benefit over basic RTA, in terms of reduced
pessimism. Contrary to existing stochastic real-time analy-
sis, the proposed method is not restricted by the assumption
that tasks are independent, that the job-level priority is fixed
and that the worst-case scenario only happens in the case of
the critical instance. As part of future work, the evaluation
on models with more complex execution dependencies be-
tween tasks will be conducted.

Acknowledgment
This work was supported by the Swedish Foundation

for Strategic Research via the strategic research centre
PROGRESS.

References

[1] “Website of ABB Group,” www.abb.com.

[2] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings,
“Fixed priority pre-emptive scheduling: an historical per-
spective,” Real-Time Systems, vol. 8, no. 2/3, pp. 129–154,
1995.

[3] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on
UPPAAL,” in Formal Methods for the Design of Real-Time
Systems: 4th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems,
SFM-RT 2004, ser. LNCS, M. Bernardo and F. Corradini,
Eds., no. 3185. Springer–Verlag, September 2004, pp. 200–
236.

[4] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi, “Times - a tool for modelling and implementation
of embedded systems,” in TACAS ’02: Proceedings of the
8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. London, UK:
Springer-Verlag, 2002, pp. 460–464.

[5] “Rapita systems, www.rapitasystems.com, 2008.”

[6] D. Decotigny and I. Puaut, “ARTISST: an extensible and
modular simulation tool for real-time systems,” in Proc. of
the 5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’02), 2002, p.
0365.

[7] J. Kraft, Y. Lu, C. Norström, and A. Wall, “A metaheuristic
approach for best effort timing analysis targeting complex
legacy real-time systems,” in Proc. of the 14th IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS 08), April 2008, pp. 258–269.

[8] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte,
“Simulation-based timing analysis of complex real-time sys-
tems,” in The 15th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications,
RTCSA 09, August 2009, pp. 321–328.

[9] G. A. Kaczynski, L. L. Bello, and T. Nolte, “Deriving ex-
act stochastic response times of periodic tasks in hybrid
priority-driven soft real-time systems,” in Proceedings of
12th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’07). IEEE Industrial
Electronics Society, September 2007, pp. 101–110.

[10] J. Kraft, “RTSSim - A Simulation Framework for Complex
Embedded Systems,” Mälardalen University, Technical Re-
port, March 2009.

[11] J. S. J. Beirlant, Y. Goegebeur and J. Teugels, Statistics of
Extremes: Theory and Applications. Wiley Press, 2004.

[12] S. H. J. Hansen and G. Moreno, “Statistical-based wcet esti-
mation and validation,” in 9th Int’l Workshop on Worst-Case
Execution Time Analysis, 2009, pp. 123–133.

76

A transparent target function and evaluation strategy
for complex multi-objective optimization problems

Florian Pölzlbauer
The Virtual Vehicle Competence Center

Graz, Austria
Email: florian.poelzlbauer@v2c2.at

Eugen Brenner, Christian Magele
Graz University of Technology

Graz, Austria
Email: brenner@tugraz.at, christian.magele@tugraz.at

Abstract—In the industrial domain, multi-objective optimiza-
tion problems are wide-spread. Allocating application tasks onto
a network of processing nodes (known as the task allocation
problem) is one of them. Here, one major challenge is that
several other problems (e.g. task scheduling) must be included. In
addition, several constraints (e.g. memory) have to be considered.
While the aspect of how to solve such optimization problems
has been extensively addressed in the last years, the aspect of
how to encode multiple objectives into an optimization target
has not drawn as much attention. In this work we present a
transparent and comprehensible target function and evaluation
strategy for complex multi-objective optimization problems. Two
novel target formulation methods are implemented and compared
to the traditional weighted sums approach.

Keywords-multi-objective; optimization; target function; real-
time systems; task allocation;

I. INTRODUCTION

In the literature, distributed embedded real-time systems are
described by two models. The hardware model consists of
processing nodes, which are connected via shared data buses
- it can be represented as an undirected graph. The application
model comprises tasks, which exchange data via messages
passing - it can be represented as a directed, weighted graph.
The application model has to be allocated onto the hardware
model, in order to form the implementation. This task is known
as the task allocation problem [1]. During this step several
aspects have to be considered: Both the processing nodes as
well as the data buses offer limited resources. For each solution
of the task allocation problem, a valid scheduling has to be
found for both, tasks and the arbitration of the data buses.
Data that has to be exchanged via data buses has to be packed
into bus frames. This task is known as the frame packing
problem [2]. In addition, the resulting real-time behavior of
the application has to be valid. Meaning: all deadlines have
to be met. Therefore, schedulability analysis for tasks [3] and
data buses [4] has to be performed.

The task allocation problem is challenging, since it includes
several problems, which by themselves form a multi-objective
optimization problem. In order to address such multi-objective
optimization problems, several aspects are needed:

∙ Methods and algorithms that can solve the underlying
forward-problem. This is mostly done by special purpose
simulation environments. The outputs of this step are the
characteristics of one particular solution.

∙ Methods and algorithms that generate instances of the
forward-problem. In general, these can be feasible or
infeasible solutions. Of course, only feasible solutions
are of main interest, but in general one cannot know
the nature of the generated solution, unless the forward-
problem is solved for this individual. This step may be
performed by general-purpose optimization tools, or by
problem-specific heuristics.

∙ Methods and algorithms that are directing the search
through the search space. This may be achieved by
adapting search direction and step size. This step may
be performed by general-purpose optimization tools, or
by problem-specific heuristics.

∙ An optimization target that considers all individual objec-
tives. In literature this is known as target function, quality
function, cost function, fitness function and others.

∙ Methods and algorithms that evaluate the individual so-
lutions due to the chosen optimization target.

While solving such problems has been addressed in the last
years, the aspect of formulating the target function has not
drawn as much attention. In this work we focus on the aspect
of formulating an optimization target out of several objectives,
and on how to evaluate this optimization target. After deriving
our approach, we apply it to a multi-objective optimization
problem from the automotive domain: task allocation, task
scheduling & bus arbitration scheduling.

II. TARGET FUNCTION FOR MULTI-OBJECTIVE
OPTIMIZATION PROBLEMS

In industry one tends to use already existing and proven
algorithms. That is why the use of general-purpose optimiza-
tion algorithms is widely accepted. Basically, those algorithms
(e.g. genetic algorithm, particle swarm, ...) can only handle a
single target function.

In literature several methods have been proposed to address
multi-objective optimization problems [5] by the use of algo-
rithms that can only handle a single target function:

∙ All objectives are combined, in order to form one target
function. The combining is mostly done by the use of
a weighted sum. The resulting target function takes into
account all objectives simultaneously.

∙ One objective is used as the target function, while all
other objectives are used as boundary functions. In this
way, only one objective is primarily taken into account.

77

∙ The optimization algorithm tries to find non-dominated
solutions. These solutions form the Pareto-front. This
approach is suitable, if all objectives are contradicting
each other (so that the resulting space between the
individual objectives is maximal). If the objectives are
not contradicting each other – or it is simply not known,
how the individual objectives influence each other – this
approach may not find good results. Further, this approach
does not return one optimal solution, but a list of equal
optimal solutions. Thus, this approach is more suitable
for design space explorations.

In the following, we will focus on the first approach:
combining all objectives into a single target function.

A. Weighted objectives

A common approach is the use of weighted sums.

f(x) =
n∑

i=1

(wi.fi(x))
2

where fi(x) represent the individual objectives and wi

represent the corresponding weights. Additionally the terms
can be squared, in order to prevent negative and positive terms
from canceling each other.

This approach is easy to apply. Further it has the advantage
that all objectives are considered at the same time. The draw-
backs are that the resulting target function f(x) may get non-
transparent, since all objectives are mixed together. Further,
finding adequate weights is crucial. This task is challenging,
since it has to consider both needs:

∙ user intention, in what extend an individual objective shall
be considered

∙ scaling of the individual objectives in order to be com-
parable

In order to attain these needs easier, we propose a slightly
modified approach by adding an additional factor, leading to:

f(x) =
n∑

i=1

(si.wi.fi(x))
2

with:
si scaling of the individual objectives, in order to meet

comparable values
wi weighting of the individual objectives, due to the user

intention
fi(x) individual objectives
This modification makes it easier to specify the user in-

tention and scaling of objectives (by making them explicit).
Nonetheless, the disadvantages of non-transparent results and
the challenge of finding adequate scaling-factors and weights
remain. In order to address these challenges, we propose a
method to automatically derive adequate scaling-factors (see
Algorithm 1). The main idea is as follows:

∙ Define a range that includes all objective value after
scaling

∙ Determine the maximum possible value of each objective
∙ Determine the minimum possible value of each objective

∙ Derive the needed scaling factor

Algorithm 1: Determining adequate scaling factors
Input: fmax desired upper bound of objectives
Input: fmin desired lower bound of objectives
Input: fi,max max. possible value of objective
Input: fi,min min. possible value of objective
Output: si scaling factor
begin1

Δf = fmax − fmin;2

Δfi = fi,max − fi,min;3

si = Δf
Δfi

;4

end5

return si6

By using this simple approach, it is possible to derive
adequate scaling factors. The resulting scaling is done linear.
The main task is to find the minimum and maximum possible
value of the individual objectives. The challenge that still
remains, is finding adequate weights. Here, not only the values
of the weights are important, but also the ratio between them.
Thus, for a large amount of objectives, this task is hard to
perform.

Observing some industrial multi-objective optimization
problems, we found that objectives from different engineering
domains as well as from different engineering detail-levels
have to be stated simultaneously. For the distributed real-time
systems domain typical objectives could be:

∙ system weight → min
∙ system cost → min
∙ bus utilization → min
∙ node CPU utilization → even
∙ task lateness → max
∙ task response time → min

Taking a closer look at those objectives, they can be
classified into 3 groups:

1) economic objectives (weight, cost)
2) scalability objectives (utilization)
3) real-time behavior objectives (lateness, response time)
When applying the weighted sums approach to these objec-

tives, a trade-off between the individual objectives is estab-
lished according to the chosen weights. This approach may be
adequate, if all objectives are more or less “equal” (in terms
of that they all shall be considered simultaneously). In case
of different objectives from different engineering domains and
detail-levels, this approach may no longer be adequate.

B. Prioritized objectives

When dealing with “unequal” objectives (in terms of them
being from different domains and detail-levels) we could
observe the following:

∙ Some objectives are more important than others
∙ Between unequally important objectives, high-important

objectives always overrule low-important ones
∙ Between equally important objectives, a trade-off is de-

sirable

78

These demands can hardly be addressed by the use of weights
alone. Weights are able to accomplish a trade-off between
equally important objectives. When it comes to overruling
objectives, another concept can be used: prioritizing.

