Turing Machine Simulator
Programming Project #2
CSCE 428/828

Fall 2012
Your task is to write a program that simulates a deterministic Turing Machine/Enumerator. You may pair up, if you wish, and do both the Turing Machine and Enumerator. Or you may work singly and only do the Turing Machine. All the conditions and standards in the syllabus will apply, so review them very carefully! Submissions are due electronically as #5 at the latest allowable time – 11:59pm Wednesday, December 5, though there is no penalty if you are early! Include a README file that describes features and functions as an instruction manual.
Input Specifications: Specifications for the TM/Enum to be modeled should be entered as stdin, (typically by file redirection). Include command line parameter –v that designates verbose mode. Each line should include one of the following in the given order, with the only white space being in the string representing the name of the machine and between entries of the transition function (which may be all on one line or span multiple lines).
1. The type T (Turing machine) or N (eNumerator) indicating the type of machine, =, “name of the machine”

2. The set of states Q = “string of upper case letters” with S (for start), A (for accept) and R (for reject) implied
3. The input alphabet E = “string of characters”

4. The tape alphabet G = “string of characters” with the space character (read as underscore ‘_’) and all of E (the input alphabet) implied

5. The transition function will be of the form (P,a)->(Q,b,L) or (P,a)->(Q,b,R) in the case of a regular Turing Machine and (P,a)->(Q,b,L,s) or (P,a)->(Q,b,R,s) in the case of an enumerator. The ‘s’ indicates zero or more ASCII characters to print (use ‘_’ to indicate a space and ‘;’ to indicate a newline, but actually print a newline).
6. The input string(s) I = “input string” (Enumerators should not take input strings.)

Example Input (based on Turing Machine in figure 3.8 on page 172 of the text, using S for q1, R for qreject, A for qaccept, F for q2, E for q3, O for q4, B for q5):

T=”Zeroes in Powers of 2”

Q={EOBF}

E={0}
G={x}
F=(S0->F_R) (S_->R_R) (Sx->RxR)
F=(Fx->FxR) (F_->A_R) (F0->ExR)
F=(Ex->ExR) (E0->O0R) (E_->B_L)
F=(O_->R_R) (Ox->OxR) (O0->ExR)
F=(B0->B0L) (Bx->BxL) (B_->F_R)
I=”0000”

I=”000”
Output Specifications: If the machine is a simple TM in non-verbose mode, simply display the final tape contents followed by accept or reject. In verbose mode, display the configuration for each step, similar to the example in the text. If the machine is an enumerator, include the displaying each new print line regardless of verbose mode being on or off. Place print characters into a buffer until either the buffer overflows or a newline (;) character appears; then print and empty the buffer. In order to accommodate machines with possibly infinite loops, pause and prompt for continue/cancel every 20 lines.
Example Output (Turing Machine, not verbose):

xxx accept

…
Example Output (Turing Machine, verbose):

S0000

_F000

_xE00

_x0O0

_x0xE

…

_xxx_A accept

…

Programming Specifications: Your simulator should read in the TM/Enum formal specifications from stdin, build the TM/Enum, and run it. Do not make any assumptions about the size of the alphabets (other than the elements are printing ASCII characters that do not need escaping) and states (other than the obvious maximum of 26).
Variations on the specifications are allowable with permission!
