

Fernando Sáenz-Pérez 1/204

Universidad Complutense de Madrid

Datalog Educational System

Datalog Educational

System V3.0

User’s Manual

Fernando Sáenz Pérez

Grupo de Programación Declarativa (GPD)

Departamento de Ingeniería del Software e Inteligencia Artificial (DISIA)

Universidad Complutense de Madrid (UCM)

 May, 10th, 2012

Fernando Sáenz-Pérez 2/204

Universidad Complutense de Madrid

Datalog Educational System

Copyright (C) 2004-2012 Fernando Sáenz-Pérez

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in Appendix A, in the section entitled "Documentation License".

Fernando Sáenz-Pérez 3/204

Universidad Complutense de Madrid

Datalog Educational System

Contents

1. Introduction... 8
1.1 Deductive Databases .. 9

2. Installation... 9
2.1 Downloading DES .. 9

2.1.1 Source Distribution .. 10
2.1.2 Executable Distribution... 10

2.1.2.1 Windows ... 10

2.1.2.2 DES+ACIDE Windows Bundle.. 12

2.1.2.3 Linux.. 12
2.1.2.4 Mac OS X... 13

2.2 Installing and Executing DES.. 14

2.2.1 MS Windows... 14

2.2.1.1 Executable Distribution... 14
2.2.1.2 Source Distribution.. 14

2.2.2 Linux .. 14

2.2.2.1 Executable Distribution... 14

2.2.2.2 Source Distribution.. 15
2.2.3 Starting DES from a Prolog interpreter... 15

3. Getting Started.. 15
3.1 Datalog Mode .. 16
3.2 SQL Mode .. 19

3.3 Relational Algebra Mode... 22

3.4 Prolog Mode .. 26

3.5 Caveats ... 27
3.6 Getting Help .. 27

4. Query Languages.. 27
4.1 Datalog ... 28

4.1.1 Syntax... 29
4.1.2 Rules... 31

4.1.3 Programs ... 31

4.1.4 Queries... 31

4.1.5 Temporary Views... 32
4.1.6 Automatic Temporary Views ... 32

4.1.7 Underscored Variables .. 33

4.1.8 Negation .. 34
4.1.9 Duplicates.. 36

4.1.10 Null Values.. 39

4.1.11 Outer Joins... 40

4.1.12 Aggregates .. 42
4.1.12.1 Aggregate Functions ... 42

4.1.12.2 Group_by Predicate... 42

4.1.12.3 Aggregate Predicates... 45

4.1.13 Disjunctive Bodies.. 47
4.1.14 Integrity Constraints.. 48

4.1.14.1 Type ... 48

4.1.14.1.1 Types on Intensional Database ... 50
4.1.14.1.2 Types on Propositional Relations... 51

Fernando Sáenz-Pérez 4/204

Universidad Complutense de Madrid

Datalog Educational System

4.1.14.2 Nullability (Existency Constraint)... 51

4.1.14.3 Primary Key.. 51
4.1.14.4 Candidate Key (Uniqueness Constraint).. 52

4.1.14.5 Foreign Key... 53

4.1.14.6 Functional Dependency .. 54
4.1.14.7 User-defined Integrity Constraints ... 55

4.1.14.8 Dropping Constraints.. 58

4.1.14.9 Caveats .. 59

4.2 SQL.. 59
4.2.1 Main Limitations .. 59

4.2.2 Main Features ... 60

4.2.3 Datalog vs. SQL .. 61

4.2.4 Data Definition Language... 61
4.2.4.1 Creating Tables... 61

4.2.4.2 Creating Views... 63

4.2.4.3 Dropping Tables... 64

4.2.4.4 Dropping Views... 65
4.2.4.5 Renaming Tables.. 65

4.2.4.6 Renaming Views .. 65

4.2.4.7 Dropping Databases .. 65
4.2.5 Data Manipulation Language... 65

4.2.5.1 Inserting Tuples ... 65

4.2.5.2 Deleting Tuples .. 66

4.2.6 Data Query Language.. 66
4.2.6.1 Basic SQL Queries.. 67

4.2.6.1.1 Top-N Queries... 69

4.2.6.1.2 The dual table .. 69
4.2.6.2 Set SQL Queries.. 70

4.2.6.3 WITH SQL Queries ... 71
4.2.6.4 Hypothetical SQL Queries.. 72

4.2.7 Information Schema Language (ISL)... 75

4.2.8 SQL Grammar... 75
4.3 (Extended) Relational Algebra.. 82

4.3.1 Operators... 82

4.3.1.1 Basic operators ... 82

4.3.1.2 Additional operators ... 83
4.3.1.3 Extended operators.. 84

4.3.2 Recursion in RA.. 85

4.3.3 RA Grammar... 85

4.4 Prolog.. 87
4.5 Built-ins .. 87

4.5.1 Comparison Operators .. 87

4.5.2 Datalog and Prolog Arithmetic .. 88
4.5.3 SQL Arithmetic... 89

4.5.4 Arithmetic Built-ins.. 89

4.5.4.1 Arithmetic Operators .. 90

4.5.4.2 Arithmetic Constants... 90
4.5.4.3 Arithmetic Functions... 90

4.5.5 Negation .. 92

4.5.6 Datalog Outer Joins.. 92

Fernando Sáenz-Pérez 5/204

Universidad Complutense de Madrid

Datalog Educational System

4.5.7 Datalog Aggregates.. 92

4.5.7.1 Aggregate Functions ... 92
4.5.7.2 Group_by Predicate... 92

4.5.7.3 Aggregate Predicates... 93

4.5.8 Datalog Null-related Predicates... 93
4.5.9 Duplicates.. 93

4.5.10 Top-N Queries .. 94

5. System Description.. 94
5.1 RDBMS connections via ODBC .. 94

5.1.1 Opening an ODBC Connection .. 94

5.1.2 Using a Connection.. 95

5.1.3 Opening Several Connections .. 98

5.1.4 Current Connection ... 99
5.1.5 Making a Connection the Current One... 99

5.1.6 Closing a Connection... 99

5.1.7 Schema and Data Visibility... 99

5.1.8 Integrity Constraints, ODBC Connections, and Persistency...................... 100
5.1.9 Caveats and Limitations.. 102

5.1.9.1 Caching.. 102

5.1.9.2 ODBC Metadata ... 103
5.1.9.3 ODBC Limitations.. 103

5.1.9.4 Platform-specific Issues... 103

5.1.10 Tested ODBC Drivers .. 104

5.2 Persistency ... 104
5.2.1 Persisting a Predicate... 104

5.2.2 Using Persistent Predicates... 105

5.2.3 Processing a Persistency Assertion.. 106

5.2.4 Restoring a Session... 107
5.2.5 Schema of Persistent Predicates ... 109

5.2.6 Removing Predicate Persistency.. 110

5.2.7 Schema and Data Visibility... 111

5.2.8 Applications .. 113
5.2.9 Caveats... 115

5.2.9.1 Incomplete Meanings .. 115

5.2.9.2 Opening and Closing Connections.. 116
5.2.9.3 Abolishing Predicates.. 116

5.2.9.4 Null Values ... 116

5.2.9.5 External Database Processing .. 116

5.2.9.6 Supported Platforms ... 116
5.3 Safety and Computability.. 117

5.3.1 Classical Safety ... 117

5.3.2 Safety for Aggregates and Duplicate Elimination....................................... 120

5.4 Source-to-Source Transformations ... 121
5.5 Multi-line Mode .. 122

5.6 Development Mode .. 122

5.7 Datalog and SQL Tracers ... 125

5.7.1 Tracing Datalog Queries ... 125
5.7.2 Tracing SQL Views... 126

5.8 Datalog Declarative Debugger.. 127

5.9 SQL Declarative Debugger .. 129

Fernando Sáenz-Pérez 6/204

Universidad Complutense de Madrid

Datalog Educational System

5.9.1 Trusted Specifications.. 130

5.9.2 Missing and Wrong Tuples... 132
5.9.2.1 Missing Tuples ... 132

5.9.2.2 Wrong Tuples ... 133

5.9.2.3 Displaying Extended Information... 134
5.10 SQL Test Case Generator ... 134

5.11 Batch Processing.. 136

5.12 Messages .. 137

5.13 Commands... 137
5.13.1 DES Database.. 138

5.13.2 ODBC Database.. 141

5.13.3 Debugging and Test Case Generation... 141

5.13.4 Tabling ... 142
5.13.5 Operating System... 142

5.13.6 Log.. 143

5.13.7 Informative.. 143

5.13.8 Query Languages ... 147
5.13.9 TAPI-related.. 147

5.13.10 Miscellanea ... 147

5.13.11 Implementor ... 148
5.14 Textual API .. 149

5.14.1 Notes about the Interface .. 150

5.14.1.1 Identifiers .. 150

5.14.1.2 Kinds of Answers... 151
5.14.2 TAPI-enabled Commands... 151

5.14.3 TAPI-enabled Queries ... 160

5.15 ISO Escape Character Syntax .. 162

5.16 Notes about the Implementation of DES... 163
5.16.1 Tabling ... 164

5.16.2 Fixpoint Computation ... 165

5.16.3 Dependency Graphs and Stratification: Negation, Outer Joins, and
Aggregates .. 165

5.16.4 Porting to Unsupported Systems... 166

5.16.5 Differences among Platforms ... 166

6. Examples .. 166
6.1 Relational Operations (files relop.{dl,sql,ra}) .. 167

6.2 Paths in a Graph (files paths.{dl,sql,ra}) ... 170

6.3 Shortest Paths (file spaths.{dl,sql,ra}) ... 171

6.4 Family Tree (files family.{dl,sql,ra}) ... 173

6.5 Basic Recursion Problem (file recursion.dl)... 175

6.6 Transitive Closure (files tranclosure.{dl,sql,ra})................................ 175

6.7 Mutual Recursion (files mutrecursion.{dl,sql,ra}) 176

6.8 Farmer-Wolf-Goat-Cabbage Puzzle (file puzzle.dl) 177

6.9 Paradoxes (files russell.{dl,sql,ra}).. 179

6.10 Parity (file parity.dl)... 182

6.11 Grammar (file grammar.dl) .. 183

6.12 Fibonacci (file fib.{dl,sql,ra}) .. 183

6.13 Hanoi Towers (file hanoi.dl)... 184
6.14 Other Examples... 185

Fernando Sáenz-Pérez 7/204

Universidad Complutense de Madrid

Datalog Educational System

7. Contributions.. 185

8. Related Work .. 186
8.1 Deductive Database Systems .. 187

8.2 Technological Transfers ... 188

9. Future Enhancements .. 188
10. Caveats and Limitations.. 189

11. Release Notes .. 190
11.1 Version 3.0 of DES (released on May, 9th, 2012) .. 190

12. Acknowledgements ... 192
Appendix A. License... 193

Bibliography... 201

Fernando Sáenz-Pérez 8/204

Universidad Complutense de Madrid

Datalog Educational System

1. Introduction

The Datalog Educational System (DES) is a free, open-source, multiplatform,
portable, Prolog-based implementation of a deductive database system. DES 3.0 is the
current implementation, which enjoys Datalog, Relational Algebra and SQL query
languages, full recursive evaluation with memoization techniques, full-fledged
arithmetic, stratified negation, duplicates and duplicate elimination, integrity
constraints, ODBC connections to external relational database management systems
(RDBMSs), Datalog and SQL tracers, a textual API for external applications, and novel
approaches to hypothetical SQL queries, declarative debugging of Datalog queries and
SQL views, test case generation for SQL views, null values support, (tabled) outer join
and aggregate predicates. The system is implemented on top of Prolog and it can be
used from a Prolog interpreter running on any OS supported by such interpreter.
Moreover, Windows, Linux and MacOSX executables are also provided.

