
An Ontology for Describing Manufactured Objects
and their Parts in a Factory

F. Sáenz-Pérez
GPD-DISIA-UCM

April 2012

1 Goals

- Implement an ontology following [AVS08] for a factory that
manufactures objects from parts

- Represent concepts, relations, and algebraic properties attached to
relations

- Enable constraint checking, both hard and soft. Hard constraint checking
forbids inconsistent databases, whereas soft constraint checking allows
them

2 Application Description

There are parts that are components of bigger parts or even the completed
object, as, e.g., a spoke is a part of a wheel, and a wheel is a part of the
completed object bike (respectively).

The basic concepts are parts and completed objects, as: "bike", "wheel",
and "spoke".

The basic relation in this application is "component of", which should be
attached the algebraic properties "irreflexive", "asymmetric" and "transitive".

3 Application Implementation

We use DES [Sae11] as a host system to implement the ontology, which
supports strong constraints, constraint checking, and consistency checking.
Datalog program examples cited in this paper can be found in factory.dl and
route.dl.

3.1 Data Modelling

We focus on the part of the E-R model subpart depicted in Fig. 1 relating
"Concepts", "Relations", "BinaryRelation", "HasAP", and "AlgebraicProperty"

Fig. 1. Ontology Medatada E-R Model

Translating this conceptual model into the relational model, we get:

concepts(Type, Id, Arity)
Type  {concept, relation}
Arity  0

binary_relation(Id, FromId, ToId)
binary_relation.FromId  concepts.Id
binary_relation.ToId  concepts.Id

algebraic_properties(Id)

has_algebraic_property(BinaryRelation,AlgebraicProperty)
has_algebraic_property.BinaryRelation  binary_relation.Id
has_algebraic_property.AlgebraicProperty  algebraic_properties.Id

The complete physical model can be examined in the file "factory.dl".

An instance of this ontology is:

% Concepts
concepts(concept, bike, 0).
concepts(concept, wheel, 0).
concepts(concept, spoke, 0).
concepts(concept, bearing, 0).
% Relations
concepts(relation, component_of, 2).

binary_relation(component_of, bearing, wheel).
binary_relation(component_of, spoke, wheel).
binary_relation(component_of, wheel, bike).

algebraic_properties(irreflexive).
algebraic_properties(asymmetric).
algebraic_properties(transitive).

has_algebraic_property(component_of, irreflexive).
has_algebraic_property(component_of, asymmetric).
has_algebraic_property(component_of, transitive).

3.2 Constraints

Algebraic properties can be seen as constraints on an database. These
properties, when viewed as constraints, can be classified as exclusion
constraints and inclusion constraints. An exclusion constraint forbids in an
instance database those values which are not consistent w.r.t. this constraint. An
inclusion constraint specifies all the values that must be in an instance database
for it to be consistent. Examples of exclusion constraints include irreflexive and
asymmetric, whereas transitive and symmetric are examples of inclusion
constraints.

Constraints can also be classified as hard and soft. A hard constraint on a
database is checked whenever any change related to the involved data sources
for the constraint occurs. A soft constraint is only checked on-demand. So, in
this case, it may be the case that the database becomes inconsistent w.r.t. to the
soft constraint. However, they have been acknowledged as a need for certain
situations. For instance, in relational databases the concept of deferred constraint
is used to denote such soft constraints.

3.2.1 Stating Hard Constraints

Attaching an exclusion constraint to a relation implies to impose a strong
constraint, which is checked with a Datalog integrity constraint. As an example:

:- irreflexive_violation(BinaryRelation, From, To).

where:

irreflexive_violation(BinaryRelation, From, From) :-
 has_algebraic_property(BinaryRelation, irreflexive),
 binary_relation(BinaryRelation, From, From).

That is, it cannot be the case to find a binary relation relating the same
element with itself.

Following the example in Section 3.1, trying to assert an entry which
makes the ontology inconsistent w.r.t. this algebraic property is rejected:

DES> /assert binary_relation(component_of, bearing, bearing).