Instead of assigning weights to each objective, we assign
priorities. The priority states the importance of each objective.
When evaluating a solution, the objectives are considered
due to their priorities: At first the objective with the highest
priority is evaluated. If the value of this objective shows an
improvement compared to the value of the currently best
solution, the new solution wins the evaluation process and
becomes the new best solution. If the value of the objective
of the new solution shows degradation, the new solution loses
the evaluation process. If the value of the objective is equal to
the value of the currently best solution, the evaluation cannot
decide which one wins. Therefore, the objective which has
the next-lower priority is used to determine, which solution
wins. For this objective, the same strategy is applied. This
evaluation process is repeated until a decision can be made,
or all objectives are evaluated.

Algorithm 2: Evaluation of objectives due to their priority
Input: x∗ currently best solution
Input: f [p](x) individual objective with priority p
Input: p priority of objective
Output: x∗

begin1

for p = 1 to P do2

if f [p](x) better than f [p](x∗) then3

x∗ ← x;4

exit;5

else if f [p](x) worse than f [p](x∗) then6

exit;7

else8

p++;9

end10

end11

end12

return x∗13

Applying this evaluation strategy (see Algorithm 2), we can
address multi-objective optimization problems where differing
objectives (in terms of domain, detail-level, ...) have to be
considered. Instead of splitting the problem into several parts
and solving those parts sequentially, we can address all objec-
tives within one optimization run. At the same time we can
consider the need/demand that objectives can overrule other
objectives (instead of using the trade-off approach). Another
advantage of this evaluation strategy is that scaling factors for
each objective are not needed any more, since in every step of
the evaluation process only objectives that are of the same kind
(and therefore within the same range of values) are compared.

Additionally, the evaluation – and thus also the optimization
process – is more transparent (compared to the weighted
sums approach). Therefore optimization results can be com-
prehended more easily. This is a very important factor when

dealing with real-world industrial problems. The proposed
evaluation strategy may therefore be easier accepted within
industrial problems.

C. Prioritized weighed objectives
So far we have shown that by applying the concept of priori-

tizing, we can formulate a target function where objectives can
overrule each other. Unfortunately this approach has one major
disadvantage. It does not feature trade-offs or balancing of
objectives. Meaning: accept small worsening of one objective,
in order to archive bigger improvements of other objectives
(e.g. accepting an increase of 3% bus utilization in order to
get a decrease of 10% task response time).

In order to overcome this drawback, we enhance our ap-
proach by combining it with the ideas of the weighted sums
approach. The main idea is as follows:

∙ We assign to each objective a priority
∙ If several objectives have the same priority, we addition-

ally assign a weight
∙ At first we evaluate all objectives which have the highest

priority
∙ If there exist more than one objective at this priority level,

we apply the concept of weighted sums to them
∙ If the objectives of this priority level are better than the

best solution, the new solution wins.
∙ If the objectives of this priority level are worse than the

best solution, the new solution loses.
∙ If the objectives of this priority level are equal to the best

solution, the objectives of the next-lower priority level are
evaluated.

∙ This procedure is applied until a decision can be made,
or all objectives of all priority levels are evaluated.

The priority value is used to group objectives due to
their priority/importance. High-priority objectives will always
overrule low-priority objectives. Assigning the priority is very
intuitive, and thus easy to perform. The weight is used to state
the importance of an objective in comparison to equal-priority
objectives. Assigning weights is still demanding, but since the
amount of equal-priority objectives is smaller than the amount
of all objectives, the effort is significantly lower.

This novel approach combines the advantages of both
approaches. Unfortunately the use of adequate scaling factors
between equal-priority objectives is still needed. In order to
reduce the effort for configuring the evaluation strategy, we
proposed a way of how the needed scaling factors can be
determined automatically (see Algorithm 1). This way the user
can focus on assigning adequate priority levels and weights,
in order to set up the optimization target.

Based on this novel approach, one can state target functions
that are more transparent and thus can better fit industrial
multi-objective problems. Applied to our example, the follow-
ing target function could be addressed:

∙ Find system configurations that have best economic prop-
erties (minimum system weight, minimum system cost)

∙ Out of those configurations, find those that have best
scalability properties (minimum bus utilization, even node
CPU utilization)

79

∙ Out of those configurations, find those that have best real-
time behavior (maximum task lateness, minimum task
response time)

In certain cases, this kind of formulation will better fit the
intentions of the user. Instead of being forced to express his
intention by using weighing factors (that will create a trade-off
between individual objectives) one can use both: priorities for
stating importance between objectives that can overrule each
other, and weights for stating balancing of objectives that do
not overrule each other.

III. PRELIMINARY RESULTS

In order to evaluate our approach, we have applied it to the
task allocation optimization problem. Optimization objectives
are: minimum system weight, minimum system cost, minimum
bus utilization, even node CPU utilization, maximum task
lateness. Constraints are: processing node memory, processing
node CPU utilization, bus utilization, deadlines. Task alloca-
tions are generated and evaluated following a hill climbing
approach.

In order to solve the underlying forward problem, we
have made certain simplifications: Tasks are only activated
by the arrival of a message. Therefore task scheduling can be
performed by rate monotonic (RMS) or deadline monotonic
(DMS). As the bus protocol we assume CAN [4]. Therefore,
RMS can be applied for the bus arbitration scheduling. For
evaluating the real-time behavior we use holistic schedulability
analysis [3].

The following problem instance has been evaluated:
∙ 5 processing nodes, 1 shared data bus
∙ 14 tasks, 8 messages
∙ maximum 10.000 iterations

objective weighted sums prioritized prioritized weighted
system weight [kg] 3.0 [w=100] 3.0 [p=1] 3.0 [p=1,w=1]
system cost [$] 168.0 [w=100] 168.0 [p=2] 168.0 [p=1,w=1]
bus utilization [%] 3.93 [w=10] 1.20 [p=3] 3.03 [p=2,w=1]
Δ CPU utilization [%] 4.72 [w=10] 14.15 [p=4] 4.26 [p=2,w=1]
task lateness [ms] 329.61 [w=1] 341.99 [p=5] 338.90 [p=3,w=1]
improving steps 9 8 7
feasible solutions [%] 4.83 5.27 5.15

TABLE I
OPTIMIZATION RESULTS (MEDIAN OVER 50 RUNS) [W..OBJECTIVE

WEIGHT, P..OBJECTIVE PRIORITY]

As metrics for comparing the different approaches we use
the resulting objective values, which are: system weight, sys-
tem cost, bus utilization, average Δ CPU utilization, average
task lateness.

The most striking fact is that all approaches get equal results
for system weight and system cost. The reason for this is
that (in our model) weight and cost can only be improved
by detaching processing nodes or data buses. This is hard to
achieve, due to high CPU utilizations and tight task deadlines.
The prioritized approach gets by far best bus utilization and
worst Δ CPU utilization. Results for task lateness are more or
less equal for all approaches. Both the weighted sums approach
and the prioritized weighted sums approach get comparable

results for bus utilization and Δ CPU utilization, however,
the prioritized weighted sums approach is about 30% better
for bus utilization and about 10% better for Δ CPU utilization
compared to the weighted sums approach. All approaches find
about 5% feasible solutions. Additionally it can be seen that
(out of the 483 to 527 feasible solutions) only 7 to 9 solutions
result in an improvement of the optimization target.

It can be seen that both, the weighted sums approach and
the prioritized weighted sums approach can be used for stating
equivalent target functions for multi-objective optimization
problems. The main challenge when using the weighted sums
approach is to find adequate weights. The prioritized weighted
sums approach provides a more transparent and intuitive way
to formulate the optimization target. This is especially useful
for high number of objectives.

IV. CONCLUSION & OUTLOOK

In this work we have presented a novel approach to formu-
late a target function for multi-objective optimization prob-
lems. The approach allows stating both overruling objectives
(by using the concept of prioritizing) as well as balancing
of objectives (in order to find trade-offs between equal-
prioritized objectives). The approach is intuitive and flexible.
Thus it provides a more transparent and comprehensible target
function for multi-objective optimization problems.

In future research activities we will continuously enhance
the task allocation problem. The main focus will be put on
scheduling of mixed (time-triggered & event-triggered) tasks
and scheduling of automotive buses (LIN and FlexRay). In
addition, we will evaluate different stochastic optimization
algorithms (including particle swarm).

ACKNOWLEDGMENT

The authors wish to thank the COMET K2
Forschungsförderungs-Programm of the Austrian Federal
Ministry for Transport, Innovation and Technology (BMVIT),
the Austrian Federal Ministry of Economics and Labour
(BMWA), Österreichische Forschungsförderungsgesellschaft
mbH (FFG), Das Land Steiermark, and Steirische
Wirtschaftsförderung (SFG) for their financial support.

REFERENCES

[1] P. Pop, P. Eles, Z. Peng, and T. Pop, “Analysis and Optimization
of Distributed Real-Time Embedded Systems,” ACM Transactions on
Design Automation of Electronic Systems, vol. 11, no. 3, pp. 593–625,
2006. [Online]. Available: http://portal.acm.org/citation.cfm?id=1142980.
1142984

[2] R. Saket and N. Navet, “Frame packing algorithms for automotive
applications,” Journal of Embedded Computing, vol. 2, no. 1, pp. 93–102,
2006. [Online]. Available: http://portal.acm.org/citation.cfm?id=1370995

[3] K. W. Tindell, A. Burns, and A. J. Wellings, “An Extendible Approach
for Analyzing Fixed Priority Hard Real-Time Tasks,” Real-Time Systems,
vol. 6, no. 2, pp. 133–151, 1994.

[4] L. Pinho, F. Vasques, and E. Tovar, “Integrating Inaccessibility in
Response Time Analysis of CAN Networks,” in Proceedings of IEEE
International Workshop on Factory Communication Systems, 2000, pp.
77–84.

[5] T. Weise, Global Optimization Algorithms - Theory and Application,
2nd ed. Self-Published, Mar. 3, 2009. [Online]. Available: http:
//www.it-weise.de/

80

http://portal.acm.org/citation.cfm?id=1142980.1142984
http://portal.acm.org/citation.cfm?id=1142980.1142984
http://portal.acm.org/citation.cfm?id=1370995
http://www.it-weise.de/
http://www.it-weise.de/

Prediction-based Interrupt Scheduling

Yuting Zhang
Computer Science Department

Merrimack College
zhangy@merrimack.edu

Abstract

Interrupt scheduling is a critical factor in achieving pre-
dictable real-time service. Since I/O interrupts are usually
generated on behalf of specific processes, they should be
scheduled in accordance with the priorities of processes
that request them. However, the challenge is how to iden-
tify the requesting process for a given I/O interrupt before
handling it. This paper explores the effect of I/O interrupts
on real-time process scheduling, and proposes three predic-
tion schemes that leverage the historical data to identify the
urgency and importance of executing a deferrable interrupt
handler. The preliminary performance data has shown the
effectiveness of this approach on a modified Linux system.

1 Introduction

Interrupt scheduling is a critical factor in achieving pre-
dictable real-time service. In most operating systems, inter-
rupt handling is largely independent of process scheduling.
However, the handling of interrupts inevitably affects pro-
cess execution. In particular, I/O interrupts are mostly initi-
ated as a result of I/O requests from processes. To avoid sig-
nificant impact to process scheduling and execution, we ar-
gue that I/O interrupts should be scheduled and accounted,
where possible, on behalf of corresponding processes [10].