We have developed DES aiming to have a simple, interactive, multiplatform,
and affordable system (not necessarily efficient) for students, so that they can get the
fundamental concepts behind a deductive database with Datalog, Relational Algrebra
and SQL as query languages. SQL is supported with a reasonable coverage of the
standard for teaching purposes. Supported (extended) relational algebra includes
duplicates, outer joins and recursion. Other deductive systems are not fully suited to
our needs due to the absence of some characteristics DES does offer for our educational
purposes. This system is not targeted as a complete deductive database, so that it does
not provide transactions, security, and other features present in current database
systems.

There are two relevant enhancements in the current release: Predicate
persistency supported by external databases, and an extended SQL debugger following
[CGS12a]. The first one motivates raising the major version as it opens a brand new
scenario for several reasons: First, predicates are no longer limited by available
memory; instead, persisted predicates are using as much secondary storage as needed
and provided by the underlying external database. Second, processing is directed to
the external database for those rules that can be projected, and to the deductive engine
for rules that can not. This way, one can take advantage of the external database
performance and scalability. Third, queries which are not possible in an external
database can be solved by the deductive engine. So, one can extend external database
expressiveness with the added features in DES. Finally, as several ODBC connections
are allowed at a time, different predicates can be made persistent in different DMBSs,
which allows for interoperability among external relational engines and the local
deductive engine, therefore enabling business intelligence applications. (See Section 5.2
for details.) With respect to the new SQL Debugger version, which is a new
implementation, it also now accept user information about wrong and missing tuples,
allowing to focus the questions directed to the user on more precise error sources,
therefore preventing many questions involving large sets of data (see Section 5.9 for
details). New ports to SICStus Prolog 4.2.1 and SWI-Prolog 6.0.2 have been provided.
License has been relaxed to LGPL version 3. The complete list of enhancements,
changes and fixed bugs are listed in Section 11.1.

Fernando Sáenz-Pérez 9/204

Universidad Complutense de Madrid

Datalog Educational System

A novel contribution implemented in this system is a declarative debugger of
Datalog queries [CGS07,CGS08], which relies on program semantics rather than on the
computation mechanism. The debugging process is usually started when the user
detects an unexpected answer to a query. By asking questions about the intended
semantics, the debugger looks for incorrect program relations. See Section 5.8 for
details. Also, a similar declarative approach has been used to implement a SQL
declarative debugger, following [CGS11b]. There, possible erroneous objects
correspond to views, and the debugger looks for erroneous views asking the user
whether the result of a given view is as expected. In addition, trusted views are
supported to prune the number of questions. This was extended to also include user
information about wrong and missing tuples [CGS12a]. See Section 5.9 for details. In
addition, following the need for catching program errors when handling large amounts
of data, we also include a test case generator for SQL correlated views [CGS10a]. Our
tool can be used to generate positive, negative and both positive-negative test cases (cf.
Section 5.10).

1.1 Deductive Databases

The intersection of databases, logic, and artificial intelligence delivered
deductive databases. Deductive database systems are database management systems
built around a logical model of data, and their query languages allow expressing
logical queries. Relational database languages (where SQL is the de-facto standard)
implement a limited form of logic whereas deductive database languages implement
advanced forms of logic.

A deductive database is a system which includes procedures for defining
deductive rules which can infer information (in the so-called intensional database) in
addition to the facts loaded in the (so-called extensional) database. The logic model for
deductive databases is closely related to the relational model and, in particular, with
the domain relational calculus. Their query languages are related with the Prolog
language and, mainly, with Datalog, a Prolog subset without constructed terms (in
order to avoid infinite terms) and other non-declarative constructs such as the cut.

Origins of deductive databases can be found in automatic theorem proving and,
later, in logic programming. Minker [Mink87] suggested that Green and Raphael
[GR68] were the pioneers in discovering the relation between theorem proving and
deduction in databases. They developed several question–answer systems using a
version of the Robinson resolution principle [Robi65], showing that deduction can be
systematically performed in a database environment. Other pioneer systems were
MRPPS [MN82], DEDUCE–2 [Chan78] and DADM [KT81]. See Section 8 for references
to other current deductive database systems.

2. Installation

2.1 Downloading DES

You can download the system from the DES web page via the URL:

http://des.sourceforge.net/

Fernando Sáenz-Pérez 10/204

Universidad Complutense de Madrid

Datalog Educational System

There, you can find source distributions for several Prolog interpreters and
operating systems, and executable distributions for MS Windows, Linux and Mac OS.

2.1.1 Source Distribution

Under the source distribution, there are several versions depending on the
Prolog interpreter you select to run DES: Ciao Prolog [BCC97], GNU Prolog [Diaz],
SICStus Prolog [SICStus], and SWI Prolog [Wiele]. However, adapting the code in the
file des_glue.pl , it could be ported to any other Prolog system. (See Section 5.16.3
for porting to unsupported systems.) We have tested DES under several Prolog
systems (Ciao Prolog 1.14.2, GNU Prolog 1.4.0, SICStus Prolog 4.2.1, and SWI–Prolog
6.0.2), and several operating systems (MS Windows XP/Vista/7, Ubuntu 10.04.1, and
MacOSX Snow Leopard).

The source distribution comes in a single archive file containing the following:

• readmeDES<version>.txt. A quick installation guide and file release contents

• des.pl. Core of DES, including Datalog processor

• des_dcg.pl. DCG expansion

• des_sql.pl. SQL processor

• des_ra.pl. RA processor

• des_sql_debug.pl. SQL declarative debugger

• des_dl_debug.pl. Datalog declarative debugger

• des_types.pl. Type inferrer for SQL, RA and Datalog

• des_tc.pl. Test case generator for SQL views

• des_glue.pl. Contains particular code for the selected host Prolog system

• ciaorc. Only for Ciao Prolog system. Contains initialization code for this system

• doc/manualDES<version>.pdf. This manual

• examples/*.dl Example files which will be discussed in Section 6

• license/license A verbatim copy of the GNU Public License for this distribution

2.1.2 Executable Distribution

2.1.2.1 Windows

From the same URL above, you can download a Windows executable
distribution in a single archive file containing the following:

• readmeDES<version>.txt. A quick installation guide and file release contents

• des.exe. Console executable file, intended to be started from a OS command shell,
as depicted in the next figure:

Fernando Sáenz-Pérez 11/204

Universidad Complutense de Madrid

Datalog Educational System

• deswin.exe. Windows-application executable file, as depicted below:

Please note that the menu bar above is inherited from the host Prolog system and all its
settings apply to such system, not to DES.

• *.dll. DLL libraries for the runtime system

• doc/manualDES<version>.pdf. This manual

• examples/*.dl Example files which will be discussed in Section 6

Fernando Sáenz-Pérez 12/204

Universidad Complutense de Madrid

Datalog Educational System

• license/license A verbatim copy of the GNU Public License for this distribution

2.1.2.2 DES+ACIDE Windows Bundle

From the same URL above, you can download a bundle including both DES
and the integrated development environment ACIDE, preconfigured to work with
DES. The following figure is a snapshot of the system:

2.1.2.3 Linux

From the same URL above, you can download a Linux executable distribution
in a single archive file containing the following:

• readmeDES<version>. A quick installation guide and file release contents

• des. Console executable file

• doc/manualDES<version>.pdf. This manual

• examples/*.dl Example files which will be discussed in Section 6

• license/license A verbatim copy of the GNU Public License for this distribution

The following screenshot has been taken in Ubuntu 10.04.1:

Fernando Sáenz-Pérez 13/204

Universidad Complutense de Madrid

Datalog Educational System

2.1.2.4 Mac OS X

From the same URL above, you can download a Mac OS X executable
distribution in a single archive file containing the following:

• readmeDES<version>. A quick installation guide and file release contents

• des. Console executable file

• doc/manualDES<version>.pdf. This manual

• examples/*.dl Example files which will be discussed in Section 6

• license/license A verbatim copy of the GNU Public License for this distribution

The following screenshot has been taken in Mac OS X Snow Leopard:

Fernando Sáenz-Pérez 14/204

Universidad Complutense de Madrid

Datalog Educational System

2.2 Installing and Executing DES

Unpack the distribution archive file into the directory you want to install DES,
which will be referred to as the distribution directory from now on. This allows you to
run the system, whether you have a Prolog interpreter or not (in this latter case, you
have to run the system either on MS Windows, Linux or MacOS).

Although there is no need for further setup and you can go directly to Section
2.2.3, you can also configure a more user-friendly way for system start. In this way,
you can follow two routes depending on the operating system.

2.2.1 MS Windows

2.2.1.1 Executable Distribution

Simply create a shortcut in the desktop for executing the executable of your
choice: either des.exe , or deswin.exe or des_acide.jar . The former is a console-
based executable, the second is a windows-based executable, and the latter is a Java
application that includes a call to des.exe . Executables have been generated with
SICStus Prolog, so that all SICStus notes in the rest of this document also apply to these
executables. In addition, since it is a portable application, it needs to be started from its
distribution directory, which means that the start-up directory of the shortcut must be
the distribution directory.

2.2.1.2 Source Distribution

Perform the following steps:

1. Create a shortcut in the desktop for running the Prolog interpreter of your choice.

2. Modify the start directory in the “Properties” dialog box of the shortcut to the
installation directory for DES. This allows the system to consult the needed files at
startup.

