
A lookup-table driven approach to partitioned scheduling

Bipasa Chattopadhyay Sanjoy Baruah

Abstract

The partitioned preemptive EDF scheduling of implicit-
deadline sporadic task systems on an identical multiprocessor plat-
form is considered. Lookup tables, at any selected degree of accu-
racy, are pre-computed for the multiprocessor platform. By using
these lookup tables, task partitioning can be performed in time
polynomial in the representation of the task system being parti-
tioned. Although the partitioning will not in general be optimal,
the degree of deviation from optimality is bounded according to
the degree of accuracy selected during the pre-computation of the
lookup tables.

1 Introduction

Two different efficiency considerations play a role in de-
termining scheduling strategies for embedded real-time sys-
tems. On the one hand, they should be efficient to imple-
ment; on the other, they should ensure efficient resource
utilization.

In this paper, we consider the partitioned preemptive
EDF scheduling of implicit-deadline sporadic task systems
(also known as Liu & Layland task systems [5]) on iden-
tical multiprocessor platforms. It is widely known (see,
e.g., [7, 6]) that such partitioning is equivalent to the bin-
packing problem, and is hence highly intractable: NP-hard
in the strong sense. Resource-allocation strategies that
achieve optimal resource utilization are therefore likely to
have very inefficient implementations.

In the search for resource allocation strategies that have
efficient implementations, various heuristics for task parti-
tioning have been studied and evaluated (see, e.g. [6]). The
heuristics evaluated in such studies are those for which very
efficient implementations are easily obtained (such as First-
Fit, Best-Fit, Worst-Fit, First-Fit-Decreasing, etc.; please
see [6] for a description of these heuristics in the context of
task partitioning). These studies seek to determine sufficient
schedulability conditions for these heuristics, and compare
different heuristics by comparing their respective sufficient
schedulability conditions. These results have proved very
useful from the perspective of designing hard-real-time sys-

tems; however, they do not provide much insight as to
how far removed the resource utilization of these different
heuristics are, from optimality.

In other related work, Hochbaum and Shmoys [2] have
designed a polynomial-time approximation scheme (PTAS)
for the partitioning of implicit-deadline sporadic task sys-
tems1 that behaves as follows. Given any positive constant
φ, if an optimal algorithm can partition a given task system
τ upon m processors each of speed s, then the algorithm
in [2] will, in time polynomial in the representation of τ ,
partition τ upon m processors each of speed (1 + φ)s. This
can be thought of as a resource augmentation result [3, 4]:
the algorithm of [2] can partition, in polynomial time, any
task system that can be partitioned upon a given platform
by an optimal algorithm, provided it (the algorithm of [2])
is given augmented resources (in terms of faster processors)
as compared to the resources available to the optimal algo-
rithm.

This is theoretically an immensely significant result
since it allows us to perform task partitioning in polynomial
time, to any (constant) desired degree of accuracy. How-
ever, the practical significance of this result is severely lim-
ited by the fact that the algorithm of [2] has very poor im-
plementation efficiency in practice: the constants in the run-
time expression for this algorithm are prohibitively large.

This research. We seek to apply the ideas in [2] to come
up with an implementation that is efficient enough to be us-
able in practice. In brief, our approach is to split the com-
putation needed to implement the algorithm of [2] into two
parts: (i) a computation-intensive part that is done during
the process of assembling the platform upon which the task
system is to be implemented; and (ii) a far more efficiently-
implementable part that is done when attempting to sched-
ule any given sporadic task system upon the platform. The
computation-intensive part is done only once when the mul-
tiprocessor platform is being synthesized, and the results
stored in a lookup table. We envision that this table will be

1Actually, the result in [2] was expressed in terms of minimizing the
makespan of a given finite collection of non-preemptive jobs; however,
the makespan minimization problem considered in [2] is easily shown to
essentially be equivalent to the partitioning problem we are interested in in
this paper.



supplied along with the multiprocessor platform (in much
the same manner that complex mathematical functions are
sometimes implemented in lookup tables on modern pro-
cessors). This table is therefore available for the designers
of real-time systems when they seek to determine whether
particular task systems can be scheduled under partitioned
EDF upon this platform or not. Using this table, such a
question can be answered very efficiently, in time that is a
low-order polynomial in the number of tasks in the system.