Error: Integrity constraint violation.
 ic(BinaryRelation,From,To) :-
 irreflexive_violation(BinaryRelation,From,To).
 Offending values in database:
[ic(component_of,bearing,bearing)]

Attaching an inclusion constraint to a relation as a strong constraint
implies in general to intensionally represent the meaning of the relation under
such constraint. Otherwise, there are situations for which it is not possible to
assert new data although it is possible to reach a consistent instance database
eventually, after further assertions.

For example, considering the property "transitive", we can have the
following instance database:

binary_relation(route, madrid, paris).
binary_relation(route, london, madrid).
binary_relation(route, london, paris).

And impose the property "transitive" as a hard constraint:

:- transitive_violation(BinaryRelation, From, To).

where:

transitive_violation(BinaryRelation, From, To) :-
 BinaryRelation = route,
 has_algebraic_property(BinaryRelation, transitive),
 count(binary_relation(route, _, _),RelationCardinality),
 count(transitive_route(BinaryRelation, _, _),TCCardinality),
 RelationCardinality \= TCCardinality,
 transitive_route(BinaryRelation, From, To),
 not(binary_relation(route, From, To)).

transitive_route(BinaryRelation, From, To) :-
 has_algebraic_property(BinaryRelation, transitive),
 binary_relation(BinaryRelation, From, To).
transitive_route(BinaryRelation, From, To) :-
 has_algebraic_property(BinaryRelation, transitive),
 binary_relation(BinaryRelation, From, Mid),
 transitive_route(BinaryRelation, Mid, To).

Then, it is neither possible to add:

binary_relation(route, paris, london).

nor:

binary_relation(route, madrid, london).

because the first tuple requires the second already asserted and the other
way round (this example can be found in the file route.dl), as illustrated in the
next system session:

DES> /assert binary_relation(route, paris, london).

Error: Integrity constraint violation.
 ic(BinaryRelation,From,To) :-
 transitive_violation(BinaryRelation,From,To).
 Offending values in database:
[ic(route,madrid,london),ic(route,london,london),ic(route,paris,
madrid),ic(route,paris,paris),ic(route,madrid,madrid)]
Error: Asserting rules due to integrity constraint violation.

DES> /assert binary_relation(route, madrid, london).

Error: Integrity constraint violation.
 ic(BinaryRelation,From,To) :-
 transitive_violation(BinaryRelation,From,To).
 Offending values in database:
[ic(route,london,london),ic(route,madrid,madrid)]
Error: Asserting rules due to integrity constraint violation.

Therefore, one possibility is to consider the property "transitive" as a
soft constraint (c.f. next section) and another one is to consider that the meaning
of a relation is extended with the intensional meaning derived by the inclusion
property. This way, there is no need for checking consistency w.r.t. to inclusion
properties at it is ensured by the definition of the relation.

Following this example about the property "transitive", we can extend
the meaning of relations with this property attached as follows:

binary_relation(BinaryRelation, From, To) :-
 has_algebraic_property(BinaryRelation, transitive),
 binary_relation(BinaryRelation, From, Mid),
 binary_relation(BinaryRelation, Mid, To).

Now, any binary relation with attached transitive property, has its
meaning extended with its transitive closure.

In the example, given the following explicit two tuples above for "route",
already loaded in the database:

binary_relation(route,madrid,paris).
binary_relation(route,paris,london).

Then, if we ask for its meaning, we get:

DES> binary_relation(route,From,To)
{

 binary_relation(route,madrid,london),
 binary_relation(route,madrid,paris),
 binary_relation(route,paris,london)
}
Info: 3 tuples computed.

So that we see that the meaning of relations with the attached property
transitive is automatically extended with its transitive closure.

Coming back to the factory example, we can see that incorrect tuples
cannot be added in the presence of the transitive property. As "component_of"
has three properties attached (i.e., properties "irreflexive", "asymmetric",
and "transitive")), then it is not possible to assert an entry for
"component_of" which implies a cycle in the directed graph that this relation
forms. For instance:

DES> /assert binary_relation(component_of, bike, bearing).