However, it is not usually known and not trivial to iden-
tify which process corresponds a given interrupt before han-
dling it. This is particularly true for network reception inter-
rupt, where the requesting process for an incoming packet
cannot be identified until the end of the interrupt service.
While early demultiplexing has been applied to ATM net-
works [1], where hardware support provides a method of
identifying the processing end-point for a given interrupt1,
it is difficult to perform the same approach with Ethernet
controllers. Similarly, other I/O device controllers, such

1With ATM networks a communication connection can be identified by
a virtual circuit, or virtual path, identifier.

as SCSI or SATA disk controllers, do not provide an obvi-
ous means of associating interrupts with specific processes.
A network interrupt from an Ethernet device could possi-
bly be dealt with by a top half2 that strips headers from
packet data in main memory, until socket identification is
obtained. However, this not only requires modification to
device drivers, which is itself an unenviable task, but it may
unduly extend the execution time of top halves. It should be
noted that top halves often run with interrupts of the same or
lower priority being disabled, so subsequent interrupts may
be lost if top halves do not complete quickly.

Instead of changing the handling of top halves, our work
has so far focused on the scheduling and accounting of the
bottom halves [10]. We have proposed a simple priority-
based scheme in which a bottom half’s priority is set to the
highest priority of all processes waiting on the correspond-
ing I/O device for a given interrupt. This simple scheme
may work in some scenarios. However, it mispredicts the
priority of the majority interrupts when the highest-priority
blocked process is actually associated with infrequent inter-
rupts from a particular device.

Given the above challenges, this paper proposes three
prediction schemes to schedule I/O interrupts that leverage
historical information collected over a finite sliding win-
dow. The proposed prediction schemes avoid changes to
device drivers or top half handlers, but instead attempt to
predict the urgency and importance of servicing a pending
bottom half for a given hardware interrupt. Some prelim-
inary experiment results demonstrate the effectiveness and
simplicity of the proposed schemes on the modified Linux
network interrupt handler.

The remainder of the paper is organized as follows:
Three prediction algorithms are described in Section 2. Sec-
tion 3 shows the experimental evaluation in Linux. Related
work is described in Section 4, followed by conclusion and
future work in Section 5.

2Typical general purpose systems such as Linux split interrupt service
routines into “top” and “bottom” halves. The top half performs only the
basic service requirements at the time of the interrupt.

81

2 Prediction Algorithms

To identify the corresponding process for a given interrupt,
the first step is to find all possible candidates. Though a
candidate can be any process waiting on the same device
that generates the given interrupt, as described in [10], those
who have recently received interrupts would more likely be
the requesting process in general. The historical data can be
used to help make better prediction.

Whenever an interrupt is handled, the information of
its associated process and the time stamp can be obtained.
Each device maintains such information for the lastN in-
terrupts processed. In addition, it keeps track of the time at
which the latest interrupt is handled, denoted astl. More-
over, for each processPi that is waiting on the device, the
collected data includes the number of the interrupts handled
for Pi out of the lastN interrupts, denoted asni, and the
time at which the latest interrupt is handled forPi, denoted
astli. With both time and frequency information, the can-
didates can be defined as the recently active processes that
have received any of the lastN interrupts within the past
∆ time units, whereN and∆ are two configurable parame-
ters. The accuracy of the prediction can be enhanced by this
refined candidate set. To reduce the overhead, a circular ar-
ray of sizeN can be used to implement this sliding window
buffer for each device.

Figure 1 shows the algorithm of updating interrupt his-
tory for a particular device and the related processes, where
t is the current time,H is the historical data array,Pr is
the requesting process of the current interrupt,end is the
ending index of the circular arrayH, count is the real num-
ber of the records in the array.S is the requesting process
candidate set.

Algorithm Updating Interrupt History
Input: Pr

1. if (H[end] records a valid processPi)
2. count −−; ni −−;
3. if (ni == 0) deletePi from S;
4. addPr into H[end];
5. count + +; tl = t; end = (end + 1)%N ;
6. if (Pr is a valid process)
7. if (nr == 0) addPr into S ;
8. nr + + ; tlr = t;

Figure 1. Updating Interrupt History

The next step is to infer the requesting process from all can-
didates based on the above historical information. Three
different prediction schemes are described below.

Highest Priority Based Prediction Scheme: Essentially,
this is our previously published scheme [10], which as-
sociates the given interrupt with the highest priority pro-
cess waiting on the same device that generates the interrupt.

However, the difference is that the candidates here are not
all processes that have requested interrupts from a specific
device, but only those processes that have received one or
more of the most recentN interrupts. In addition, the time
constraint∆ is used to filter out the candidates that have
remained inactive for a long time.

Highest Frequency Based Prediction Scheme: It may
be the case that the highest priority process is not the one
requesting the current interrupt, nor any interrupts in the
backlogged queue. For example, the interrupts in the cur-
rent backlogged queue are all requested by a lower-priority
process. Consequently, another prediction scheme is pro-
posed that determines the requesting process based on the
frequencyof the interrupts handled for each candidate pro-
cess. The interrupt frequency of a processPi is the number
of interrupts handled for it among the lastN interrupts, de-
noted asni above. The intuition behind this scheme is that
the interrupts in the backlogged queue may be most proba-
bly requested by the process that has the highest number of
interrupts handled recently.

Frequency Based Probabilistic Prediction Scheme: In-
stead of using a deterministic approach, this scheme assigns
the probability of being the requesting process for each can-
didate according to its interrupt frequency. Specifically, the
probability of each process is calculated as the ratio between
the number of interrupts handled for it among the lastN in-
terrupts andN . The simple intuition behind this is that the
process which has more interrupts handled in the past has a
higher probability of requesting future interrupts. Figure 2
shows the algorithm for the frequency-based probabilistic
prediction scheme.

Algorithm Frequency Based Probabilistic Prediction
Input: S

Output: Pp

1. Generate a uniformly random numberr in (0, N];
2. Pp = NULL;
3. curTot = 0;
4. for eachPi in S

5. curTot+ = ni;
6. if ((curTot ≥ r) && (tl − tli ≤ ∆))
7. Pp = Pi; returnPp;
8. returnPp;

Figure 2. Frequency Based Probabilistic Pre-
diction

For a given interrupt, the requesting process can be iden-
tified using any of the above prediction schemes, and the
priority of that interrupt handler is set to the priority of the
predicted process. It is then compared to the priority of the
current running process. If its priority is higher than that
of the current process, or the inferred requesting process
is the currently executing process, the bottom half is exe-

82

cuted immediately. Otherwise, it is deferred until the next
scheduling point.

Ideally, the scheduling decisions should be made for
each interrupt that requires handling. However, this typi-
cally causes high overhead. Usually in general operating
systems such as Linux, all backlogged interrupts are han-
dled together in one bottom half invocation. Therefore, it is
more practical to make the scheduling decision every time
a bottom half is invoked for all backlogged interrupts.

3 Experimentental Evaluation

The proposed approach with all three prediction schemes
is implemented upon Linux network handler for packet re-
ception interrupt. Different combinations of periodic UDP-
server and CPU-bound processes are used in the exper-
iments to evaluate the performance of the system with
each of the three prediction schemes implemented in inter-
rupt handler (priority-based scheme is denoted as “prio”,
frequency-based scheme as “freq” and probabilistic scheme
as “prob” in the figures below) against the original Linux
system (denoted as “org”). For each UDP-server process,
a UDP-client process is running on a separate machine to
periodically send a fixed number of packets to it. Both
UDP and CPU-bound processes are set in SCHEDFIFO
class. The higher priorities are assigned to the processes
with the shorter periods. This essentially simulates Rate
Monotonic Scheduler (RMS) in Linux. All experimental
machines have 1.80GHz Pentium IV processors with 1G
RAM connected by a PRO/100Mbps Ethernet cards.

First, a single UDP-server process in low priority (UDP-
server1) and a CPU-bound process in high priority (CPU-
bound) are running on the experimental machine. In Fig-
ure 3, the horizontal axis represents the workload consisting
of two letters. The first letter is the workload of CPU-bound,
and the second one is of UDP-server1, wherel starts for low,
m for medium, andh for high. As shown in Figure 3 (a),
CPU-bound has no deadline misses on the modified Linux
with any prediction scheme under all different workloads.
By contrast, deadline misses start occurring on the origi-
nal Linux when the workload of CPU-bound is high, and
the miss rate is up to 1 when the workload of both CPU-
bound and UDP-server1 are high. While UDP-server1 has
lots of losses on all systems due to its low priority, there are
much more losses on the original Linux than the modified
Linux with the prediction schemes in most cases as shown
in Figure 3 (b). All three prediction schemes have similar
performance because there is only one UDP process with
active network interrupts all the time. Several other system
processes, such as ntpd (low priority), ypbind (low prior-
ity) and watchdog (high priority) may receive the packets
from the same network device occasionally, which causes
the slight difference between different prediction schemes.

ll lm lh ml mm mh hl hm hh

Workload

C
P

U
−

bo
un

d
P

ro
ce

ss
 M

is
s

ra
te

0.
0

0.
2

0.
4

0.
6

0.
8

org prio freq prob

(a)

ll lm lh ml mm mh hl hm hh

Workload

U
D

P
−

se
rv

er
1

Lo
ss

 R
at

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

org prio freq prob

(b)

Figure 3. Single UDP-server Process

On the original Linux, the service for CPU-bound is
frequently interrupted by processing the incoming packets.
Though most packets are handled by the bottom half, many
of them will then get dropped afterwards because UDP-
server1 in low priority cannot be scheduled to pick them up
in time. The wasted service time for these dropped pack-
ets in bottom half degrades the service for both CPU-bound
and UDP-server1. However, on the modified Linux with
any of the prediction schemes, the interrupts are associ-
ated with UDP-server1, and thus the low priority of UDP-
server1. Consequently,the interrupt handler gets deferred
frequently and this delay enables the guaranteed service for
CPU-bound. Moreover, such delay may also cause some
packets to be dropped before bottom half invocation, or
packets to be handled in batch, which reduces the wasted
time and overhead in bottom half. In return, UDP-server1
receives better service.