2 Task Model

As stated in Section 1, we are considering the partitioned
preemptive EDF [5, 1] scheduling of implicit-deadline spo-
radic task systems [5] on identical multiprocessor plat-
forms. Each implicit-deadline sporadic task is character-
ized by a worst-case execution time (WCET) parameter and
a minimum inter-arrival separation parameter; we use the
term utilization to denote the ratio of the WCET parame-
ter to the minimum inter-arrival separation parameter. It
follows from the results in [5] that a necessary and suffi-
cient condition for the tasks assigned to each processor to
be schedulable by EDF is that their utilizations sum to no
more than the speed of the processor (assumed here to be
equal to one).

3 Constructing the lookup table

We now describe the construction of the lookup table that
is to be provided with the multiprocessor platform. Let us
suppose that we are given a multiprocessor platform con-
sisting of m unit-speed processors. Recall that this table is
constructed only once, at the time that the platform is being
put together.

Throughout this section, we will illustrate the construc-
tion of the lookup table by means of a running example.
Let us suppose that the platform in our example consists of
4 unit-speed processors (i.e., m = 4).

§1. Choosing ε. The computation of the lookup table is
governed by a parameter ε, which is a positive real num-
ber. Informally speaking, the task-assignment strategy is
centered upon rounding up the actual utilizations of tasks to
be of the form ε × (1 + ε)k, for some non-negative integer
k.

A design decision must now be made, in the form of
choosing a value for ε. The smaller the value, the smaller
the degree of rounding up that is needed, and the closer to
optimal our subsequent task-assignment procedure will be
(the exact degree of deviation from optimality is derived
later, in Theorem 1). However, the size of the lookup ta-
ble, and the time required to compute it, also depend on the

Config. ID 0.3000 0.3900 0.5070 0.6591 0.8568
A 3 0 0 0 0
B 2 1 0 0 0
C 1 0 1 0 0
D 1 0 0 1 0
E 0 2 0 0 0
F 0 1 1 0 0
G 0 0 0 0 1

Table 1. All the maximal single-processor
configurations.

value of ε: the smaller the value, the larger the table-size
(and the amount of time needed to compute it).

For our running example, let us choose the value 0.3 for
the parameter ε, i.e., ε ← 0.3. (In reality, we would typ-
ically choose a far smaller value, but this is sufficient for
purposes of illustration here.)

§2. Determining the utilization values. Once the value
of ε is assigned, the possible utilization values to which we
will round up are ε × (1 + ε)k for all integer k ≥ 0, up to
the upper limit of one.

For our example (ε = 0.3), these values are

k util. value
0 0.3000
1 0.3900
2 0.5070
3 0.6591
4 0.8568
5 1.114

We therefore have 5 distinct utilization values to consider:
for k = 0, 1, 2, 3, and 4. (The value of 1.114 for k = 5 is
too large, as are the values for all k > 5.)

§3. Determining legal single-processor configurations.
With these distinct utilization values as determined above,
what are the different ways in which a single processor can
be maximally filled? (By maximally filled, we mean that
adding any additional task to the processor renders it non-
schedulable by EDF.) Since there are only finitely many dis-
tinct utilization values, this can be determined by exhaustive
enumeration: simply try all combinations of distinct utiliza-
tion values until the processor capacity of one is reached.
(Several simple counting and programming techniques can
be used to optimize this procedure.)

For our running example with ε = 0.3, the maximal
single-processor configurations are shown in Table 1. The
numbers in the headings for columns 2-6 are the 5 distinct
utilization values that we determined in §2 above. Each row



corresponds to a different maximal single-processor config-
uration; it may be verified that the sum of the utilizations in
each configuration (i) sums to no more than 1.0, and (ii) is
at least 0.7, i.e., adding a task with even the smallest uti-
lization would exceed the processor’s capacity. (Consider,
for example, the configuration labeled “B”: the sum of the
utilizations is 2 × 0.3000 + 1 × 0.3900, or 0.9900. For
the configuration labeled “D”, the sum of the utilizations is
1× 0.3000 + 1× 0.6591, or 0.9591.)