3. Append the following options to the Prolog executable path, depending on the
Prolog interpreter you use:

(a) Ciao Prolog: -l ciaorc

(b) GNU Prolog: --entry-goal ['des.pl']

(c) SICStus Prolog: -l des.pl

(d) SWI Prolog: -g "ensure_loaded(des)" (remove --win_app if present)

Another alternative is to write a batch file similar to the script file described in
the next section.

2.2.2 Linux

2.2.2.1 Executable Distribution

You can create a script or an alias for executing the file des at the distribution
root. This executable has been generated under SICStus Prolog, so that all SICStus
notes in the rest of this document also apply to these executables. In addition, since it is
a portable application, it needs to be started from its distribution directory.

Fernando Sáenz-Pérez 15/204

Universidad Complutense de Madrid

Datalog Educational System

2.2.2.2 Source Distribution

You can write a script for starting DES according to the selected Prolog
interpreter, as follows:

(a) Ciao Prolog:

$CIAO –l ciaorc

Provided that $CIAO is the variable which holds the absolute filename of the Ciao
Prolog executable.

(b) GNU Prolog:

$GNU --entry-goal ['des.pl']

Provided that $GNU is the variable which holds the absolute filename of the GNU
Prolog executable.

(c) SICStus Prolog:

$SICSTUS –l des.pl

Provided that $SICSTUS is the variable which holds the absolute filename of the
SICStus Prolog executable.

(d) SWI Prolog:

$SWI -g "ensure_loaded(des)"

Provided that $SWI is the variable which holds the absolute filename of the SWI
Prolog executable.

2.2.3 Starting DES from a Prolog interpreter

Besides the methods just described, you can start DES from a Prolog interpreter,
disregarding the OS and platform, first changing to the distribution directory, and then
submitting:

?- [des].

Or better, if the system does support it:

?- ensure_loaded(des).

If the system does not start by itself, then type:

?- start.

3. Getting Started

Whichever method you use to start DES (a script, batch file, or shortcut, as
described in Section 2.2), you get the following:

Fernando Sáenz-Pérez 16/204

Universidad Complutense de Madrid

Datalog Educational System

*** ******
* *
* DES: Datalog Educational System v.3.0 *
* *
* Type "/help" for help about commands *
* *
* Fernando Saenz-Perez (c) 2004- 2012 *
* GPD DISIA UCM *
* Please send comments, questions, etc. to: *
* fernan@sip.uc m.es *
* Web s ite: *
* http://des.sourceforge. net/ *
* *
* This program comes with ABSOLUTELY NO WARRANTY, i s *
* free software, and you are welcome to redistribut e it *
* under certain conditions. Type "/license" for det ails *
*** ******

DES>

This last line (DES>) is the DES system prompt, which allows you to write
Datalog, SQL and Relational Algebra (RA) queries, commands, temporary views and
conjunctive queries (see next sections). If an error leads to an exit from DES and you
have started from a Prolog interpreter, then you can write ”des. ” (without the double
quotes and with the dot) at the Prolog prompt to continue.

Although a query in any of the languages above can be submitted from such
prompt, there are currently four modes available which enable to use a concrete query
interpreter for Datalog, SQL, Relational Algebra and Prolog. The first one is the default.
A mode can be switched via the commands /datalog , /sql , /ra and /prolog ,
respectively. Note that commands always start with a slash (/). Anyway, if you are in a
given mode, you can submit queries or goals to other interpreters simply writing the
query or goal after any of the previous commands. Also, if you are in Datalog mode,
you can directly submit both SQL and RA queries.

Data are stored in a deductive database, including facts and rules. All queries
and goals, irrespective of the language, refer to this database. When an external
database is opened (see Section 5.1), their tables and views are available and can be
queried from Datalog, Prolog and SQL.

In contrast with other interpreters, default input mode is single-line, which
means that the input will be processed after hitting the Intro key, which allows to omit
the terminating character. Nonetheless, this mode can be switched to multi-line as
described in Section 5.5 with the command /multiline on .

3.1 Datalog Mode

In this mode, a query is sent to the Datalog processor. If it does not follow
Datalog syntax, then it is sent, first, to the SQL processor (see Section 4.2) and, second,
to the RA processor (see Section 4.3) should such query is written in any of these other
query languages (See caveats in Section 3.5). Commands (see Section 5.13) are sent to
the command processor. Commands can end with an optional dot. In single-line mode,
Datalog inputs can also end with an optional dot, but the dot is required in multi-line

Fernando Sáenz-Pérez 17/204

Universidad Complutense de Madrid

Datalog Educational System

mode. Datalog mode is the default and can be anyway enabled via the command
/datalog .

The typical way of using the system is to write Datalog program files (with
default extension .dl) and consulting them before submitting queries. Another
alternative is to assert program rules from the system prompt.

Following the first alternative, you write the program in a text file, and then
change to the path where the file is located by using the command /cd Path, where
Path is the new directory (relative or absolute). Next, the command /consult
FileName is used to consult the file FileName.

Provided there are a number or example files in the directory examples at the
distribution directory, and assuming that the current path is the distribution directory
(as by default), one can use the following commands to consult the example file
relop.dl :1

DES> /cd examples

DES> /consult relop.dl
Info: 18 rules consulted.

(where the default extension .dl can be omitted). Note that rules in files must end
with a dot, in contrast to command prompt inputs, where the dot is optional in single-
line input. Rules in a consulted file may span on multiple lines.

Then, one can examine the contents of the database (see Section 6.1 for an explanation
of the consulted program) via the command:

DES> /listing

a(a1).
a(a2).
a(a3).
b(a1).
b(b1).
b(b2).
c(a1,a1).
c(a1,b2).
c(a2,b2).
cartesian(X,Y) :-
 a(X),
 b(Y).
difference(X) :-
 a(X),
 not(b(X)).
full_join(X,Y) :-
 fj(a(X),b(Y),X = Y).
inner_join(X) :-
 a(X),
 b(X).
left_join(X,Y) :-

1 See section 5 for more details about commands.

Fernando Sáenz-Pérez 18/204

Universidad Complutense de Madrid

Datalog Educational System

 lj(a(X),b(Y),X = Y).
projection(X) :-
 c(X,Y).
right_join(X,Y) :-
 rj(a(X),b(Y),X = Y).
selection(X) :-
 a(X),
 X = a2.
union(X) :-
 a(X)
 ;
 b(X).

Info: 18 rules listed.

Submitting a query is pretty easy:

DES> a(X)
{
 a(a1),
 a(a2),
 a(a3)
}
Info: 3 tuples computed.

You can interactively add new rules with the command /assert , as in:

DES> /assert a(a4)
DES> a(X)
{
 a(a1),
 a(a2),
 a(a3),
 a(a4)
}
Info: 4 tuples computed.

Saving the current database, which may include such interactively added (or
deleted) tuples, is allowed with the command /save_ddb Filename, which saves in
a plain file the Datalog rules in memory. Later, they can be restored with
/restore_ddb Filename (this command is only an alias for /consult .) In the
following session, the current database is stored, abolished (cleared), and finally
restored. All the data, including the ones interactively added have been recovered:

DES> /save_ddb db.dl
DES> /abolish
DES> /restore_ddb db.dl
Info: 19 rules consulted.
DES> a(X)
{
 a(a1),
 a(a2),
 a(a3),
 a(a4)
}

Fernando Sáenz-Pérez 19/204

Universidad Complutense de Madrid

Datalog Educational System

Info: 4 tuples computed.

Another useful command is /list_et , which lists, in particular, the answers
already computed. Following the last series of queries and commands above, we
submit:

Answers:
{
 a(a1),
 a(a2),
 a(a3),
 a(a4)
}
Info: 4 tuples in the answer table.
Calls:
{
 a(A)
}
Info: 1 tuple in the call table.

Here, we can see that the computed meaning of the queried relation is stored in
an extension table, as well as the last call (cf. sections 5.16.1 and 5.16.2). Unless either
the database is changed (e.g., via /assert or /retract commands) or a temporary
view (see Section 4.1.6) executed or the command /clear_et is submitted, the
extension table keeps computed results, otherwise it is cleared.

3.2 SQL Mode

In this mode, queries are sent to the SQL processor, whereas commands (cf.
Section 5.13) are sent to the command processor. SQL queries can end with an optional
semicolon in single-line mode. Multi-line mode requires the ending semicolon. SQL
mode is enabled via the command /sql . Datalog and RA queries cannot be handled
by this mode.

If we want to develop an analogous SQL example session to the Datalog
example in the last section, we can submit the first inputs (also available in the file
examples/relop.sql) listed below (the example is augmented to provide a first
glance of SQL). Now, answer relations to SQL queries are denoted by the relation
name answer . Also note that lines starting by % are simply remarks. If you wish to
automatically reproduce the following interactive session of inputs, you can type
/process examples/relop.sql (notice that you must omit examples/ if you are
in this directory already):

Info: Processing file 'relop.sql' ...
DES> % Switch to SQL interpreter
DES> /sql
DES-SQL> % Creating tables
DES-SQL> create or replace table a(a string);
DES-SQL> create or replace table b(b string);
DES-SQL> create or replace table c(a string,b strin g);
DES-SQL> % Listing the database schema
DES-SQL> /dbschema
Info: Table(s):
 * a(a:string(varchar))

Fernando Sáenz-Pérez 20/204

Universidad Complutense de Madrid

Datalog Educational System

 * b(b:string(varchar))
 * c(a:string(varchar),b:string(varchar))
Info: No views.
Info: No integrity constraints.
DES-SQL> % Inserting values into tables
DES-SQL> insert into a values ('a1');
Info: 1 tuple inserted.
DES-SQL> insert into a values ('a2');
Info: 1 tuple inserted.
DES-SQL> insert into a values ('a3');
Info: 1 tuple inserted.
DES-SQL> insert into b values ('b1');
Info: 1 tuple inserted.
DES-SQL> insert into b values ('b2');
Info: 1 tuple inserted.
DES-SQL> insert into b values ('a1');
Info: 1 tuple inserted.
DES-SQL> insert into c values ('a1','b2');
Info: 1 tuple inserted.
DES-SQL> insert into c values ('a1','a1');
Info: 1 tuple inserted.
DES-SQL> insert into c values ('a2','b2');
Info: 1 tuple inserted.
DES-SQL> % Testing the just inserted values
DES-SQL> select * from a;
answer(a.a) ->
{
 answer(a1),
 answer(a2),
 answer(a3)
}
Info: 3 tuples computed.
DES-SQL> select * from b;
answer(b.b) ->
{
 answer(a1),
 answer(b1),
 answer(b2)
}
Info: 3 tuples computed.
DES-SQL> select * from c;
answer(c.a, c.b) ->
{
 answer(a1,a1),
 answer(a1,b2),
 answer(a2,b2)
}
Info: 3 tuples computed.
DES-SQL> % Projection
DES-SQL> select a from c;
answer(c.a) ->
{
 answer(a1),
 answer(a2)