Error: Integrity constraint violation.
 ic(BinaryRelation,From,To) :-
 acyclic_violation(BinaryRelation,From,To).
 Offending values in database:
[ic(component_of,bike,bike),ic(component_of,bearing,bearing),ic(
component_of,wheel,wheel)]

This shows that there are paths from "bike" to itself, and also for
"bearing" and "wheel" (all of them form a cyclic path, which are not allowed
because of the combination of the three properties).

3.2.2 Stating Soft Constraints.

If we omit the strong constraints, we can get inconsistent ontologies along
authoring. Let's consider the following case:

% Concepts
concepts(concept, bike, 0).
concepts(concept, wheel, 0).
concepts(concept, spoke, 0).
concepts(concept, bearing, 0).
% Relations
concepts(relation, component_of, 2).

binary_relation(component_of, bearing, wheel).
binary_relation(component_of, spoke, wheel).
binary_relation(component_of, wheel, bike).

where the algebraic property "irreflexive" is not attached to
"component_of".

Then, we can assert an incorrect entry w.r.t. "irreflexive":

DES> /assert binary_relation(component_of, bearing, bearing).

which is not rejected.

To test which data is inconsistent, we write:

DES> irreflexive_violation(BinaryRelation, From, To).

{
 irreflexive_violation(component_of,bearing,bearing)
}
Info: 1 tuple computed.

Then, what are soft constraints useful for? Along ontology development,
one might allow for inconsistent databases for a number of reasons as, e.g.:

- Unknown data
- Not yet completed data

For the second one, we can think of the algebraic property "transitive"
as introduced in the previous section. In this case, we require the meaning of
relations to be explicit in our database. This means that if the following entries
are in the database:

binary_relation(component_of, bearing, wheel).
binary_relation(component_of, spoke, wheel).
binary_relation(component_of, wheel, bike).

then, the following ones must also be in the database:

binary_relation(component_of, bearing, bike).
binary_relation(component_of, spoke, bike).

So, to test what are the missing tuples in a database because of the
inclusion property "transitive", it is attached as a soft constraint, i.e., it is
NOT imposed (here, it is shown only as a program remark, i.e., a line preceded
by the symbol "%"):

%:- transitive_violation(BinaryRelation, From, To).

(If it is already imposed, you can remove it with:

DES> /drop_ic :- transitive_violation(BinaryRelation, From, To).

).

This allows us to incrementally build the ontology up to a point in which
we think it is consistent and, therefore, to be sure of it. Then, we submit the
following consistency check:

DES> transitive_violation(BinaryRelation, From, To)

{
 transitive_violation(component_of,bearing,bike),
 transitive_violation(component_of,spoke,bike)
}
Info: 2 tuples computed.

Here, we see that "component_of" is not consistent w.r.t. the algebraic
property "transitive" because the entries shown are missing in the database.
If they are asserted, the relation becomes a truly explicit transitive relation and
therefore passes the consistency check:

DES> transitive_violation(BinaryRelation, From, To)

{
 transitive_violation(component_of,bearing,bike),
 transitive_violation(component_of,spoke,bike)
}
Info: 2 tuples computed.

DES> /assert binary_relation(component_of, bearing, bike)

DES> transitive_violation(BinaryRelation, From, To)

{
 transitive_violation(component_of,spoke,bike)
}
Info: 1 tuple computed.

DES> /assert binary_relation(component_of, spoke, bike)

DES> transitive_violation(BinaryRelation, From, To)

{
}
Info: 0 tuples computed.

References

[AVS08] F.J. Álvarez, A. Vaquero, and F. Sáenz-Pérez, "Conceptual
Modeling of Ontology-based Linguistic Resources with a Focus on
Semantic Relations", In Proceedings of the Sixth International
Conference on Language Resources and Evaluation (LREC 2008),
May, 2008.

[Sae11] F. Sáenz-Pérez, "DES: A Deductive Database System", ENTCS 271,
pp. 63-78, 2011. des.sourceforge.net