§4. Determining legal multi-processor configurations.
We can use the maximal single-processor configurations de-
termined above to determine maximal configurations for a
collection of m processors. Since there are only finitely
many maximal single-processor configurations, this, too,
can be done using exhaustive enumeration: simply try all
m−combinations of maximal single-processor configura-
tions. (As in Step §3 above, simple counting and program-
ming techniques can be used to optimize this procedure.)
These maximal configurations are stored in a lookup table
that is provided along with the m-processor platform ,and
which is used (as discussed in Section 4 below) for parti-
tioning specific task systems upon the platform.

For our example 4-processor platform with ε = 0.3, it
turns out that there are 140 maximal configurations. Al-
though this is too many to enumerate in this document, we
depict a few in Table 2 in the format that they will appear in
the lookup table. The numbers in the headings for columns
1-5 are the 5 distinct utilizations; the sixth column lists the
4 maximal single-processor configurations, named accord-
ing to the configuration ID’s of Table 1, that give rise to this
particular maximal 4-processor configuration.

4 Task assignment

Once the lookup table enumerating the maximal m-
processor configurations has been obtained, we can use this
table to efficiently determine whether any implicit-deadline
sporadic task system can be partitioned on this platform or
not. We now describe the partitioning algorithm for doing
so.

Let τ denote a collection of n implicit-deadline sporadic
tasks to be partitioned among the (unit-capacity) processors
in the m-processor platform. Let ui denote the utilization
of the i’th task.

The task assignment algorithm first attempts to assign
all tasks with utilization ≥ ε/(1 + ε), in Steps 1 and 2 be-
low. Once this has been completed, tasks with utilization
< ε/(1 + ε) are considered, in Steps 3 and 4.

1. For each task with utilization≥ ε/(1+ ε), round up its
utilization (if necessary) so that it is equal to ε×(1+ε)k

for some non-negative integer k. Observe that such

rounding up inflates the utilization of a task by at most
a factor (1 + ε): the ratio of the rounded-up utilization
to the original utilization of any task is ≤ (1 + ε).

2. Now all the tasks with (modified) utilization ≥ ε/(1 +
ε) have their utilizations equal to one of the dis-
tinct values that were considered during the table-
generation step. Determine whether this collection
of these modified-utilization tasks with utilization ≥
ε/(1 + ε) can be accommodated in one of the maxi-
mal m-processor configurations that had been identi-
fied during the pre-processing phase.

• If the answer here is “no,” then report failure: we
are unable to partition τ among the m processors.

• If the answer is “yes,” however, then a viable par-
titioning has been found: assign the tasks accord-
ing to the maximal m-processor configuration.

3. It remains to assign the tasks with utilization < ε/(1+
ε). Assign each to any processor upon which it will
”fit;” i.e., any processor on which the sum of the (orig-
inal — i.e., unmodified) utilizations of the tasks as-
signed to the processor would not exceed one if this
task were assigned to that processor.

4. If all the tasks with utilization < ε/(1 + ε) cannot be
assigned in this manner, then report failure: we are un-
able to partition τ among the m processors. Otherwise,
all the tasks have been assigned and we report success.

Properties. It is straightforward to observe that if this
task-assignment algorithm succeeds in assigning all the
tasks to processors, then the resulting assignment is indeed
a correct one: the sum of the utilizations of the tasks as-
signed to any particular processor is no larger than one, and
hence each processor is successfully scheduled by EDF.

What if the algorithm fails to assign all the tasks to the
processors?

• Suppose that the algorithm reports failure when at-
tempting to assign only the tasks with utilization ≥
ε/(1 + ε) (Step 2 above). Since each such task has
its utilization inflated by a factor < (1 + ε), it must
be the case that all such (original — i.e., unmodified-
utilization) tasks cannot be scheduled by an optimal al-
gorithm on a platform comprised of m processors each
of computing capacity 1/(1 + ε).

