
Problem Solving in C

(CSCE 105, Spring 2006)
URL: http://www.cse.unl.edu/∼cstrope/csce105su06/

Jan - May 2006

UNIX help sheet (cse.unl.edu)

For programming purposes

Log into cse.unl.edu. If you would like to work from home, go to http://ftp.ssh.com/pub/ssh/,
and download SSHSecureShellClient-3.2.9.exe. After logging in to cse.unl.edu, you will
be at the prompt :

username:~ >

∼ indicates that this is your home directory. By typing

username:~ > pwd

/home/grad/cstrope

you will get the path to your home directory.

We will start by creating a directory that will be used for projects and information related
to this class

username:~ > mkdir cse105

We can see this new directory by listing the current directory’s contents

username:~ > ls

cse105 Desktop KDesktop Mail mail

Each of these items is a folder in the current directory. For this class, we want to work in the
cse105 directory. To change from the home directory into the cse105 directory

username:~ > cd cse105

username:~/cse105 >

Notice that in the prompt (the text before the > symbol), the cse105 now appears. This

tells us that we are in the cse105 directory. Now, we would like to create folders for each of
the homework assignments that we will do over the semester. Name these hw1, hw2, hw3,

hw4, and hw5 for the five assignments. Create the folders as done above. You may also want

to create folders for each of the labs you will be doing over the course of the semester.

2 UNIX help

Change into the hw1 directory. In order to create programs, we will need what is called
a text editor. Text editors are simply programs in UNIX that are used to edit text docu-
ments, similar to Notepad in windows. The text editor we will often use is called pico. In

order to create a new document, call it program.c (.c indicates that this will be a C program)

username:~/cse105/hw1 > pico program.c

After this is done, you will be taken to a new screen, with the heading in the middle reading

File: program.c, and some commands on the bottom of the screen. The commands on
the bottom of the screen are pico commands. For example, ˆG is the “Get Help” command,

performed by holding the Ctrl button and pressing ‘G’. In order to exit pico, use the com-
mand ˆX.

pico Commands:

After creating a C program, we will need to compile the program. To do this on cse.unl.edu

username:~/cse105/hw1 > cc program.c

This will compile the program. If there are any errors in the program, they will be listed

below this prompt.

Check this document occasionally, as there may be additions throughout the semester. This

document will be considered a FAQ page, where many of the questions that arise throughout
the semester will be addressed. The web page where this document resides is:

http://cse.unl.edu/∼cstrope/csce105su06/examples/unix.pdf

UNIX help 3

Common Error Messages:

• "test.c", line 8: syntax error before or at: i

−→ Most often, this means that on the previous line, a semicolon has been omitted.

• "test.c", line 10: newline in string literal

−→ C does not permit a string literal, i.e. “ ”, to have a new line, i.e., opening quotes on one
line and closing them on any line. They must be on the same line.

• "test.c", line 8: warning: implicit function declaration: sqrt

Undefined first referenced

symbol in file

sqrt test.o

ld: fatal: Symbol referencing errors. No output written to a.out

−→ The math library is not being linked when you compile the program. To compile, use cc

<filename>.c -lm.

• "test.c", line 9: syntax error before or at: else

−→ This may indicate that you have more than one statement being run for an if statement. For
example, in the code below, note that the if statement on the left has 2 commands associated
with it: (1) i = 25 and (2) i = 0. On the right, the if statement has only 1 command, which
is a compound command that has both i = 25 and i = 0.

| if(1) | if(1) { |

| i = 25; | i = 25; |

| i = 0; | i = 0; |

| else | } else |

| i = 10; | i = 10; |

Btw, the above figure also shows why I’m jealous of the ASCII art people...

• (Added: Mar. 2nd)

Segmentation fault occurs during the run of your program.
−→ This is likely to occur in a scanf statement if you forget to add the & before your variable,
i.e. scanf("%d",int value); → scanf("%d",&int value);

• (Added: Mar. 2nd)

During the running of my program, one of my scanf’s is being ignored!
−→ This occurs only when you are scanning in a character (%c) after a previous scanf of any
type. The reason for this is as follows:

– The first scanf stops the program, waits for input.

– You type in the desired input, and then press enter.

– The first scanf reads in the input.

– The second scanf reads in the newline! Note that a newline is an ASCII 10, which is an
acceptable value for a character. This newline character is not taken off of the buffer by
the previous scanf("%d"), scanf("%c") or scanf("%lf").

To fix this, place a space between the opening quotes and the placeholder, i.e. scanf(" %c",&ch);

• If you run across any other error messages, let me
know!