Then, two UDP-server processes, UDP-server1 in lower
priority and UDP-server2 in high priority, are running on
the experimental machine with a single CPU-bound pro-
cess in medium priority. In Figure 4, the first letter of
the workload representation by the horizontal axis is of
UDP-server2, and the second one is of UDP-server1. The
workload of CPU-bound keeps as medium. On the sys-
tem “prio”, the interrupt handler is mostly associated with
the high priority of UDP-server2 and thus executed imme-
diately to receive the packets, which results in better ser-
vice for UDP-server2, but worse service for CPU-bound
and UDP-server1 as shown in Figure 4. This is closer to
the performance on the original Linux, where the interrupt
service has the highest priority in general. On the system
“freq”, when the workload of the UDP-server2 is lower
then UDP-server1, the interrupt handler is mostly associ-
ated with the low priority of UDP-server1 and thus the exe-
cution gets deferred. Consequently, this results in better ser-
vice for CPU-bound and UDP-server1, but may cause more
packets dropped unnecessarily for UDP-server2 as shown
in Figure 4(d) under workload “lm”, “lh”, “mh” and “hh”.
On the system “prob”, the priority of interrupt handler is
probabilistically changing based on the interrupt frequency

83

of UDP-server1 and UDP-server2. As shown in Figure 4,
it provides much better service for CPU-bound and UDP-
server1 than the system “prio” and “org”, but this perfor-
mance gain is at the certain cost of service for UDP-server2
as on the system “freq”. However, it provides much better
service for UDP-server2 than the system “freq”. Moreover,
Figure 4(a)(b) shows that overall the system “prob” has the
lowest CPU miss rate and the lowest total UDP-server loss
rate out of all four systems. By using frequency based prob-
abilistic prediction scheme, the interrupt scheduling can be
more intelligently coordinated with process execution and
therefore result in better performance.

ll lm lh ml mm mh hl hm hh

Workload

C
P

U
−

bo
un

d
M

is
s

ra
te

0.
0

0.
2

0.
4

0.
6

0.
8

org prio freq prob

(a)

ll lm lh ml mm mh hl hm hh

Workload

T
ot

al
 U

D
P

−
se

rv
er

 L
os

s
R

at
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

org prio freq prob

(b)

ll lm lh ml mm mh hl hm hh

Workload

U
D

P
−

se
rv

er
1

Lo
ss

 R
at

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

org prio freq prob

(c)

ll lm lh ml mm mh hl hm hh

Workload

U
D

P
−

se
rv

er
2

Lo
ss

 R
at

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

org prio freq prob

(d)

Figure 4. Multiple UDP-server Processes

4 Related Work

Many researchers have looked at the effect of interrupt han-
dling on the process execution. Mogual and Ramakrsh-
nan studied the overload behaviors in the interrupt-driven
network subsystems and proposed a set of techniques to
eliminate receive livelock [4]. Research efforts such as
RTLinux [9] and RTAI [8], provide real-time support on off-
the-shelf (COTS) system through separated real-time inter-
rupt handlers. Other approaches provide predictability by
imposing a CPU time budget on interrupt service [2, 3, 7].
However, none of the above research works distinguish the
interrupts requested by different processes and schedule the
interrupt handlers based on the corresponding processes.

Early demultiplexing [1, 5, 6] has been used to iden-
tify the relationship between network interrupts and the
associated processes. While this is important to provide
high-performance network, this in general requires special

hardware support or network driver modification. In con-
trast, this work attempts to provide fairer and more pre-
dictable service bypredictingthe dependencies between in-
terrupts and processes based on the historical information
and schedule them accordingly without any addition hard-
ware support or driver modification.

5 Conclusions and Future Work

This paper explores the effect of I/O interrupts on the pro-
cess execution, and proposes three prediction schemes to
identify the corresponding process associated with an I/O
interrupt. The preliminary experiment results have shown
the possible performance gain of the proposed approach,
especially with the probabilistic prediction scheme. More
evaluation is to be done. Currently, this work is being im-
plemented on Linux with Real Time kernel patch. The eval-
uation is under the way. Other future work includes eval-
uating this approach in the SMP system and developing an
analytic model for the probabilistic prediction scheme.

References

[1] P. Druschel and G. Banga. Lazy receiver processing (lrp):
A network subsystem architecture for server systems. In
Proceedings of USENIX Symposium on Operating Systems
Design and Implementation, 1996.

[2] T. Facchinetti, G. Buttazzo, M. Marinoni, and G. Guidi.
Non-preemptive interrupt scheduling for safe reuse of legacy
drivers in real-time systems. In17th Euromicro Conference
on Real-Time Systems, 2005.

[3] M. Lewandowski, M. J. Stanovich, T. P. Baker, K. Gopalan,
and A.-I. A. Wang. Modeling device driver effects in real-
time schedulability analysis: Study of a network driver. In
RTAS ’07: Proceedings of the 13th IEEE Real Time and Em-
bedded Technology and Applications Symposium, pages 57–
68, Washington, DC, USA, 2007. IEEE Computer Society.

[4] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel.ACM Trans. Comput.
Syst., 15(3), 1997.

[5] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The packet fil-
ter: An efficient mechanism for user-level network code. In
Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, 1987.

[6] G. Parmer and R. West. Predictable interrupt management
and scheduling in the composite component-based system.
In RTSS ’08: Proceedings of the 2008 Real-Time Systems
Symposium, pages 232–243, Washington, DC, USA, 2008.
IEEE Computer Society.

[7] J. Regehr and U. Duongsaa. Eliminating interrupt overload
in embedded systems. Unpublished.

[8] Real-Time Application Interface: http://www.rtai.org.
[9] Real-Time Linux: http://www.rtlinux.org.

[10] Y. Zhang and R. West. Process-aware interrupt scheduling
and accountability. InProceedings of the 27th IEEE In-
ternational Real-Time Systems Symposium (RTSS), Rio de
Janeiro, Brazil, December 2006.

84

On Interrupt Scheduling based on Process Priority for Predictable Real-Time
Behavior

Minsub Lee, Juyoung Lee, Andrii Shyshkalov, Jaevaek Seo, Intaek Hong, Insik Shin
Dept. of Computer Science

KAIST, South Korea
insik.shin@cs.kaist.ac.kr

Abstract

Traditionally, kernel services are of a higher priority
than user processes. The kernel can preempt the currently
executed process in order to perform interrupt handling for
the behalf of another process, even though the latter pro-
cess is of a lower priority than the former. This can be
viewed as priority inversion. We propose a new interrupt
handling approach that couples interrupt scheduling with
the priority of a process associated with the interrupt to
handle. We present techniques to derive exact process pri-
orities in handling interrupts for incoming network packets.
The proposed approach has been implemented in Linux 2.6,
and experiment results show that it reduces interference of
lower priority processes to higher-priority process through
interrupt handling.

1 Introduction

As the number of hardware devices grows higher, gen-
eral purpose operating systems are more often used for real-
time applications. Such operating systems were not origi-
nally designed to satisfy real-time application requirements.
Therefore, a number of studies have been conducted to add
predictable and efficient task management to commodity
operating systems [8],[3].

One of the main design goals of commodity operating
systems is the system’s responsiveness. Particularly, it im-
plies that interrupt handling must be processed by an op-
erating system immediately. However, interrupts process-
ing, which can take some time, may not be useful for the
currently executed task. Additionally interrupt processing
time is often deducted from interrupted thread. Because in-
terrupted thread does not necessarily get affected by inter-
rupt processing, this can dramatically distort the real-time
performance of the operating system. Therefore, interrupts
handling is an important issue to address in order to provide
predictability on the execution of real-time tasks.

In Linux, interrupts are processed by kernel threads,
which have higher priority than any user thread. From

thread scheduler point of view, scheduling is done accord-
ing to threads’ priorities. However, because interrupts are
processed to serve different threads with different priorities,
the priority inversion may occur. As an example, consider
a running user process with priority 17, a sleeping one with
priority 21 and an incoming network packet for the second
process. This packet will be processed immediately by ker-
nel process, which in turn will delay a thread of higher pri-
ority. The more incoming packets, the less predictable is
execution of the first thread.

In this paper we addressed the priority inversion prob-
lem, which is caused by interrupt processing of network
stack. We have designed a technique to process the net-
work interface card interrupts in order of priorities of the
threads that require interrupts processing. We have also im-
plemented our technique for Linux kernel version 2.6 and
conducted performance evaluations. Our results show that
our interrupt handling approach is suitable to real-time en-
vironment.

The rest of paper is organized as follows. Section 2 sum-
marizes related work. Section 3 gives an overview of the
interrupt handling in Linux. Our approach is described in
section 4 and quantitative performance evaluation of our
implementation is provided in section 5. Finally, section
6 contains conclusions.

2 Related Work

Several other research projects have investigated inter-
rupt processing distortions on real-time performance of
Linux systems. An improved accounting of consumed CPU
time during interrupts has been proposed in [3] and [8]. A
probabilistic approach [8] has been developed to determine
possibly affected processes during top half execution and
schedule bottom half with regard to priorities. In this paper
however, we describe an approach to find exact processes,
and hence priorities, for each interruption caused by incom-
ing network packet. Therefore, our approach can make pri-
ority based interrupt scheduling decisions more accurately.

Some researchers focused on other systems than Linux
to investigate on similar issues. Scheduling of interrupts

1

85

���������� 	
�
������������ 	
�
������������� 	
�
������������� 	
�
������������ 	
�
�������������� 	
�
� �
ksoftirqd()

Kernel daemon

thread

�������
Top Half

NIC

interrupts

do_softirq()

raise_softirq()

Bottom Half

softirq_vec[32] pending bits

Figure 1. Top and bottom halves of interrupt
handling in Linux

and predictable interrupt management has been developed
for complex systems [5]. Improved performance of net-
work stack in UNIX operating systems has been proposed
by scheduling incoming network traffic with priorities [2].
While these studies focused on providing fairness and in-
creased throughput under high load, our technique focuses
on real-time behavior.

Many protocols have been introduced to address the pri-
ority inversion problem when tasks are accessing critical
sections in a mutually exclusive manner. Such protocols
include the Priority Inheritance Protocol (PIP) [7], the Pri-
ority Ceiling Protocol (PCP) [6], and Stack Resource Policy
(SRP) [1]. While these protocols concern the priority inver-
sion problem within the context of process scheduling, our
work concerns the problem taking process scheduling and
interrupt handling into consideration together.

3 Interrupt Handling

Interrupts can be caused by hardware as well as by soft-
ware. In Linux, interrupt handling is done by the kernel,
which is invoked every time an interrupt occurs. Interrupts
can occur at any time during execution, their number is dif-
ficult to predict.

To achieve better performance and responsiveness, inter-
rupt handling in Linux kernel 2.6 is divided into two phases.
The first one, called top half, starts when an interrupt signal
invokes the interrupt service routine (ISR). Then, ISR dis-
ables interrupts of the same type and calls the corresponding
interrupt handler. Because interrupt handlers execute asyn-
chronously, the processing at this phase should be as quick
as possible.

For instance, upon receiving incoming packets off the

network, network interface cards (NIC) issue interrupts im-
mediately to alert kernel of their availability. Then, the ISR
quickly responds to the interrupts by executing the network
card’s registered handlers. Most of all, they copy the new
packets into the main memory. For remaining processing,
network card’s registered handler must raise software inter-
rupt (softirq) [4], which means setting pending bit to 1
in a softirq vector array (softirq vec) (Figure 1).

All other interrupt processing is deferred to later, so-
called the bottom half phase. Bottom half usually requires
longer processing time than top half. Under heavy load such
as high network traffic, the frequency of interrupts is high,
and bottom half processing can consume much of the CPU
time.

In Linux, bottom half phase is executed periodically by
a set of per-processor kernel threads (ksoftirqd), which
have priority of 15. These kernel threads scan softirq vector
array for set pending bits and execute corresponding han-
dlers for further interrupt processing. Additionally, inter-
rupts are processed regardless of the priorities of the pro-
cesses, which interrupts serve.