Fernando Sáenz-Pérez 21/204

Universidad Complutense de Madrid

Datalog Educational System

}
Info: 2 tuples computed.
DES-SQL> % Selection
DES-SQL> select a from a where a='a2';
answer(a.a) ->
{
 answer(a2)
}
Info: 1 tuple computed.
DES-SQL> % Cartesian product
DES-SQL> select * from a,b;
answer(a.a, b.b) ->
{
 answer(a1,a1),
 answer(a1,b1),
 answer(a1,b2),
 answer(a2,a1),
 answer(a2,b1),
 answer(a2,b2),
 answer(a3,a1),
 answer(a3,b1),
 answer(a3,b2)
}
Info: 9 tuples computed.
DES-SQL> % Inner Join
DES-SQL> select a from a inner join b on a.a=b.b;
answer(a) ->
{
 answer(a1)
}
Info: 1 tuple computed.
DES-SQL> % Left Join
DES-SQL> select * from a left join b on a.a=b.b;
answer(a.a, b.b) ->
{
 answer(a1,a1),
 answer(a2,null),
 answer(a3,null)
}
Info: 3 tuples computed.
DES-SQL> % Right Join
DES-SQL> select * from a right join b on a.a=b.b;
answer(a.a, b.b) ->
{
 answer(a1,a1),
 answer(null,b1),
 answer(null,b2)
}
Info: 3 tuples computed.
DES-SQL> % Full Join
DES-SQL> select * from a full join b on a.a=b.b;
answer(a.a, b.b) ->
{
 answer(a1,a1),

Fernando Sáenz-Pérez 22/204

Universidad Complutense de Madrid

Datalog Educational System

 answer(a1,null),
 answer(a2,null),
 answer(a3,null),
 answer(null,a1),
 answer(null,b1),
 answer(null,b2)
}
Info: 7 tuples computed.
DES-SQL> % Union
DES-SQL> select * from a union select * from b;
answer(a.a) ->
{
 answer(a1),
 answer(a2),
 answer(a3),
 answer(b1),
 answer(b2)
}
Info: 5 tuples computed.
DES-SQL> % Difference
DES-SQL> select * from a except select * from b;
answer(a.a) ->
{
 answer(a2),
 answer(a3)
}
Info: 2 tuples computed.
Info: Batch file processed.

Duplicates are disabled by default, i.e., answers are set-oriented. But they can
be enabled as well, which is useful in Datalog, SQL and RA queries (see Section 4.1.9).
For instance:

DES-Prolog> /duplicates on
Info: Duplicates are on.

DES-Prolog> /datalog projection(X)
{
 projection(a1),
 projection(a1),
 projection(a2)
}
Info: 3 tuples computed.

3.3 Relational Algebra Mode

In this mode, queries are sent to the Relational Algebra (RA) processor, whereas
commands (cf. Section 5.13) are sent to the command processor. RA queries can end
with an optional semicolon in single-line mode. Multi-line mode requires the ending
semicolon. RA mode is enabled via the command /ra . Datalog and SQL queries
cannot be handled by this mode.

If we want to develop an analogous RA example session to the former
examples, we can submit the first inputs (also available in the file

Fernando Sáenz-Pérez 23/204

Universidad Complutense de Madrid

Datalog Educational System

examples/relop.ra) listed below. Now, answer relations to RA queries are
denoted by the relation name answer . As before, lines starting by either % or -- are
simply remarks. If you wish to automatically reproduce the following interactive
session of inputs, you can type /process examples/relop.ra (notice that you
must omit examples/ if you are in this directory already):

DES-RA> % Testing the just inserted values
DES-RA> select true (a);
answer(a.a:string(varchar)) ->
{
 answer(a1),
 answer(a2),
 answer(a3)
}
Info: 3 tuples computed.
DES-RA> select true (b);
answer(b.b:string(varchar)) ->
{
 answer(a1),
 answer(b1),
 answer(b2)
}
Info: 3 tuples computed.
DES-RA> select true (c);
answer(c.a:string(varchar),c.b:string(varchar)) ->
{
 answer(a1,a1),
 answer(a1,b2),
 answer(a2,b2)
}
Info: 3 tuples computed.
DES-RA> % Projection
DES-RA> project a (c);
answer(c.a:string(varchar)) ->
{
 answer(a1),
 answer(a2)
}
Info: 2 tuples computed.
DES-RA> % Selection
DES-RA> select a='a2' (a);
answer(a.a:string(varchar)) ->
{
 answer(a2)
}
Info: 1 tuple computed.
DES-RA> % Cartesian product
DES-RA> a product b;
answer(a.a:string(varchar),b.b:string(varchar)) ->
{
 answer(a1,a1),
 answer(a1,b1),
 answer(a1,b2),
 answer(a2,a1),

Fernando Sáenz-Pérez 24/204

Universidad Complutense de Madrid

Datalog Educational System

 answer(a2,b1),
 answer(a2,b2),
 answer(a3,a1),
 answer(a3,b1),
 answer(a3,b2)
}
Info: 9 tuples computed.
DES-RA> % Theta Join
DES-RA> select a.a=b.b (a product b);
answer(a.a:string(varchar),b.b:string(varchar)) ->
{
 answer(a1,a1)
}
Info: 1 tuple computed.
DES-RA> a zjoin a.a=b.b b;
answer(a.a:string(varchar),b.b:string(varchar)) ->
{
 answer(a1,a1)
}
Info: 1 tuple computed.
DES-RA> % Natural Inner Join
DES-RA> a njoin c;
answer(a.a:string(varchar),c.b:string(varchar)) ->
{
 answer(a1,a1),
 answer(a1,b2),
 answer(a2,b2)
}
Info: 3 tuples computed.
DES-RA> % Left Outer Join
DES-RA> a ljoin a.a=b.b b;
answer(a.a:string(varchar),b.b:string(varchar)) ->
{
 answer(a1,a1),
 answer(a2,null),
 answer(a3,null)
}
Info: 3 tuples computed.
DES-RA> % Right Outer Join
DES-RA> a rjoin a.a=b.b b;
answer(a.a:string(varchar),b.b:string(varchar)) ->
{
 answer(a1,a1),
 answer(null,b1),
 answer(null,b2)
}
Info: 3 tuples computed.
DES-RA> % Full Outer Join
DES-RA> a fjoin a.a=b.b b;
answer(a.a:string(varchar),b.b:string(varchar)) ->
{
 answer(a1,a1),
 answer(a2,null),
 answer(a3,null),

Fernando Sáenz-Pérez 25/204

Universidad Complutense de Madrid

Datalog Educational System

 answer(null,b1),
 answer(null,b2)
}
Info: 5 tuples computed.
DES-RA> % Union
DES-RA> a union b;
answer(a.a:string(varchar)) ->
{
 answer(a1),
 answer(a2),
 answer(a3),
 answer(b1),
 answer(b2)
}
Info: 5 tuples computed.
DES-RA> % Difference
DES-RA> a difference b;
answer(a.a:string(varchar)) ->
{
 answer(a2),
 answer(a3)
}
Info: 2 tuples computed.
DES-RA> % Intersection
DES-RA> a intersect b;
answer(a.a:string(varchar)) ->
{
 answer(a1)
}
Info: 1 tuple computed.
DES-RA> % Grouping
DES-RA> group_by a a,count(*) true (c);
answer(c.a:string(varchar),$a3:number(integer)) ->
{
 answer(a1,2),
 answer(a2,1)
}
Info: 2 tuples computed.
DES-RA> % Renaming
DES-RA> select a1.a<a2.a ((rename a1(a) (a)) produc t (rename
a2(a) (a)));
answer(a1.a:string(varchar),a2.a:string(varchar)) - >
{
 answer(a1,a2),
 answer(a1,a3),
 answer(a2,a3)
}
Info: 3 tuples computed.
DES-RA> % Duplicate elimination
DES-RA> /duplicates off
Info: Duplicates are already disabled.
DES-RA> project a (c);
answer(c.a:string(varchar)) ->
{

Fernando Sáenz-Pérez 26/204

Universidad Complutense de Madrid

Datalog Educational System

 answer(a1),
 answer(a2)
}
Info: 2 tuples computed.
DES-RA> /duplicates on
DES-RA> project a (c);
answer(c.a:string(varchar)) ->
{
 answer(a1),
 answer(a1),
 answer(a2)
}
Info: 3 tuples computed.
DES-RA> distinct (project a (c));
answer(c.a:string(varchar)) ->
{
 answer(a1),
 answer(a2)
}
Info: 2 tuples computed.

3.4 Prolog Mode

This mode is enabled via the command /prolog and goals are sent to the
Prolog processor. Assuming that the file relop.dl has been already consulted, let’s
consider the following example:

DES-Prolog> projection(X)
projection(a1)
? (type ; for more solutions, <Intro> to continue) ;
projection(a1)
? (type ; for more solutions, <Intro> to continue) ;
projection(a2)
? (type ; for more solutions, <Intro> to continue) ;
no

DES-Prolog> /datalog projection(X)
{
 projection(a1),
 projection(a2)
}
Info: 2 tuples computed.

The execution of this goal allows to noting the basic differences between Prolog
and Datalog engines. First, the former searches for solutions, one-by-one, that satisfy
the goal projection(X) . The latter gives the whole meaning2 of the user-defined
relation projection with the query projection(X) at a time. And, second, note
the default set-oriented behaviour of the Datalog engine, which discards duplicates in
the answer.

2 The meaning of a relation is the set of facts inferred both extensionally and
intensionally from the program.

Fernando Sáenz-Pérez 27/204

Universidad Complutense de Madrid

Datalog Educational System

3.5 Caveats

Since the Datalog mode prompt accepts Datalog, SQL and RA queries, a given
query can be interpreted in more than one language. Let's consider the following
system session, in which a table is created and an RA query is submitted:

DES> create table t(a int)
DES> distinct (t)
Info: Processing:
 answer :-
 distinct(t).
Warning: Undefined predicate(s): [t/0]
{
}
Info: 0 tuples computed.

Here, we get an unexpected output coming from the Datalog interpreter, as
such input could be interpreted both as a Datalog query and an RA query. To
overcome such situations, simply precede the query by the language selection
command, as follows:

DES> /ra distinct (t)
answer(t.a:number(integer)) ->
{
}
Info: 0 tuples computed.