• Suppose that the algorithm reports failure when at-
tempting to assign the tasks with utilization < ε/(1+ε)
(Step 4 above). This would imply that the sum of the
utilizations of the tasks already assigned to each pro-
cessor is > (1− ε/(1+ ε)). Therefore the total utiliza-
tion of τ exceeds m(1−ε/(1+ε)) = m(1/(1+ε)), and



0.3000 0.3900 0.5070 0.6591 0.8568 From single-proc. configurations
3 2 1 2 0 [D E D C]
3 4 2 0 0 [F F E A]
0 3 3 0 1 [F F F G]
4 1 1 1 1 [G D C B]
4 0 1 3 0 [D D D C]

Table 2. Some example maximal 4-processor configurations.

τ cannot consequently be feasible on m processors of
speed 1/(1 + ε).

We have thus shown the following:

Theorem 1 Any task system that can be partitioned on m
processors of speed (1/(1 + ε) by an optimal partitioning
algorithm can be partitioned on m unit-speed processors by
our algorithm.

Returning to our example (m = 4 processors, ε = 0.3),
let us consider a task system τ comprised of tasks with the
following utilizations (listed here in non-decreasing order):

1
5
,
1
5
,
1
3
,

7
20

,
9
25

,
2
5
,
1
2
,
1
2
,
3
4

.

Noting that ε/(1 + ε) = .3/1.3 ≈ 0.2308, we note that the
first two tasks have utilization < ε/(1 + ε) and are hence
not to be considered during the first steps of the partitioning
algorithm.

We round the remaining utilizations up:

1
5
,
1
5
, 0.3900, 0.3900, 0.3900, 0.5070, 0.5070, 0.5070, 0.8568.

Using Table 2, we notice that the rounded-up utilizations
here correspond to the configuration listed on the third row:
0 3 3 0 1, obtained from the single-processor configurations
[F F F G] of Table 1.

Accordingly, we assign the tasks with utilization ≥
ε/(1 + ε) to the 4 processors as specified in configurations
F, F, F, and G respectively:

F: 1/3, 2/5. (Remaining capacity = 1− 0.7333 = 0.2667)

F: 7/20, 1/2. (Remaining capacity = 1− 0.85 = 0.15)

F: 9/25, 1/2. (Remaining capacity = 1− 0.86 = 0.14)

G: 3/4. (Remaining capacity = 1− 0.7500 = 0.25)

It remains to assign the two tasks with utilization <
ε/(1 + ε): the ones with utilization 1/5 each. These first
can be accommodated in the first and last processors, yield-
ing the following mapping:

F: 1/3, 2/5, 1/5. (Remaining capacity = 0.0667)

F: 7/20, 1/2. (Remaining capacity = 0.15)

F: 9/25, 1/2. (Remaining capacity = 0.14)

G: 3/4, 1.5. (Remaining capacity = 0.05)

5 Summary

The PTAS of [2] does not find much use in partitioned
multiprocessor scheduling due to its large run-time. We are
exploring the possibility of breaking the needed computa-
tion into two distinct parts: a very computation-intensive
part that must be done only once per platform, with the re-
sults stored in a lookup table for subsequent use, and a more
efficiently-implementable part that essentially consists of
table lookup and some simple additional processing. Initial
results are promising, but it remains to be sees what degrees
of accuracy (as reflected in the value of the parameter ε)
and for what numbers of processors (m, this technique will
scale to.

References

[1] M. Dertouzos. Control robotics : the procedural control of
physical processors. In Proceedings of the IFIP Congress,
pages 807–813, 1974.

[2] D. S. Hochbaum and D. B. Shmoys. Using dual approxi-
mation algorithms for scheduling problems: Theoretical and
practical results. Journal of the ACM, 34(1):144–162, January
1987.

[3] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. In 36th Annual Symposium on Foundations of
Computer Science (FOCS’95), pages 214–223, Los Alamitos,
October 1995. IEEE Computer Society Press.

[4] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. Journal of the ACM, 37(4):617–643, 2000.

[5] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[6] J. M. Lopez, J. L. Diaz, and D. F. Garcia. Utilization
bounds for EDF scheduling on real-time multiprocessor sys-
tems. Real-Time Systems: The International Journal of
Time-Critical Computing, 28(1):39–68, 2004.

[7] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia.
Worst-case utilization bound for EDF scheduling in real-time
multiprocessor systems. In Proceedings of the EuroMicro
Conference on Real-Time Systems, pages 25–34, Stockholm,
Sweden, June 2000. IEEE Computer Society Press.