Consider a currently running user process with the high-
est priority, which does not have any network communi-
cation. Any incoming network network packet will inter-
rupt the current thread at least once during top half phase
processing. Later, since the kernel thread has even higher
priority, the bottom half processing may interrupt current
thread for even longer time than top half, if the packet is
large. Therefore, since the packet is processed for another
process with lower priority than current, such scenario is a
priority inversion one.

Since the top half cannot be delayed, in this paper we
are particularly interested in determining when is the proper
time for executing the bottom half phase and which inter-
rupts to process first.

4 Our Approach

This section describes the design and implementation of
our new interrupt handling approach in Linux. A key idea
of our approach is that some incoming packets are associ-
ated with its intended receiver processes (and their prior-
ities) during interrupt handling. Those packets are given
process priorities in the top half, and the bottom half is
equipped with priority-based scheduling capable of delay-
ing interrupt processing even further, in order to avoid the
priority inversion problem.

UDP packets carry process-related information, which is
a port number. In the top half, an UDP packet is fetched
from the NIC’s buffer to the main memory. We then ex-
tract a port number out of the packet. This can be easily
done (with a single memory lookup), as the port number is
stored in a fixed location in the packet. In order to assign
priorities to packets, it needs to figure out which sockets are

2

86

A A A A

A A

A A Process with high priority

A A A A

TH TH

TH TH

BH BH

BH BH

interrupt

interrupt do_softirq()

do_softirq()

TH TH

BH BH

Top halves

Bottom halves

Our approach

Linux

Figure 2. Linux vs. our approach

coupled with which processes, which is costly. Hence, we
maintain a port number indexed process priority table, and
it helps to achieve a faster conversion of a port number to a
priority. Each entry of the table is created when a process
binds a socket and becomes invalid when the process closes
the socket. Once a port number is available, we can simply
consult this table to map the port number to the priority of
a corresponding process. Then, ISR places the packet into
the softirq vector array (softirq vec) according to its
corresponding priority. Packets are stored in the queue in a
decreasing order of priorities. The further processing of a
packet is then deferred to the bottom half.

In the bottom half, a kernel thread (ksoftirqd) peri-
odically checks out the softirq vector array for set pending
bits. When the pending bit for network packet reception
is set, our modified ksoftirqd goes through the packet
data queue of softirq vec to handle packets one by
one, as long as their corresponding priorities are no lower
than the priority of the currently executed process. Note
that the packet data queue is sorted according to packet’s
corresponding priorities. When our modified ksoftirqd
meets a packet with a priority lower than that of the cur-
rently executed process, it stops taking care of incoming
packets.

Figure 2 shows our new interrupt service approach, in
comparison to the original Linux. By using our interrupt
service routine, we can reduce interference of interrupt han-
dling to processes by as much as Tb∗Nl−Td∗Nh, where Tb

is the bottom half executing time, Td is the extra time cost
in top half for early demux, and Nh and Nl are the number
of packets for higher and lower priority processes, respec-
tively. According to its design, top half extra work is much
smaller than that of bottom half, so interference to processes
can decrease when Nl is smaller then Nh. It means our in-
terrupt service model can provide less interference to higher
priority process.

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0 100 200 300 400 500 600 700 800 900

ex
ec

ut
io

n
tim

e(
se

c)

network workload(# of packets/sec)

HP Ours
LP Ours

HP Linux
LP Linux

Figure 3. Comparison of execution times

5 Experimental Evaluation

This section presents experimental results in order to
show that our approach is suitable in the real-time environ-
ment.

5.1 Experiment Setting

To implement our approach, we make minimum modifi-
cations to the Linux kernel and network device driver. We
patched Linux kernel 2.6.23. All experiments are performed
on the QEMU emulator with a 2.8GHz x86 single core pro-
cessor and virtual NIC, which is interconnected with a host
machine. The host machine has 2.8GHz AMD Phenom
CPU, 4GB main memory.

There are two processes executing concurrently. They
are a UDP server and a dummy job process. The UDP
server handles burst of the packets, and the dummy job pro-
cess executes Algorithm 1. We set the priority of the UDP
server to 20, which follows default Linux settings. We mea-
sure execution time of the dummy job processes with prior-
ity 17(LP) and priority 21(HP), which are higher and lower
than UDP server, respectively. We use a UDP packet as a
network workload. The UDP packets are sent from a host
machine through the virtual network device. We perform
experiments in the original Linux and in our patched Linux,
respectively.

Algorithm 1 Dummy Job Algorithm
start time ← current clock();
i ← ∞;
while(i--) { i←(i+i)/2+(i-i)/2; }
end time ← current clock();

3

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

de
al

in
e

m
is

s
ra

te

network workload(# of packets/sec)

Our model
Linux

Figure 4. Comparison of deadline miss ratios

5.2 Results

First, we compare execution times of processes with dif-
ferent priority under different network workload. Figure 3
shows measured execution times with the increasing size of
burst of packets. In the original Linux, the higher prior-
ity process (HP) and the lower priority process (LP) show
similar behavior. The reason why two processes show sim-
ilar behavior is that the network interrupt handling routine
preempts both processes without regard to their priorities.
Under our interrupt handling approach, the higher prior-
ity dummy job process (HP) shows stable execution times.
This means that HP is less affected from the interrupts
which are associated with the lower priority process (LP).
In the top half, the early demux procedure assigns the prior-
ity of a receiver process to a bottom half interrupt handling
routine. By using this information, the bottom half sched-
uler is able to “delay” interrupt handling if it is intended for
the process with a lower priority than the current process.
Such delaying bottom half interrupt handling can reduce the
number of times that HP should yield to the interrupt han-
dler. The execution time gap between under original Linux
and under our patched Linux process represents how much
of bottom halves has been delayed.

In our interrupt service approach, the execution time of
HP is only increased about 6% when the client sends 900
packets per second. While the higher priority process shows
stable behavior over different network workload, the lower
priority process shows similar behavior to other processes
under the original Linux setting.

Second, we compare the deadline miss ratio of processes
of higher priorities than the UDP server in both Linux and
our patched Linux. To measure the deadline miss ratio, we
execute the dummy job periodically every 8 seconds and
its deadline is 8 seconds. Figure 4 shows the result of this
experiment. Under our interrupt service approach, it misses
no deadlines. This shows that our interrupt service model

is suitable to real-time environment, as it can reduce the
interference from lower priority processes through interrupt
handling.

6 Conclusion

This paper presents the design and implementation of a
new Linux interrupt handling approach for incoming pack-
ets. It couples packets with the priorities of their receiver
processes, and their interrupt handling is performed accord-
ing to priorities. This approach is able to prevent the priority
inversion problem, in particular, between the currently ex-
ecuted process and the receiver process of a packet under
interrupt handling.

We demonstrate the effectiveness of this approach by
implementing it over Linux. Experiments show that it ef-
fectively provides the predictable execution of processes
of higher priorities. In this paper, only UDP packets are
covered. Our future work includes accommodating more
sophisticated protocols, such as TCP. While TCP employs
flow control, delaying interrupt handling can defer TCP ac-
knowledge and may put the TCP communication unstable.
We plan to incorporate TCP packets addressing such con-
cerns.

Acknowledgement

We thank anonymous reviewers for their constructive
comments. This research was supported in part by IT R&D
program of MKE/KEIT of Korea [2009-KI002090, Devel-
opment of Technology Base for Trustworthy Computing],
and KAIST ICC, KIDCS, KMCC, OLEV, and URP grants.

References

[1] T. P. Baker. Stack-based scheduling of realtime processes.
Real-Time Systems, 3(1):67–99, March 1991.

[2] P. Druschel and G. Banga. Lazy receiver processing (lrp): A
network subsystem architecture for server systems. In Proc.
of USENIX Symposium on Operating Systems Design and Im-
plementation, 1996.

[3] K. J. Jung, S. G. Jung, and C. Park. Stabilizing execution time
of user processes by bottom half scheduling in linux. In Proc.
of Euromicro Conference on Real-Time Systems, 2004.

[4] R. Love. Linux Kernel Development. Novell Press, 2005.
[5] G. Parmer and R. West. Predictable interrupt management

and scheduling in the composite component-based system. In
RTSS, 2008.

[6] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchro-
nization protocols for multiprocessors. In RTSS, 1988.

[7] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task scheduling
in distributed real-time systems. In Proceedings of the Inter-
national Conference on Industrial Electronics, Control, and
Instrumentation.

[8] Y. Zhang and R. West. Process-aware interrupt scheduling
and accountability. In RTSS, 2006.

4

88

Time-Based Intrusion Dectection in Cyber-Physical
Systems

Christopher Zimmer, Balasubramanya Bhat, Frank Mueller
North Carolina State University

{cjzimme2,bbhat}@ncsu.edu,mueller@cs.ncsu.edu

Sibin Mohan
University of Illinois at Urbana Champaign

sibin@cs.uiuc.edu

Abstract—Embedded systems, particularly those with temporal
constraints known as real-time systems, are increasingly de-
ployed in every day life. Such systems that interact with the
physical world are also referred to as cyber-physical systems
(CPS). These systems are common in critical infrastructure from
transportation to health care. They impact our life and the
environment we live in. While security in CPS-based real-time
embedded systems has been an afterthought, security aspects are
becoming critical as these systems are increasingly networked
and exhibit distributed inter-dependencies. The advancement in
their functionality has resulted in more conspicuous interfaces,
which can be exploited to attack such systems. Hence, security
functionality is becoming a necessary component of embedded
real-time design, particularly in the CPS realm.

In this paper, we present a method for time-based intru-
sion detection. More specifically, we detect the execution of
unauthorized instructions in CPS environments with real-time
constraints. The functionality in this work is provided through
the utilization of values attained from performing worst-case
timing analysis. Timing analysis values are readily available as
they are determined prior to the schedulability analysis of real-
time systems. Using the same tools that provide a macro view
of timing within a CPS application, we demonstrate how to
provide more focused timing values for specific execution scopes
of an application. Utilizing such focused values, the application
is enhanced to engage in internal self checks. Internal timing
checks are verified against focused timing values to enable the
detection of code injection attacks. To the best of our knowledge,
such detection of system compromises through micro-timing
information is a novel contribution to CPS environments with
real-time constraints.

I. I NTRODUCTION

Embedded systems have permeated into every aspect of day-
to-day life. Examples range from non-critical systems, such
as televisions or toasters, over moderately critical systems,
such as stop lights or other enhancing infrastructure, to highly
critical ones, such as anti-lock breaks, hydro-electric dam
controls and flight control systems. The latter two categories
are examples of cyber-physical systems (CPS) where system
control affects human lives or interacts with the environment
in general. Most such cyber-physical control systems are
embedded systems with real-time constraints. As these systems
are increasingly used in our daily life, insuring that these
devices are secure from intrusion and tampering by adversaries
is a design challenge of utmost importance.