Alternatively, switch to the other query processor:

DES> /ra
DES-RA> distinct (t)

3.6 Getting Help

You can get useful information with the following commands:

• /help. Shows the list of available commands, which are explained in Section 5.13.

• /help Keyword. To request help on a given keyword (command or built-in).

• /builtins. Shows the list of built-ins, which are explained in Section 4.5.

Also, visit the URL for last information:

http://des.sourceforge.net/

Finally, you can contact the author via the e-mail address:

fernan@sip.ucm.es

4. Query Languages

DES has evolved from a quite simple Datalog interpreter to its current state,
which relies on a deductive database engine which can be queried with either Datalog,
SQL or RA languages. In addition, a Prolog interface is also provided in order to

Fernando Sáenz-Pérez 28/204

Universidad Complutense de Madrid

Datalog Educational System

highlight the differences between Datalog and Prolog systems. Since DES is intended
to students, it has no full-blown features of either state-of-the-art Prolog, Datalog or
SQL-based systems. However, it has many features that make it appealing as an
educational tool, along with the novel implementations of declarative debugging
(sections 5.8 and 5.9) and the test case generator (Section 5.10). In this section, we
describe its four query languages: Datalog, SQL, RA, and Prolog.

The database is shared by all the query languages, so that queries or goals can
refer to any object defined using any language. However, there are some dependent
issues that must be taken into account. For instance, once a Datalog fact is loaded into
the database, the relation it defines can be queried in Datalog. But, if one wants to
access this relation from either SQL or RA, two alternatives are provided: 1) Define the
same relation in SQL via a create table statement (Section 4.2.4.1), and 2) Declare
types for the table (Section 4.1.14.1). This particular issue comes from the fact that
Datalog relations have unnamed attributes, and a positional reference is used for
accessing those relations. In turn, SQL and RA use a notational syntax, giving names to
relation arguments. To illustrate the first alternative, let’s consider the following
session:

DES> /assert t(1)
DES> t(X)
{
 t(1)
}
Info: 1 tuple computed.
DES> select * from t
Error: Unknown table or view "t"
DES> create table t(a int);
DES> select * from t;
answer(t.a) ->
{
 answer(1)
}
Info: 1 tuple computed.

The error above reflects that t is not a known object in the database scheme.

Following the second alternative to access a Datalog relation from SQL:

DES> /assert t(1)
DES> :-type(t,[a:int])
DES> select * from t
answer(t.a) ->
{
 answer(1)
}
Info: 1 tuple computed.

4.1 Datalog

Since Datalog stems from Prolog, we have adopted almost all the Prolog syntax
conventions for writing Datalog programs (the reader is assumed to have basic
knowledge about Prolog). We allow (recursive) Datalog programs with stratified
negation [Ullm95], i.e., normal logic programs without function symbols. Stratification

Fernando Sáenz-Pérez 29/204

Universidad Complutense de Madrid

Datalog Educational System

is imposed to ensure a clear semantics when negation is involved, and function
symbols are not allowed in order to guarantee termination of queries, a natural
requirement with respect to a (relational) database user who is not able to deal with
compound data.

Commands are somewhat different for Prolog programmers as they are
accustomed to (see Section 5.13). Also, exceptions are noted when necessary.

4.1.1 Syntax

Definitions for Datalog mainly come from the field of Logic Programming.
Here, we follow mainly [Lloy87], referring the reader to this book for a more general
presentation of Logic Programming. Next, some definitions for understanding the
syntax of programs, queries and views are introduced.

• Numbers. Integers and float numbers are allowed. A number is a float whenever
the number contains a dot (.) between two digits. The range depends on the Prolog
platform being used. Negative numbers are identified by a preceding minus (-), as
usual.

Scientific notation is supported as: aEb, where a is a fractional number (always
including a dot), and b is an integer, which may start with + or – (but it is not
required).

Examples of numbers are 1, 1.1 , -1.0 , 1.2E34 , 1.2E+34 , and 1.2E-34 .

Note that -1. , +1, .1 , 1.E23 , and 1E23 are not valid numbers. A plus sign is not
part of a positive number; however, a minus sign can be used as a prefix unary
operator in arithmetical expressions (cf. Section 4.5.4.1) and also following the
symbol E in scientific notation, as already seen.

• Constants. A constant can be:

o A number (integer or float).

o Any sequence of alphanumeric characters (including the underscore _),
starting with a lowercase letter

o Any sequence of characters delimited by single quotes.

Examples of alphanumeric constants are foo , foo_foo , 'foo foo' , '2*3' , and
'X' .

• Variables. Variables are written with alphanumeric characters, and alternatively
start with either an uppercase or with an underscore (_). Anonymous variables are
also allowed, which are denoted with a single underscore. Each occurrence of an
anonymous variable is considered different from any other anonymous variable.
For instance, in the rule a :- b(_),c(_). both goals do not share variables. Any
variable starting with an underscore (either anonymous or not) is removed from a
computed query (cf. Section 4.1.7).

Examples of variables are: X, _X, _var , and _.

• Unknowns. Unknowns are represented as null values and are written alternatively
as both null and '$NULL'(ID) , where ID is a unique identifier. The first form is
used for normal users, whilst the second one is intended for development uses (cf.
development command in Section 5.13.7).

Fernando Sáenz-Pérez 30/204

Universidad Complutense de Madrid

Datalog Educational System

• Terms. Terms can be:

o Noncompound. Variables or constants.

o Compound. As in Prolog, they have the form t(t1, ..., tn) , where t is
a function symbol (functor), and ti (1 ≤ i ≤ n) are terms.

Up to the current version, compound terms can only occur in arithmetic
expressions. Their function symbols can be any of the built-in arithmetic operators
and functions (cf. Section 4.5.2). These operators can be:

o Infix, as addition (e.g., 1+2)

o Prefix, as bitwise negation (e.g., \1)

Examples of terms are: r(p) , and p(X,Y) , and X > Y .

• Atoms. An atom has the form a(t1, ..., tn) , where a is a predicate (relation)
symbol, and ti (0 ≤ i ≤ n) are terms. If i is 0, then the atom is simply written as
a.

Positive, ground atoms are used to build the Herbrand universe.

There are several built-in predicates: is (for evaluating arithmetical expressions),
arithmetic functions, (infix and prefix) operators and constants, and comparison
operators. Comparison operators are infix, as “less-than”. For example, 1 < 2 is a
positive atom built from an infix built-in comparison operator (see Section 4.5.1).

Examples of atoms are: p, r(a,X) , 1 < 2 , and X is 1+2 .

Note that p(1+2) and p(t(a)) are not valid atoms.

• Conditions. A condition is a Boolean expression containing conjunctions (,/2),
disjunctions (;/2), built-in comparison operators, constants and variables.

Four examples of conditions are: X>1, X=Y, (X>Y,Y>Z) , (X=<Y;Z<0) .

Note that X>Y+Z is now supported; it can be solved whenever the rule where it
occurs is safe (cf. Section 5.3).

• Relation functions. A function has the form f(a1, …, an) , where f is a function
name, ai are its arguments, and maps to a relation. Only built-in functions are
allowed. The current provision of built-in functions includes, among others:

o not(a) . Intended for computing the negation of its single argument a.

o lj(a1,a2,a3) . Intended for computing the left outer join of the relations
a1 (left relation) and a2 (right relation), committing the condition (Boolean
expression) a3 (join condition).

o rj(a1,a2,a3) . Intended for computing the right outer join of the relations
a1 (left relation) and a2 (right relation), committing the condition (Boolean
expression) a3 (join condition).

o fj(a1,a2,a3) . Intended for computing the full outer join of the relations
a1 (left relation) and a2 (right relation), committing the condition (Boolean
expression) a3 (join condition).

Note that outer join functions can be nested.

• Literals. Literals can be:

Fernando Sáenz-Pérez 31/204

Universidad Complutense de Madrid

Datalog Educational System

o Positive. An atom.

o Negative. A negated body of the form not(Body) , where Body is a body
(cf. next section). Negative literals are used to express the negation of a
relation (either as a query or as a part of a rule body).

o Disjunctive. A disjunctive literal is of the form l;r , where l and r are
literals.

Examples of literals are: p, r(a,X) , not(q(X,b)) , not(a;b)
r(a,X);not(q(X,b)) , 1 < 2 , and X is 1+2 .

Shorthands for compound goals as not(a;b) are allowed as well, which stands
for not((a;b)) .

A literal can occur in rule bodies, queries, and view bodies.

4.1.2 Rules

Datalog rules have the form head :- body , or simply head . Both end with a
dot. A Datalog head is a positive atom that uses no built-in predicate symbol. A
Datalog body contains a comma-separated sequence of literals which may contain
built-in symbols as listed in Section 4.5, as well as disjunctions (;/2).

4.1.3 Programs

DES programs consist of a multiset of rules. Programs may contain remarks. A
single-line remark starts with the symbol %, and ends at the end of line. Consulted
programs can also contain multi-line remarks, enclosed between /* and */ , which can
be nested.

4.1.4 Queries

A (positive) query is the name of a relation with as many arguments as the arity
of the relation (a positive literal). Each one of these arguments can be a variable or a
constant; a compound term is not allowed but as an arithmetic expression. Built-in
relations may require relations and conditions as arguments. A negative query is
written as not(Query) .

Queries are typed at the DES system prompt. The answer to a query is the
(multi)set of atoms matching the query which are deduced in the context of the
program, from both the extensional and intensional database. A query with variables
for all the arguments of the queried relation gives the whole set of deduced facts
(meaning) defining the relation, as the query a(X) in the example of Section 3. If a
query contains a constant in an argument position, it means that the query processing
will select the facts from the meaning of the relation such that the argument position
matches with the constant (i.e., analogous to a select relational operation). This is the
case of the query a(a3) in the same example.

You can also write conjunctive queries on the fly, such as a(X), b(X) (see
Section 4.1.6). Built-in comparison operators (listed in Section 4.5.1) can be safely used
in queries whenever their arguments are ground at evaluation time (excepting
equality, which performs unification). Disjunctive queries are also allowed, too, such as
a(X); b(X) . Concluding, a query follows the same syntax as rule bodies.

Fernando Sáenz-Pérez 32/204

Universidad Complutense de Madrid

Datalog Educational System

If only a limited number of tuples in the answer are required, one can submit
the query as top(N, Query) , where N is the maximum number of tuples to be
returned.

4.1.5 Temporary Views

Temporary views allow you to write conjunctive queries on the fly. A
temporary view is a rule which is added to the database; its head is considered as a
query and executed. Afterwards, the rule is deleted. Temporary views are useful for
quickly submitting conjunctive queries. For instance, the view:

DES> d(X) :- a(X), not(b(X))

computes the set difference between the sets a and b, provided they have been already
defined.

Note that the view is evaluated in the context of the program; so, if you have
more rules already defined with the same name and arity of the rule's head, the
evaluation of the view will return its meaning under the whole set of rules matching
the query. For instance:

DES> a(X) :- b(X)

computes the set union of the sets a and b, provided they have been already defined.

4.1.6 Automatic Temporary Views

Automatic temporary views, shortly autoviews, are temporary views which do
not need a head and allows you to write conjunctive queries on the fly. When you
write a conjunctive query, a new temporary relation, named answer , is built with as
many arguments as variables occur in the conjunctive query. answer is a reserved
word and cannot be used for defining any other relation. As an example of an
autoview, let’s consider:

DES> a(X),b(Y)

Info: Processing:
 answer(X,Y) :-
 a(X),
 b(Y).
{
 answer(a1,a1),
 answer(a1,b1),
 answer(a1,b2),
 answer(a2,a1),
 answer(a2,b1),
 answer(a2,b2),
 answer(a3,a1),
 answer(a3,b1),
 answer(a3,b2)
}
Info: 9 tuples computed.

which computes the Cartesian product of the relations a and b, provided they have
been already defined as:

Fernando Sáenz-Pérez 33/204

Universidad Complutense de Madrid

Datalog Educational System

 a(a1).
 a(a2).
 a(a3).
 b(b1).
 b(b2).
 b(a1).

4.1.7 Underscored Variables

An underscored variable (a variable starting with the underscore symbol '_') is
handled similar to Prolog. It is assumed to be of no interest for the answer, so that they
are discarded from the answer should they occur in the body of a query, view or
autoview (even in its head). For instance, computing the projection of a relation t with
respect to its first argument can be simply done as follows:

DES> /assert t(1,2)
DES> /assert t(2,3)
DES> t(X,_)
Info: Processing:
 answer(X) :-
 t(X,_).
{
 answer(1),
 answer(2)
}
Info: 2 tuples computed.

instead of having to resort to an autoview such as:

DES> p(X):-t(X,Y)
Info: Processing:
 p(X) :-
 t(X,Y).
{
 p(1),
 p(2)
}
Info: 2 tuples computed.

Also, let's consider other situation, as follows:

DES> /duplicates off
DES> t(X,Y)
{
 t(1,1),
 t(1,2),
 t(3,3)
}
Info: 3 tuples computed.
DES> t(X,X)
{
 t(1,1),
 t(3,3)
}

Fernando Sáenz-Pérez 34/204

Universidad Complutense de Madrid

Datalog Educational System

Info: 2 tuples computed.

If you use instead underscored variables, you get one answer tuple:

DES> t(_X,_X)
Info: Processing:
 answer :-
 t(_X,_X).
{
 answer
}
Info: 1 tuple computed.

However, if duplicates are enabled, you get two answer tuples, although the
concrete values for the arguments of t are not visible:

DES> /duplicates on
DES> t(_X,_X)
Info: Processing:
 answer :-
 t(_X,_X).
{
 answer,
 answer
}
Info: 2 tuples computed.

4.1.8 Negation

DES ensures that negative information can be gathered from a program with
negated goals provided that a restricted form of negation is used: Stratified negation
[Ullm95]. This broadly means that negation is not involved in a recursive computation
path, although it can use recursive rules. The following program3 illustrates this point:

a :- not(b).
b :- c,d.
c :- b.
c.

The query a succeeds with the meaning {a} . Observe also that not(a) does
not succeed, i.e., its meaning is the empty set.

DES provides two different algorithms for computing negation: strata (a
default algorithm following a bottom-up top-down-guided stratum saturation) and
et_not (taken from [SD91]), which are selected via the command /negation
Algorithm. (cf. Section 5.13.10).

If you are interested in how programs with negation are solved for the
algorithm strata , you can find useful the following commands (cf. Section 5.13.7):

DES> /pdg

3 In file negation.dl , located at the examples distribution directory. Adapted from
[RSSWF97].

Fernando Sáenz-Pérez 35/204

Universidad Complutense de Madrid

Datalog Educational System

Nodes: [d/0,a/0,b/0,c/0]
Arcs : [a/0-b/0,c/0+b/0,b/0+d/0,b/0+c/0]

DES> /strata

[(d/0,1),(a/0,2),(b/0,1),(c/0,1)]

The first command shows the predicate dependency graph (see, e.g., [ZCF+97])
for the loaded program. First, nodes in the graph are shown in a list whose elements P
are predicates with their arities with the form predicate/arity. Next, arcs in the graph
are shown in a list whose elementes are either P+Q or P-Q, where P and Q are nodes in
the graph. An arc P+Q means that there exists a rule such that P is the predicate for its
head, and Q is the predicate for one of its literals. If the literal is negated, the arc is
negative, which is expressed as P-Q. The graph for this program can be depicted as in
Figure 3.

b

c

a d

-

+
+

+

Figure 3. Predicate Dependency Graph for negation.dl

The second command shows the stratum assigned to each predicate. This
assignment is computed by following an algorithm based on [Ullm95], but modified
for taking advantage of the predicate dependency graph. Strata are shown as a list of
pairs (P,S), where P is a predicate and S is its assigned stratum. In this example, all of
the program predicates are in stratum 1 but a, which is assigned to stratum 2. This
means that if the meaning of a is to be computed, then the meanings of predicates in
lower strata (and only those predicates a depends on) have to be firstly computed.

Since the algorithm strata does not follow a naïve bottom-up solving, only
the meanings of required predicates are computed. To illustrate this, consider the
query b for the same program. DES computes the predicate dependency subgraph for
b, i.e., all of the predicates which are reachable from b, and, then, a stratification is
computed. Notice the different information given by the system for solving the queries
a and b (here, verbose output is currently enabled with the command /verbose on):

DES> a
Info: Computing by stratum of [b].
{
 a
}
Info: 1 tuple computed.
DES> b
{
}
Info: 0 tuples computed.

Fernando Sáenz-Pérez 36/204

Universidad Complutense de Madrid

Datalog Educational System

For the goal a, the system informs that b is previously computed (nevertheless
taking advantage of the extension table mechanism), whereas for the goal b there is no
need of resorting to the stratum-by-stratum solving.

Finally, consult also Section 5.3 for limitations in the use of negation.

4.1.9 Duplicates

Duplicates in answers are removed by default. However, it is also possible to
enable them with the command /duplicates on . This allows to generate answers as
multisets instead of as the typical set-oriented deductive systems behave. Computing
the meaning of a relation containing duplicates in the extensional database (i.e., its
facts) will include all of them in the answer, as in:

DES> /duplicates on
DES> /assert t(1)
DES> /assert t(1)
DES> t(X)
{
 t(1),
 t(1)
}
Info: 2 tuples computed.

Rules can also be source of duplicates, as in:

DES> /assert s(X):-t(X)
DES> s(X)
{
 s(1),
 s(1)
}
Info: 2 tuples computed.

In addition, recursive rules are duplicate sources, as in:

DES> /assert t(X):-t(X)
DES> t(X)
{
 t(1),
 t(1),
 t(1),
 t(1)
}
Info: 4 tuples computed.

where two tuples directly come from the two facts for t/1 , and the other two from the
single recursive rule. Again, adding the same recursive rule yields:

DES> /assert t(X):-t(X)
DES> t(X)
{
 t(1),
 t(1),
 t(1),

Fernando Sáenz-Pérez 37/204

Universidad Complutense de Madrid

Datalog Educational System

 t(1),
 t(1),
 t(1),
 t(1),
 t(1),
 t(1),
 t(1)
}
Info: 10 tuples computed.

where this answer contains the outcome due to: two tuples directly from the two facts,
and four tuples for each recursive rule. The first recursive rule is source of four tuples
because of the two facts and the two tuples from the second recursive rule.
Analogously, the second recursive rule is source of another four tuples: two facts and
the two tuples from the first recursive rule.

The rule of thumb to understand duplicates in recursive rules is to consider all
possible computation paths in the dependency graph, stopping when a (recursive)
node already used in the computation is reached.

It is also possible to discard duplicates for an atom with the metapredicate
distinct/1 . For instance, let’s consider the following with the same example above:

DES> distinct(t(X))
Info: Processing:
 answer(X) :-
 distinct(t(X)).
{
 answer(1)
}
Info: 1 tuple computed.

Such query is equivalent to the following SQL statement, provided that
metadata is available for the relation t :

DES> :-type(t(a:int))
DES> select distinct * from t
answer(t.a) ->
{
 answer(1)
}
Info: 1 tuple computed.

As it would be expected, duplicates are only discarded for the call
distinct(Atom) , but not for other occurrences of Atom during query solving. Thus:

DES> t(X),distinct(t(X))
Info: Processing:
 answer(X) :-
 t(X),
 distinct(t(X)).
{
 answer(1),
 answer(1),
 answer(1),
 answer(1),

Fernando Sáenz-Pérez 38/204

Universidad Complutense de Madrid

Datalog Educational System

 answer(1),
 answer(1),
 answer(1),
 answer(1),
 answer(1),
 answer(1)
}
Info: 10 tuples computed.

Compare this to the call:

DES> t(X),t(X)
Info: Processing:
 answer(X) :-
 t(X),
 t(X).
{
 answer(1),
 ...
 answer(1)
}
Info: 100 tuples computed.

A subset of arguments in an atom can be selected for discarding duplicates. To
this end, the metapredicate distinct/2 is provided. Its first argument is the list of
variables for which duplicates are not required, i.e., each concrete assignment of values
to all variables in the list must be different. So, let's consider the following session:

DES> /listing
t(1,1).
t(1,2).
t(2,1).
Info: 3 rules listed.
DES> distinct([X],t(X,Y))
Info: Processing:
 answer(X) :-
 distinct([X],t(X,Y)).
{
 answer(1),
 answer(2)
}
Info: 2 tuples computed.

In addition, discarding duplicates can be performed in the context of
aggregates:

DES> count(distinct(t(X)),C)
Info: Processing:
 answer(C)
in the program context of the exploded query:
 answer(C) :-
 count('$p0'(X),[],C).
 '$p0'(A) :-
 distinct(t(A)).
{

Fernando Sáenz-Pérez 39/204

Universidad Complutense de Madrid

Datalog Educational System

 answer(1)
}
Info: 1 tuple computed.

See also Section 4.1.12 for discarding duplicates in aggregates.