While the development of real-time systems for the CPS
domain is very stringent, there might be vulnerabilities ex-
posed by libraries or methods that may enable an attacker

of the system to execute arbitrary instructions on the target
machine,e.g., by injecting malicious code. As more embedded
applications, particularly CPS applications, utilize networks
these attacks are prone to become prevalent against real-time
systems as well.

The design constraints of embedded real-time systems lend
themselves well to the development of security methodologies
while such techniques would not be directly applicable to
general-purpose applications. The primary constraint of inter-
est is the detailed knowledge obtained from timing analysis on
CPS applications within real-time systems. Here, analysis is
performed to determine timing information about the applica-
tion, such as worst case execution time (WCET) and best case
execution time (BCET). These two timing metrics represent
a subset of knowledge common to real-time applications,
which lend themselves well to security analysis: As WCET
and BCET safely bound the upper and lower execution time
of specific code sections, execution times above or below
the respective bounds are strong indications for a system
compromise.

In this paper, we present a methodology that utilizes instru-
mentation and analysis from within real-time applications in
the attempt to detect the execution of unauthorized code. Using
actual timing metrics and comparing them with worst-case
measurements allows the programs to detect security breaches
due to intrusion within the system as well as situations where
an application is going to exceed its timing requirements prior
to the actual deadline miss, which provides ample time to
transition to a fail-safe state.

II. T IMING ANALYSIS

Timing analysis is a strict requirement for hard real-time
systems where a missed deadline may render the entire
system incorrect. Timing analysis is used to insure that an
application’s best and worst case times can be bounded. The
analysis allows designers to verify if system tasks can meet
their deadline.

The purpose of timing analysis in real-time systems is
generally to determine the schedulability of a task set,i.e.,
to ensure that each task meets its deadline. In this context, the
overall WCET bound of a task becomes the key metric. Our
work heavily relies on WCET bounds, but for security reasons
and not for the determination of schedulability.

To conduct our study, we use our WCET tool chain [3],
[6], [5] that enables us to accurately gauge the WCET values

89

of several applications from both the macro view of the
application as well as micro ranges of instructions in the code.
These analysis tools provide timing data at multiple levels and
enable the evaluation of such data for more focused ranges
of code. Figure 1 depicts a graphical representation of the
tools utilized to perform timing analysis in our experiments.
A compiler provides an assembly file of the application in
annotated PISA assembly format. This intermediate code along
with loop bounds is then fed into a control-flow analysis tool.
Subsequently, control-flow analysis and static-cache analysis
are performed. The respective outputs are then consumed
by a timing analyzer. The framework utilizes the annotated
assembly and loop bounds to derive safe WCET and BCET
bounds.

Estimate
WCET

Configuration
Caching

Simulator

Cache

Static

Source and Constraint
Files

C Control Flow

Information

Cache

Categorizations

Instruction
Dependent
Machine

Information

Timing
Analyzer

Compiler

Fig. 1. Timing Analysis Tools

Throughout our work, we enhanced the timing analysis
toolset in Figure 1 to determine not only the WCET but also
the best case execution time (BCET) bounds, and not just for
entire tasks but also for micro ranges of code. The original
toolset provided timing feedback at the functional and loop
level. We enhanced this capability to supply timing feedback
for a series of smaller ranges within the same simulation run
including aggregate values of WCET bounds for sequential
instructions plus the cost of branch mispredictions. The re-
sulting bounds are tight and enable us to determine, within
a reasonable margin, if a security breach has occurred,e.g.,
through attack code injection.

III. D ESIGN

This work puts forth the utilization of timing values readily
available in real-time cyber physical systems to establish
a intrusion detection technique. By utilizing our technique,
critical and potentially vulnerable security-related information
can be spread through-out the entire system. The primary goal
of this work is to design and assess methodologies that provide
real-time CPS applications with an intrusion detection security
mechanism.

A. Timed Return Path Security (TRPS)

Timed Return Path Security (TRPS) is an application-level
instrumentation that utilizes communication through the sys-
tem clock in order to maintain a series of sanity checks struc-
tured throughout the code. To detect code injection attacks,
we structure sanity statements mainly around application code
that could potentially be overwritten, allowing the attacker to
perform malicious actions. Such attempts are most commonly
known as buffer overflow attacks. They involve overwriting
the return address of a routine whose frames are stored on

the stack. When the program executes the return statement
of such a function. The control will be transferred to the
location indicated by the overwritten return address. Attackers
often choose a modified return value pointing into hand-
written instructions. Such specialized attack codes may modify
global program variables or even spawn new programs given
sufficient knowledge of the affected application.

TRPS uses a mechanism to detect such attacks. Mischievous
reasons for doing so may range from changing data for
personal benefit to causing potentially catastrophic damage to
the CPS environment,e.g., to overload a power transformer by
changing safety bounds data resulting in irreversible damage.

TRPS creates multiple sanity checks throughout an appli-
cation at critical points where the program counter could
potentially be transferredvia a pointer to an undesignated area.
These checks obtain clock information just before and after
the return instruction as seen in steps 1 and 2 of Figure 2.
Our method then utilizes the difference between the two time
stamps and compares this delta against an already predeter-
mined worst-case execution bound for the respective return
path. This is depicted in step 3 of Figure 2. If the dynamically
observed delta exceeds the WCET bound, excess instructions
must be executed indicating a potential security compromise.
In contrast to arbitrary code sections, static timing analysis on
these focused regions yields tight WCET bounds since they
mainly consist of a single straight-line execution path. Code
sections subject to pointer-controlled flow transfers whose
pointers are stored on stack generally comprise a series of
loads and stores to restore prior processor state and unwind the
stack. The communication structure of this method is displayed
in Figure 2. It shows the application interfacing with the
system twice to obtain values from the system clocks before
checking the timestamp delta to validate WCET bounds. It
is important to note that even if these regions exceed the
measured WCET, it does not mean the overall program will
exceed its calculated WCET. This makes TRPS well suited
for detecting attacks that would not result in a deadline miss
otherwise.

Main Foo

Operating System

Query System Clock

Function Call and Return

On Return Validate

Fig. 2. Timed Return Path Security

IV. I MPLEMENTATION AND EXPERIMENTATION

FRAMEWORK

The overall framework for experimentation is depicted in
Figure 3. We obtained our static WCET analysis tool that

90

provided us with the necessary timing analysis data [3], [6],
[5]. The timing analysis tool was configured for a system
utilizing the PISA instruction set. The cache configuration
for both the static cache simulator and the timing analyzer
were configured without data caches but with instruction cache
misses accounted for in the WCET analysis. The choice of
the cache configurations parameters was intentional as our
objective here was to assess a bound on detectable code
injections. In other words, given the tightest possible timings
on application code, we wanted to determine the largest num-
ber of cycles that would remain undetected by our security-
enhancing methods. For this metric, the smaller this threshold,
the stronger is the protection.

C Source
Files

Scheduer
WCETs for

Loops/Tasks

Gcc PISA
Compiler

P−Compiler
for PISA

assembly

SimpleScalar Simulator

C Source Files
Security Data

Task Set

Static
Timing Analyzer

instruction/
data info

Fig. 3. Framework

To facilitate our experiments, we enhanced the timing
analyzer with support for checkpointing instructions. These
checkpointing instructions allow us to determine the exact
cycle time at which a single instruction finishes execution.

We further obtained a customized version of the Sim-
pleScalar processor simulator [1]. This modified version of
SimpleScalar supports multitasking and has been enhanced to
support a scheduler thread / task [4]. The target instruction
set architecture for this simulator is PISA. This matches the
input assembly utilized by our timing analysis tools. For
the purpose of this work, we assess benchmark results in
SimpleScalar configured with perfect branch prediction and
prefect instruction caches but without data cache support. This
matches the configurations of the static analysis tools.

As discussed before, these configurations provide a lower
bound on the amount of code injection that may remain
undetected. If we were to relax our configuration constraints,
WCET bounds obtained by static analysis would become less
tight implying that an attacker could potentially execute more
instructions prior to being detected. Assessing such a trade-off
is limited to a concrete implementation platform (see below)
in this paper.

The scheduler utilized within the SimpleScalar framework
supports multiple preemptive and non-preemptive scheduling
algorithms. For the course of this work, we used a preemptive
EDF schedule to most accurately show the side effect of our
applied methods on the scheduler itself. Our implementation
modified the scheduler to support relative time for each thread
aggregated during preemptions and at security checks of a task
to most accurately track the clock period of a particular task.

We further made the following enhancements to the Sim-
pleScalar environment. We implemented two system calls to
query timing information. Before a return from a function /
method, the first system call is issued. At the destinations of a
function / method return, the second system call is triggered.
Both calls query the clock, and the difference in time between
the two calls is then compared with static timing bounds for
the respective code sections.

The motivation for creating two distinct system calls was
to create a sequential ordering of these calls. If call one was
issued without a corresponding call two (or vice versa), a
control-flow violation is detected. Subsequently, a system-
defined adverse action, such as transitioning into a fail-safe
state, can be initiated. In effect, the imposed call ordering
represents a security side-check that provides the means to
detect certain attacks missed if only execution cycles were
checked. For example, if an attacker were to execute injected
code and then transfer control to the instructions past our
second system call in an attempt to bypass our imposed
security, the absence of the second system call would be
detected at the next return from a function when another
instance of the first system call is issued.

We tested our implementation using a set of floating-point
and integer benchmarks from the C-Lab benchmark suite [2].
The actual benchmarks used are shown in Table I.

C Benchmark Function

adpcm Adaptive Differential Pulse Code Modula-
tion

lms An LMS adaptive signal enhancement
srt Bubble Sort
fft Fast Fourier Transform

TABLE I
C-LAB BENCHMARKS

V. RESULTS

In TRPS, the timed return path verification, utilizes an
absolute task timer to determine the total time since the
simulation start point.

Timed Return Path Security Results: Figure 4 depicts base-
line / modified (TRPS) cycle overheads for WCET bench-
marks SRT, LMS, ADPCM and FFT. The overheads, ranging
between 0.22% and 18.71%, are often negligible or at most
tolerable assuming sufficient slack in a real-time task schedule.
Higher overhead in ADPCM is due to its modular structure
compared to other benchmarks. It consists of several small
functions that are called with a loop. Thus, our TRPS checks
are invoked significantly more frequently (at nesting level one)
than in other benchmarks (at nesting level zero — not inside
of any loops).

Table II shows the sensitivity results of TRPS for various
benchmarks and their respective functions. In this experiment,
the attack code, after executing its injected code, returns to
the exact spot in the code that the original return for a call
would have jumped to. The table then reports the WCET in
cycles for the return sequence as reported by timing analysis

91

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

SRT LMS ADPCM FFT

O
ve

ra
ll

C
yc

le
s

Benchmark

Baseline
Modified

.22%

1.54%

18.71%

.021%

Fig. 4. TRPS Overhead

(column 3) and the number of slack cycles that would remain
undetected (column 4). This slack amounts to the difference
between WCET and actual execution time, the latter of which
is observed from SimpleScalar simulation. The WCET bound
is extremely tight since TRPS assesses time on a straight-line
path of the control flow. Hence, the window of vulnerability is
restricted to a sensitivity of 9-39 cycles. This limits the amount
of code that may be injected code without being detected.

These results provide a lower bound, but it can be argued
that the upper bound for undetectable injections is larger.
First, an attacker could skip over selected instructions on the
return path that manipulate registers and stack and instead
inject their own code. However, disguising the side effects of
polluting stacks and registers may not be trivial depending on
the actual code. Conversely, we argue that additional security
measurements are quite feasible, such as exploiting average
case execution times for checks on timing outliers. Such
methods are probabilistic and may result in large numbers of
false positives. Nonetheless, early warning indicators could be
dynamically triggered to activate stringent security checks that
bare higher costs. Alternatively, system functionality could be
reduced in order to limit potential damage to thephysical side
of the CPS application. Overall, the results in Table II illustrate
that the timing estimations and subsequent security checks for
straight-line code are very precise, thus leaving little room for
injected code.

TABLE II
TRPS WCETAND SENSITIVITY 4KB I-CACHE[CYCLES]

Benchmark Function WCET Sensitivity
SRT Initialize 35 25
SRT BubbleSort 45 19
LMS LMS 28 18
FFT FFT 25 8
ADPCM Encode 93 11
ADPCM Decode 65 39

VI. CONCLUSION

In this work, we developed a novel software methodology
that provides enhanced security in deeply embedded real-
time systems. We attain elevated security assurance through
new levels of instrumentation that enable us to detect anoma-
lies, such as timing dilations exceeding feasible bounds. We
utilize tight timing bounds for selected code sections that
are readily available at no extra cost whenever static timing
analysis is required as part of schedulability analysis of a real-
time system. The timing bounds are subsequently utilized to
monitor execution during runtime. Upon validation of timing
bounds, no action is taken. Upon violation of bounds, an
alert is raised that provides an opportunity to reduce system
functionality, revert to a fail-safe state or shut down the system
altogether pending further investigation/assessment. To the
best of our knowledge, such detection of system compromises
through micro-timing information is a novel contribution to
CPS environments with real-time constraints.

REFERENCES

[1] D. Burger, T. Austin, and S. Bennett. Evaluating future microprocessors:
The simplescalar toolset. Technical Report CS-TR-96-1308, University
of Wisconsin - Madison, CS Dept., July 1996.

[2] C-Lab. Wcet benchmarks. Available from http://www.c-
lab.de/home/en/download.html.

[3] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley, and M. G. Harmon.
Bounding pipeline and instruction cache performance.IEEE Transactions
on Computers, 48(1):53–70, Jan. 1999.

[4] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and D. Whalley.
Parascale: Expoliting parametric timing analysis for real-time schedulers
and dynamic voltage scaling. InIEEE Real-Time Systems Symposium,
pages 233–242, Dec. 2005.

[5] S. Mohan, F. Mueller, D. Whalley, and C. Healy. Timing analysis for
sensor network nodes of the atmega processor family. InIEEE Real-Time
Embedded Technology and Applications Symposium, pages 405–414, Mar.
2005.

[6] F. Mueller. Timing analysis for instruction caches.Real-Time Systems,
18(2/3):209–239, May 2000.

92

Real-Time Process Control in Producing Clean Air
and Bio-Energy from Animal Waste

Yue Yu, Miao Song, Shangping Ren and Cindy Hood
Department of CS

Illinois Institute of Technology
Chicago, IL 60616

{yyu8, msong8, ren, hood}@iit.edu

Jun Zhu
Department of BBE

University of Minnesota
Waseca, MN 56093
zhuxx034@umn.edu

Gang Quan
Department of ECE

Florida International University
Miami, FL 33174

gang.quan@fiu.edu

Abstract—Rural areas offer a variety of waste bio-mass
streams including animal wastes that can be used as non-
food feedstock for bio-fuels and bio-energy production. Some
processes that can produce electricity directly from waste bio-
mass, such as from liquid swine manure, have been recently
developed. However, a widespread application of bio-reactor
technology at farm level has not ever been, and probably will
never be, materialized unless new improvements in both the
performance and economics of this technique are made. The
major bottleneck rests with the poor efficiency resulted from
little or no automated control of the bio-reactor system to assure
the operations consistently under the optimal status. The focus of
this WIP paper is to identify factors that affect the bio-reactor’s
operation status and build a event model to facilitate a formal
understanding about the status of the system from lower and
not always accurate physical data and making adaptive control
decisions at application layer.

I. INTRODUCTION

Bio-reactors are widely acknowledged to be an effective
tool to treat animal manure in an environmentally friendly
manner in that they can not only reduce the emissions of
nuisance gases by completely blocking the transport pathway
but also possess the capability of producing desired renew-
able products such as methane, bio-hydrogen, and organic
chemicals. However, a widespread application of bio-reactor
technology at farm level has not ever been, and probably will
never be, materialized unless new improvements in both the
performance and economics of this technique are made. The
major bottleneck rests with the poor efficiency resulting from
little or no automated control of the bio-reactor system so that
it can be operated consistently in an optimal state.

Unfortunately, traditional real-time process control tech-
nologies used in closed plant environment face two chal-
lenging issues that prevent them from being readily used
in the application mentioned above, in that they require to
integrate communication, computation, and sensing and actu-
ating through heterogeneous and widely distributed physical
devices and require close interactions among disparate physi-
cal devices and computational components within and among
physical world and cyber world. The focus of this WIP paper is
to build a formal event model to facility non-ad-hoc integration
between physical data and cyber process control layer.

The rest of the paper is organized as following: Section II
describe the process of producing clean air and bio-energy

from animal waste in details and identifies the issues to be
solved relating to the automated interactions between different
components of the system in a bio-energy production line.
Section III presents an event model that semantically bridges
the communications between the different physical devices
of the system and lays a theoretic foundation for formally
reasoning about the system. Related work and conclusions are
made in Section IV, Section V, respectively.

II. THE PROCESS OF PRODUCING CLEAN AIR AND
BIO-ENERGY FROM ANIMAL WASTE

The basic operating control of a bio-hydrogen system in-
cludes four subprocesses, that is influent tank process, the
bio-reactor process where the main reaction happens, the PH
controller process and the effluent process. Figure 1 depicts the
setting for generating bio-hydrogen from liquid swine manure.

Fig. 1. Laboratory setting for generating bio-hydrogen from liquid swine
manure

The influent tank provides the bio-reactor the manure liquid.
The concentration of the manure liquid is controlled under a
preset value within a ± error range. A mixer is used to ensure
that the manure liquid has an even concentration within the
influent tank. Only when the waste is well mixed before it can

93

be pumped from the influent tank to the bio-reactor. Clearly,
with different waste concentration, the speed of the mixer as
well as the time it takes to mix the waste liquid is different.
We should adjust it accordingly as running mixer with higher
speed or longer time than necessary increases the process cost.

The bio-reactor controls the factors that affect the operating
status to assure the system running in the best productive
condition. Four main factors are PH value, temperature, and
concentration of the manure liquid, and reaction time. Signals
are sent to the PH controller to add HCI or NaOH to the
bio-reactor to maintain an optimal PH value which is based
on the waste and the liquid concentration. Since the HCI or
HaOH are injected through a single point, the PH value may
be different from one point to the other within the reactor, a
mixer is used in the reactor.

After a certain reaction time, the bio-gas are generated
which is measured by a gas meter. As the chemical reaction
proceeds, bio-gas generation speed peaks and then slows down
until no bio-gas can be measured by the meter which indicates
the completion of the bio-reaction. The waste water is then
ejected into the effluent tank.

Clearly, the reaction time of the bio-reactor, the temperature,
and the speed of the mixer all have impact to the total cost
of the process and need to be well controlled and adjust
at run-time. In order to assure the system running in its
best productive condition, different types of data have to
be gathered from different sections of the system’s physical
infrastructure and control decisions have to be made based on
the local information.

Data generated from a component may affect the data
operated in another different component. For instance, the
speed of the influent tank mixer at one end may impact the
speed of the micro-tube pump at the other end. To facilitate
smooth interactions, events are often used to orchestrate the
communication and interaction among different widely dis-
tributed and heterogeneous devices and components in the
system. The challenge is how to uniformly represent events
and be able to infer the “meaning” of an event that happens
one place to the rest of the system.

III. CONCEPT-LATTICE-BASED EVENT MODEL FOR CPS
SYSTEMS

In order to fully represent a CPS event instance and be able
to use it as a media to communicate between disparate cyber
world and physical world, an event instance is defined below:

Definition 1 (CPS Event Instance): A CPS event instance
has a type, a set of internal attributes and a set of external
attributes. It is structured as in (1)

Ecps : Γµ@(T , L, O) (1)

where,
• Γ represents the type of the event instance;
• µ represents the internal attribute of the instance;
• T indicates the time when the event instance happens.
• L indicates the location where the event instance occurs.

• O is an observer of the event instance. The existence of
an observer is also treated as an event.

• O> is the global observer of a CPS system. Its lo-
cation is the system’s origin, and its time interval
is defined as the system’s life span, i.e., O> =
Object>@([0,∞), ((0, 0, 0),∞), >). There is one and
only one global observer O>.

�
Also, We define the value function V(Ecps), time func-

tion To(Ecps), location function Lo(Ecps), observer function
B(Ecps) to extract the corresponding information of Γ and µ,
T , L , O, respectively.

To abstract from lower physical level events to the ones with
richer meanings toward cyber world, we adopt the theory of
concept lattice [1].

A. Concept Lattice

The theory of concept lattice is established upon a formal
context. In our case, a formal context is defined as:

Definition 2 (Formal Context): a formal context is a triple
(I, E, R), where I and E are internal attribute and type sets
of events. R ⊆ I × E is a binary relation where (µ,Γ) ∈ R
denotes that event instant with internal attributes µ has type
Γ.

�
A formal context defines the relationship between event

internal attributes and basic event types. For example,
if we classify the concentration of liquid level as low,
medium, and high, and their temperature as cool,
warm, and hot, the formal context can be defined as
(〈C(oncentration), T (emperature)〉, {cl, cm, ch, tc, tw, th}, R),
where R is defined as the set8<: (〈[0%, 30%), T 〉, hl), (〈[30%, 60%), T 〉, hm),

(〈[60%, 100%], T 〉, hh), (〈H, [32F, 86F)〉, tc),
(〈H, [86F, 140F)〉, tw), (〈H, [140F, 212F]〉, th)

9=;
Relations between event attributes and basic types in a

formal context are composed to establish the relationships
between more abstract event internal attributes and more
complicated event types. These relationships are called called
concepts defined below:

Definition 3 (Concept): Let (I, E, R) be a formal context,
(X, Y) where X ∈ 2I, Y ∈ 2E, is called a concept, if

X = {µ ∈ I|∀Γ ∈ E, (µ,Γ) ∈ R} (2)
Y = {Γ ∈ E|∀µ ∈ I, (µ,Γ) ∈ R} (3)

�
For example, liquid with medium concentration level and
warm temperature, i.e., 〈[30%, 60%), T 〉∩〈H, [86F, 140F)〉 =
〈[30%, 60%), [86F, 140F)〉 is of type {cm, tw}. We asso-
ciate event instance 〈[30%, 60%), [86F, 140F)〉 with type
PerfectCondition (an alias for {cm, wm}) as a concept.