4.1.10 Null Values

The null value is included in each program signature for denoting unknowns,
in a similar way it is an inherent part of current relational database systems.
Comparing null values in Datalog opens a new scenario: Two null values are not
(known to be) equal, and are (not known to be) distinct. The following illustrates this
expected behaviour:

DES> null=null
{
}
Info: 0 tuples computed.

DES> null\=null
{
}
Info: 0 tuples computed.

However, for the same null value, the equality should succeed, as in the
conjunctive query: X=null,X=X .

A null value is internally represented as '$NULL'(ID) , where ID is a unique
identifier (an integer). Development listings (enabled via the command
/development on) allow to inspect these identifiers, such as in:

DES> /development on
DES> p(X,Y):-X=null,Y=null,X=Y
Info: Processing:
 p(X,Y) :-
 X = '$NULL'(14),
 Y = '$NULL'(15),
 X = Y.
{
}
Info: 0 tuples computed.
DES> p(X,Y):-X=null,Y=null,X\=Y
Info: Processing:
 p(X,Y) :-
 X = '$NULL'(16),
 Y = '$NULL'(17),
 X \= Y.
{
}
Info: 0 tuples computed.

The builtin predicate is_null/1 tests whether its single argument is a null
value:

DES> is_null(null)

Fernando Sáenz-Pérez 40/204

Universidad Complutense de Madrid

Datalog Educational System

{
 is_null(null)
}
Info: 1 tuple computed.

DES> X=null,is_null(X)

Info: Processing:
 answer(X) :-
 X = null,
 is_null(X).
{
 answer(null)
}
Info: 1 tuple computed.

Its counterpart predicate is also provided: is_not_null/1 , which is true if its
argument is not a null value.

Note that from a system implementor viewpoint, nulls can never unify because
they are represented by different ground terms. On the other hand, disequality is
explicitly handled in order to fail when comparing nulls.

Evaluation of a given expression including at least one null value always
returns the same concrete null value. Thus, two expressions including null values are
considered equivalent if they are syntactically equal (w.r.t. ground instantiations for
null values in particular). For instance, X=null,X+1=X+1 succeeds, whereas
X=null,Y=null,X+1=Y+1 and X=null,X+1=1+X do not.

4.1.11 Outer Joins

Three outer join operations are provided (cf. Section 4.5.6), following relational
database query languages (SQL, extended relational algebra): left, right and full outer
join. Having loaded the example program relop.dl , we can submit the following
queries:

DES> /c relop
DES> /listing a
a(a1).
a(a2).
a(a3).
DES> /listing b
b(a1).
b(b1).
b(b2).
DES> lj(a(X),b(Y),X=Y)
Info: Processing:
 answer(X,Y) :-
 lj(a(X),b(Y),X = Y).
{
 answer(a1,a1),
 answer(a2,null),
 answer(a3,null)
}
Info: 3 tuples computed.

Fernando Sáenz-Pérez 41/204

Universidad Complutense de Madrid

Datalog Educational System

DES> rj(a(X),b(Y),X=Y)
Info: Processing:
 answer(X,Y) :-
 rj(a(X),b(Y),X = Y).
{
 answer(a1,a1),
 answer(null,b1),
 answer(null,b2)
}
Info: 3 tuples computed.
DES> fj(a(X),b(Y),X=Y)
Info: Processing:
 answer(X,Y) :-
 fj(a(X),b(Y),X = Y).
{
 answer(a1,a1),
 answer(a1,null),
 answer(a2,null),
 answer(a3,null),
 answer(null,a1),
 answer(null,b1),
 answer(null,b2)
}
Info: 7 tuples computed.

Note that the third parameter is the join condition. Be aware and do not miss a
where condition with a join condition. Let´s consider the above query
lj(a(X),b(Y),X=Y) . Do not expect the same result as above for the following query:

DES> lj(a(X),b(X),true)
Info: Processing:
 answer(X) :-
 lj(a(X),b(X),true).
{
 answer(a1)
}
Info: 1 tuple computed.

Here, the same variable X for the relations a and b means that tuples from a
and b with the same value are to be joined, as in the next equivalent query:

DES> lj(a(X),b(Y),true),X=Y
Info: Processing:
 answer(X,Y) :-
 lj(a(X),b(Y),true),
 X = Y.
{
 answer(a1,a1)
}
Info: 1 tuple computed.

 Outer join relations can be nested as well:

DES> lj(a(X),rj(b(Y),c(U,V),Y=U),X=Y)
Info: Processing:

Fernando Sáenz-Pérez 42/204

Universidad Complutense de Madrid

Datalog Educational System

 answer(X,Y,U,V) :-
 lj(a(X),rj(b(Y),c(U,V),Y = U),X = Y).
{
 answer(a1,a1,a1,a1),
 answer(a1,a1,a1,b2),
 answer(a2,null,null,null),
 answer(a3,null,null,null)
}
Info: 4 tuples computed.

Note that compound conditions must be enclosed between parentheses, as in:

DES> lj(a(X),c(U,V),(X>U;X>V))
Info: Processing:
 answer(X,U,V)
in the program context of the exploded query:
 answer(X,U,V) :-
 lj(a(X),c(U,V),(X > U;X > V)).
{
 answer(a1,null,null),
 answer(a2,a1,a1),
 answer(a2,a1,b2),
 answer(a3,a1,a1),
 answer(a3,a1,b2),
 answer(a3,a2,b2)
}
Info: 6 tuples computed.

4.1.12 Aggregates

Aggregates refer to functions and predicates that compute values with respect
to a collection of values instead of a single value. Aggregates are provided by means of
five usual computations: sum (cumulative sum), count (element count), avg (average),
min (minimum element), and max (maximum element). In addition, the less usual
times (cumulative product) is also provided. They behave close to most SQL
implementations, i.e., ignoring nulls. Duplicate-free counterparts are also provided:
sum_distinct , count_distinct , avg_distinct , and times_distinct . Note
that for minimum and maximum, no counterparts are provided since they would
compute the same results.

4.1.12.1 Aggregate Functions

An aggregate function can occur in expressions and returns a value, as in
R=1+sum(X) , where sum is expected to compute the cumulative sum of possible
values for X, and X has to be bound in the context of a group_by predicate (cf. next
section), wherein the expression also occur.

4.1.12.2 Group_by Predicate

A group_by predicate encloses a query for which a given list of variables
builds answer sets (groups) for all possible values of these variables. Let’s consider the
following excerpt from the file aggregates.dl :

% employee(Name,Department,Salary)
employee(anderson,accounting,1200).

Fernando Sáenz-Pérez 43/204

Universidad Complutense de Madrid

Datalog Educational System

employee(andrews,accounting,1200).
employee(arlingon,accounting,1000).
employee(nolan,null,null).
employee(norton,null,null).
employee(randall,resources,800).
employee(sanders,sales,null).
employee(silver,sales,1000).
employee(smith,sales,1000).
employee(steel,sales,1020).
employee(sullivan,sales,null).

We can count the number of employees for each department with the following
query:

DES> group_by(employee(N,D,S),[D],R=count)
Info: Processing:
 answer(D,R) :-
 group_by(employee(N,D,S),[D],R = count).
{
 answer(accounting,3),
 answer(null,2),
 answer(resources,1),
 answer(sales,5)
}
Info: 4 tuples computed.

Note that two employees are not assigned to any department yet (nolan and
norton). This query behaves as a SQL user would expect, though nulls do not have to
represent the same data value (in spite of this, such tuples are collected in the same
bag).

If we rather want to count active employees (those with assigned salaries), we
pose the following query:

DES> group_by(employee(N,D,S),[D],R=count(S))
Info: Processing:
 answer(D,R) :-
 group_by(employee(N,D,S),[D],R = count(S)).
{
 answer(accounting,3),
 answer(null,0),
 answer(resources,1),
 answer(sales,3)
}
Info: 4 tuples computed.

Note that null departments have no employee with assigned salary.

Counting the number of departments from the relation employee needs to
discard duplicates, as in:

DES> count_distinct(employee(N,D,S),D,T).
Info: Processing:
 answer(T) :-
 count_distinct(employee(N,D,S),D,[],T).
{

Fernando Sáenz-Pérez 44/204

Universidad Complutense de Madrid

Datalog Educational System

 answer(3)
}
Info: 1 tuple computed.

Conditions including aggregates on groups can be stated as well (cf. having
conditions in SQL). For instance, the following query counts the active employees of
departments with more than one employee.

DES> group_by(employee(N,D,S),[D],count(S)>1)
Info: Processing:
 answer(D) :-
 group_by(employee(N,D,S),[D],(A = count(S),A > 1)).
{
 answer(accounting),
 answer(sales)
}
Info: 2 tuples computed.

Note that the number of employees can also be returned, as follows:

DES> group_by(employee(N,D,S),[D],(R=count(S),R>1))
Info: Processing:
 answer(D,R) :-
 group_by(employee(N,D,S),[D],(R = count(S),R > 1)).
{
 answer(accounting,3),
 answer(sales,3)
}
Info: 2 tuples computed.

Conditions including no aggregates on tuples of the input relation (cf. SQL
FROM clause) can also be used (cf. WHERE conditions in SQL). For instance, the
following query computes the number of employees whose salary is greater than 1,000.

DES> group_by((employee(N,D,S),S>1000),[D],R=count(S))
Info: Processing:
 answer(D,R)
in the program context of the exploded query:
 answer(D,R) :-
 group_by('$p2'(S,D,N),[D],R = count(S)).
 '$p2'(S,D,N) :-
 employee(N,D,S),
 S > 1000.
{
 answer(accounting,2),
 answer(sales,1)
}
Info: 2 tuples computed.

Note that the following query is not equivalent to the former, since variables in
the input relation are not bound after a grouping computation. The following query
illustrates this situation, which generates a syntax error.

DES> group_by(employee(N,D,S),[D],R=count(S)), S>10 00
Error: Incorrect use of shared set variables in met apredicate:

Fernando Sáenz-Pérez 45/204

Universidad Complutense de Madrid

Datalog Educational System

 [N,S]

The predicate group_by admits a more compact representation than its SQL
counterpart. Let's consider the following Datalog session:

DES> /assert p(1,1)
DES> /assert p(2,2)
DES> /assert q(X,C):-group_by(p(X,Y),[X],(C=count;C =sum(Y)))
DES> q(X,C)
Info: Computing by stratum of [p(A,B)].
{
 q(1,1),
 q(2,1),
 q(2,2)
}
Info: 3 tuples computed.