A formal context and its concepts establish the relationships
between event types and their corresponding valid internal
attributes. The next step is to build a hierarchy of such
relationships in order to lay the semantic base for event

94

abstractions. Such a hierarchy is defined as a concept lattice
given in the following definition:

Definition 4 (Concept Lattice): For a formal context
(I, E, R), let (X1, Y1) and (X2, Y2) be two concepts. If
X1 ⊆ X2, or Y1 ⊇ Y2, then there is a partial order ≺ between
(X1, Y1) and (X2, Y2), i.e.,

(X1, Y1) ≺ (X2, Y2) (4)

Such an partial order relation is of a lattice structure and forms
the concept lattice of the formal context (I, E, R).

�
With a concept lattice, we are able to obtain event instances

with richer meanings from event instances that contain prim-
itive data, but with less type information.

B. Event Type and Internal Attributes Composition

Given a concept lattice, a set of event instances can be com-
posed if and only if their corresponding event type and internal
attributes are composable in the concept lattice. Further the
composed type and internal attribute values (or the composed
concept) must be the largest lower bound of the composing
concept. Definition 5 gives the formal definition.

Definition 5 (Event Γ and µ Composition (AV)): Given a
set of CPS events e1, e2, · · · , en, with their types and internal
attributes as Γ1 µ1, Γ2 µ2, · · · , Γn µn, respectively, and a
concept lattice C

AV(Γ1 µ1,Γ2 µ2, · · · ,Γn µn) = Γ µ

If Γ1 µ1, Γ2 µ2, . . ., Γn µn are all immediate successors of
Γ µ in the given lattice C.

�
The concept lattice only captures the event type and event

instance’s internal attributes. However, event instance also has
a non-separable external attributes, i.e., its occurrence time
and location and its observer. Certain event compositions may
only be permissible under certain conditions which involve
the event instances external attributes, we call such event
compositions as guarded compositions.

Guarded compositions are integrated into the concept lattice
by labeling the edges with the corresponding event constraints.

For example, consider two events: liquid with concentra-
tion 35% filled in a tank Γ1 µ1 = Medium 〈35%,−〉 and
the temperature of liquid in the tank is 142F, Γ2 µ2 =
Gethot 〈−, 142F 〉 where the internal attributes of event in-
stances are of the form 〈C(oncentration), T (emperature)〉,
“−” denotes the don’t-care attribute. The composition of the
two events are defined as

Γ µ = MediumGethot 〈35%, 142F 〉

where MediumGethot is a shorthand notation for the set
{Medium, Gethot}. As can be easily checked, for internal
attributes of events, we have 〈35%, T 〉 ⊇ 〈35%, 142F 〉 and
〈C, 142F 〉 ⊇ 〈35%, 142F 〉; and for data types, we have
{Medium}, {Gethot} ⊆ {Medium, Gethot}. Therefore,
according to Definition 4, we have Γ µ ≺ Γ1 µ1 and
Γ µ ≺ Γ2 µ2 in the concept lattice, graphically denoted as:

35%,142F

, ,142F

Fig. 2. An Example of Concept Lattice

Clearly, an event instance of type MediumGethot has
richer meaning than an event instance of type Medium, or
Gethot.

Event compositions based on a given concept lattice allows
events to be transferred cross different boundaries and under-
stood by heterogeneous devices and components distributed in
a CPS system.

The bottom of a concept lattice is defined by the global
observer of the system O>.

We apply the concepts and notations to define events and
their relationships in the application of producing clean air
and bio-energy from animal waste and show how we obtain
different layers of abstractions from physical data.

Example 1: As shown in Fig. 1, the mixer in fluent tank
agitate the swine manure and some other supplements together
providing H2-producing bacteria to the bioreactor. Two sen-
sors which are installed at (3,5,0) and (1,2,0) on the bottom
of the tank observe the concentration of the mixture, and their
sensing range are of radius 4 and 3, respectively. In addition,
there is another sensor installed at (2,4,12) sensing the level
change of the mixture with the radius of 13. We want to
describe a scenario that when the concentration of the mixture
in the tank is of uniformity, we need to slow down the speed of
mixer and simultaneously, the pump begin to feed the mixture
to the reactor. When the level of the mixture decreases 5
meters, we need to stop feeding and new mixtures are refilled.
The span of the fluent tank is (0,0,0),15). Assume the span of
the fluent tank is (0,0,0),15),and the level of mixture is up to
11m.

�
For this example, there are nine event types. As we are

only concerned with the concentration and the level attributes
of event instance, the form 〈C(oncentration),H(eight)〉
is used to express the set of attributes. Event composition
is to compose basic and simple events into more abstract
events. More specifically, in this example, there is a Sensor
event type which observes the Height event type and the
Concentration event type, the Height event type can
be composed into a new HeightDecreaseby5m event
type if some constraint conditions are satisfied. Similarly,
the Concentration event type can be composed into the
UniConcentraion event type, the latter can be further
composed into the Slow-down event type and Beginfeed
event. When the HeightDecreaseby5m type event occurs
after the Beginfeed event, we can compose the two into
the new Stopfeed event, based on which the new Refill
mixture event is generated.

95

The concept lattice for the example is given in Fig. 3.

T(Begin Feed).t1<T(HeightDecby5m).t1

,H

C,(0m,6m]

,H

,H

C,H

C,H C,H

O┬

C,H

V1(Height).µ.H≥V2(Height).µ.H

T1(Height).t2 <T2(Height).t1
V1(Height).µ.H−V2(Height).µ.H=5m

|V1(Concentration).µ.C−V2(Concentration).µ.C|≥ 0

|V1(Concentration).µ.C−V2(Concentration).µ.C|

≤0.05%

|T1(Concentration).t2−T2(Concentration).t1|≥ 0

|T1(Concentration).t2−T2(Concentration).t1|≤30s

[],(0m,6m]

[],(0m,6m]

Fig. 3. Concept Lattice for xxx

IV. RELATED WORK

The concept of events has been investigated in many differ-
ent contexts both in the cyber domain and the physical domain.
The event calculus [2], [3], [4] investigates a logic program
framework for representing and reasoning about events (or
actions) and their effects. Under this framework, time-varying
properties (true or false) of the world during certain intervals,
called fluents, are initiated by an occurrence of an action
continue to (or not to) hold until an occurrence of an action
which terminates them.

In [5], the concept of observers and a hierarchical spatial-
temporal event model for CPS are introduced. The event model
uses event attributes, occurrence time and space stamps, and
event observer together to uniquely identify a CPS event
instance. In addition, a set of temporal, spatial and logical
operators are defined to support the temporal and spatial event
composition. However, in [5], events are differentiated by four
categories based on the corresponding four different system
layers, namely, physical events, sensor events, cyber-physical
events, and cyber events. Furthermore, although [5] defines
event temporal, spatial, and logical compositions, structural
representation of observers, and formal treatment of event type
compositions are missing from the work.

The theory of concept lattice [1], [6] (Galois lattice) is
a conceptual hierarchical structure based on binary relation
proposed by Rudolf Wille [1], [7]. The theory has been widely
used in the fields of software engineering [8], [9], [10] and data
mining [11], [12], [13]. To the best of our knowledge, it is the
first attempt to use concept lattice as an interpretation media
transfer events across heterogeneous boundaries.

V. CONCLUSION

This paper presents a real-time control process system in
producing clean air and bio-energy from animal waste. We
further discover that to successfully build the expressions
of different communications in the system, it is critical to
have a unified representation for events at different abstraction
layers and have a formal event transformation mechanism to
relay events across different layers and device boundaries. We
have made the first attempt to apply the theory of concept
lattice in defining the relationship among event types within
a heterogeneous and widely distributed system. Our initial
excises seems indicating that the unified event representation
and concept lattice can represent most of the scenarios that
we have encountered. Our next step is to first prototype a
system with real sensors installed in the lab settings, build the
concept lattice for automatic event transformation and hence
controlling the whole system.

ACKNOWLEDGMENT

This work is supported in part by NSF under grants CNS-
0746643, CNS-0545913, and CNS-0917021.

REFERENCES

[1] R. Wille, “Formal concept analysis as mathematical theory of concepts
and concept hierarchies,” Lecture Notes in Computer Science, vol. 3626,
pp. 1–33, 2005.

[2] R. Kowalski and M. Sergot, “A logic-based calculus of events,” New
Gen. Comput., vol. 4, no. 1, pp. 67–95, 1986.

[3] E. T. Mueller, “Automating commonsense reasoning using the event
calculus,” Commun. ACM, vol. 52, no. 1, pp. 113–117, 2009.

[4] V. Ermolayev, N. Keberle, and W.-E. Matzke, “An ontology of envi-
ronments, events, and happenings,” in Proceedings of the 32nd Annual
IEEE International Computer Software and Applications, COMPSA’08,
2008.

[5] Y. Tan, M. C. Vuran, and S. Goddard, “Spatio-temporal event model
for cyber-physical systems,” Distributed Computing Systems Workshops,
International Conference on, vol. 0, pp. 44–50, 2009.

[6] M. Liquiere and J. Sallantin, “Structural machine learning with galois
lattice and graphs,” in Proc. of the 1998 Int. Conf. on Machine Learning,
1998, pp. 305–313.

[7] R. Wille, “Restructuring lattice theory: An approach based on hierarchies
of concepts,” Ordered Sets, Ivan Rival Ed., NATO Advanced Study
Institute, vol. 83, pp. 445–470, Sep. 1981.

[8] C. Lindig and A. Softwaretechnologie, “Concept-based component
retrieval,” in Working Notes of the IJCAI-95 Workshop: Formal Ap-
proaches to the Reuse of Plans, Proofs, and Programs, 1995, pp. 21–25.

[9] G. Snelting, “Reengineering of configurations based on mathematical
concept analysis,” ACM Trans. Softw. Eng. Methodol., vol. 5, no. 2, pp.
146–189, 1996.

[10] G. Snelting and F. Tip, “Reengineering class hierarchies using concept
analysis,” in In ACM Trans. Programming Languages and Systems, 1998,
pp. 99–110.

[11] B. Groh and P. W. Eklund, “Algorithms for creating relational power
context families from conceptual graphs,” in Proceedings of the 7th
International Conference on Conceptual Structures, 1999, pp. 389–400.

[12] R. Cole and P. Eklund, “Scalability in formal concept analysis,” Com-
putational Intelligence, vol. 15, pp. 11–27, 1999.

[13] R. Cole, P. Eklund, and G. Stumme, “CEM – a program for visualization
and discovery in email,” in Proc. Principles of Data Mining and
Knowledge Discovery., vol. 1910, 2000, pp. 367–374.

96

	20-109-Poelzlbauer.pdf
	Introduction
	Target Function for Multi-Objective Optimization Problems
	Weighted objectives
	Prioritized objectives
	Prioritized weighed objectives

	Preliminary results
	Conclusion & Outlook
	References