An analogous SQL session follows:

DES-SQL> create table p(X int, Y int)
DES-SQL> create view q(X,C) as (select X,count(Y) a s C from p
group by X) union (select X, sum(Y) as C from p gro up by X)
DES-SQL> select * from q
answer(q.X, q.C) ->
{
 answer(1,1),
 answer(2,1),
 answer(2,2)
}
Info: 3 tuples computed.

4.1.12.3 Aggregate Predicates

An aggregate predicate returns its result in its last argument position, as in
sum(p(X),X,R) , which binds R to the cumulative sum of values for X, provided by
the input relation p. These aggregate predicates simply allow another way of
expressing aggregates, in addition to the way explained just above. Again, with the
same file, the following queries are allowed:

DES> count(employee(N,D,S),S,T)
Info: Processing:
 answer(T) :-
 count(employee(N,D,S),S,[],T).
{
 answer(7)
}
Info: 1 tuple computed.

A group_by operation is simply specified by including the grouping variable(s)
in the head of a clause, as in the following view, which computes the number of active
employees by department:

DES> c(D,C):-count(employee(N,D,S),S,C)
Info: Processing:
 c(D,C) :-
 count(employee(N,D,S),S,[D],C).

Fernando Sáenz-Pérez 46/204

Universidad Complutense de Madrid

Datalog Educational System

{
 c(accounting,3),
 c(null,0),
 c(resources,1),
 c(sales,3)
}
Info: 4 tuples computed.

Note that the system adds to the aggregate predicate an argument with the list
of grouping variables, which are the ones occurring in the first argument of the
aggregate predicate that also occur in the head. This code translation is required for the
aggregate predicate to be compute, although such form has not been made available to
the user.

Having conditions are also allowed, including them as another goal of the first
argument of the aggregate predicate as, for instance, in the following view, which
computes the number of employees that earn more than the average:

DES> count((employee(N,D,S),avg(employee(N1,D1,S1), S1,A),S>A),C)
Info: Processing:
 answer(C)
in the program context of the exploded query:
 answer(C) :-
 count('$p2'(A,S,D,N),[],C).
 '$p2'(A,S,D,N) :-
 employee(N,D,S),
 avg(employee(N1,D1,S1),S1,[],A),
 S > A.
{
 answer(2)
}
Info: 1 tuple computed.

Note that this query uses different variables in the same argument positions for
the two occurrences of the relation employee . Compare this to the following query,
which computes the number of employees so that each one of them earns more than
the average salary of his corresponding department. Here, the same variable name D
has been used to refer to the department for which the counting and average are
computed:

DES> count((employee(N,D,S),avg(employee(N1,D,S1),S 1,A),S>A),C)
Info: Processing:
 answer(C)
in the program context of the exploded query:
 answer(C) :-
 count('$p2'(A,S,N),[],C).
 '$p2'(A,S,N) :-
 employee(N,D,S),
 avg(employee(N1,D,S1),S1,[],A),
 S > A.
{
 answer(3)
}
Info: 1 tuple computed.

Fernando Sáenz-Pérez 47/204

Universidad Complutense de Madrid

Datalog Educational System

Also, as a restriction of the current implementation, keep in mind that having
conditions including aggregates (as the one including the average computations above)
can only occur in the first argument of an aggregate. The following query, which
should be equivalent to the last one, would generate a run-time exception:

DES> v(D):-
avg(employee(N1,D,S1),S1,A),count((employee(N,D,S), S>A),C)
Error: S > A will raise a computing exception at ru n-time.
Warning: This view is unsafe because of variable(s) :
 [A]

Finally, recall that expressions including aggregate functions are not allowed in
conjunction with aggregate predicates, but only in the context of a group_by
predicate.

4.1.13 Disjunctive Bodies

As introduced in Section 4.1.1, rule bodies can contain disjunctions, such as the
one contained in the program family.dl :

parent(X,Y) :-
 father(X,Y)
 ;
 mother(X,Y).

This clause is equivalent to:

parent(X,Y) :-
 father(X,Y).
parent(X,Y) :-
 mother(X,Y).

If you list the database contents via the command /listing you will get the
first form when development listings are off (via the command /development off).
Otherwise, you get the second one (command /development on).

Datalog views and autoviews containing disjunctive bodies are allowed, and
the system informs about the program transformation needed to compute them. For
instance, you can directly submit the rule above as a view at the DES prompt:

DES> parent(X,Y) :- father(X,Y) ; mother(X,Y)
Info: Processing:
 parent(X,Y)
in the program context of the exploded query:
 parent(X,Y) :-
 father(X,Y).
 parent(X,Y) :-
 mother(X,Y).
{
 parent(amy,fred),
 parent(carolI,carolII),
 parent(carolII,carolIII),
 parent(fred,carolIII),
 parent(grace,amy),
 parent(jack,fred),

Fernando Sáenz-Pérez 48/204

Universidad Complutense de Madrid

Datalog Educational System

 parent(tom,amy),
 parent(tony,carolII)
}
Info: 8 tuples computed.

4.1.14 Integrity Constraints

Integrity constraints allow to specify valid values for tuples in relations. DES
provides several predefined constraints stemmed from SQL: type, primary key and
foreign key. In addition, a predefined functional integrity constraint is also provided.
Users can also define its own integrity constraints, which are called user-defined
integrity constraints from now on. All of them can be declared and the system
monitors their fulfilment, which is the default behaviour. However, the command
/check off allows to disable constraint checking. All predefined integrity constraints
apply to facts, but type constraints, which also apply to rules. Also, user-defined
constraints apply to facts and rules.

 A comma-separated sequence of predefined integrity constraints is allowed to
specify multiple constraints in a single input.

4.1.14.1 Type

A type constraint specifies the values in a domain a predicate argument (table
column in relational jargon) may take. An example of type constraint declaration at the
command prompt is as follows:

DES> :- type(p,[int,string])

This is equivalent to the following alternative syntax:

DES> :- type(p(int,string))

Allowed types include the following (where each row in the first column
contains type synonyms):

varchar

string
String of unbounded length

char(N)

varchar(N)
String with length up to N

char String with length 1

integer

int
Integer number

float

real
Real number

Precision and range depend on the underlying Prolog system.

Subsequent type declarations are allowed for the same predicate and arity; the
last declaration is the one to persist, overriding previous type declarations for such
predicate. The following session is possible, and thus the second declaration persists:

Fernando Sáenz-Pérez 49/204

Universidad Complutense de Madrid

Datalog Educational System

DES> :- type(p,[string,string])
DES> :- type(p,[int,int])

As well, columns can be given names:

DES> :- type(p,[a:int,b:string])

which is equivalent to the following alternative syntax:

DES> :- type(p(a:int,b:string))

However, a type declaration for a relation already typed with a different arity is
not allowed. As will be seen in further sections, SQL statements can refer to Datalog
relations, and SQL does not allow relations of the same name and different arities.

DES> :- type(p,[a:int])
Error: Cannot add types to a relation with several arities.
 Relation: p

A Datalog type declaration is analogous to the creation of a SQL table, with the
same outcome (defining metadata for a relation: relation name, column names and
types).

DES> /dbschema p
Info: Table:
 * p(a:number(integer),b:string(varchar))

DES> drop table p

DES> /dbschema p
Info: No table or view found with that name.
DES> create table p(a int, b string)

DES> /dbschema p
Info: Table:
 * p(a:number(integer),b:string(varchar))

It is also possible to omit column names. In this case, they are automatically
provided (with names '$1 ','$2 ', and so on).

DES> :- type(p,[int,string])

DES> /dbschema p
Info: Table:
 * p($1:number(integer),$2:string(varchar))

Let's consider the following session, where it can be seen that the system
monitors type constraints in both Datalog and SQL queries:

DES> :-type(p,[int,string])
DES> /assert p(a,b)
Error: Type mismatch p.$1:number(integer) vs.
string(char(_6372)).
 p($1:number(integer),$2:string(varchar))
DES> /assert p(1,a)
DES> p(X,Y)

Fernando Sáenz-Pérez 50/204

Universidad Complutense de Madrid

Datalog Educational System

{
 p(1,a)
}
Info: 1 tuple computed.
DES> select * from p
answer(p.$1, p.$2) ->
{
 answer(1,a)
}
Info: 1 tuple computed.
DES> insert into p values('a','b')
Error: Type mismatch p.$1:number(integer) vs.
string(char(_6937)).
 p($1:number(integer),$2:string(varchar))
Info: 0 tuples inserted.

Note that columns with automatically given names can be accessed from a SQL
statement, but enclosed as special user identifiers. ISO delimiters (double quotes "",
supported by Oracle and SQL Server) are supported as well as other vendor-specific
delimiters: MS Access (square brackets []) and MySQL (back quotes ``). Otherwise, an
error is raised:

DES> select $1 from p
Error: Input processing error.

DES> select "$1" from p
answer(p.$1) ->
{
 answer(1)
}
Info: 1 tuple computed.

A relation already defined is checked for consistency when trying to assert a
new type constraint:

DES> /assert t(1)
DES> /assert t(a)
DES> :-type(t,[int])
Error: No type tuple covers all the loaded rules fo r t/1:
 t(1).
 t(a).
Info: 2 rules listed.

Should any other constraint remains asserted (other than a type constraint), a
type constraint cannot be changed:

DES> :-type(p,[a:int,b:string])
Error: Cannot change type assertion while other con straints
remain.

4.1.14.1.1 Types on Intensional Database

Types can also be declared for predicates of the intensional database, i.e., those
predicates defined at least with rules, not only with facts. So, asserting a new type
constraint over an intensional relation will trigger type checking, inferring types along

Fernando Sáenz-Pérez 51/204

Universidad Complutense de Madrid

Datalog Educational System

the predicate dependency graph restricted to the typed predicate. Let's consider the
following situation as an example:

DES> /listing
s(a).
t(1).
t(X) :-
 s(X).
Info: 3 rules listed.

DES> :-type(t,[int])
Error: No type tuple covers all the loaded rules fo r t/1:
 t(1).
 t(X) :-
 s(X).
Info: 2 rules listed.

4.1.14.1.2 Types on Propositional Relations

Finally, propositional relations are also subject of beign typed, of course with an
empty list of arguments:

DES> :-type(a,[])
DES> /dbschema a
Info: Table:
 * a

The alternative syntax becomes shorter in this case indeed:

DES> :-type(a)

4.1.14.2 Nullability (Existency Constraint)

 Columns can be imposed to contain a concrete value rather than a null. The
next system session shows an example:

DES> :-type(p,[a:int,b:string])
DES> :-nn(p,[a])

The list of column names specifies the columns for which null values are not
allowed. Thus, trying to assert a tuple such as the following, will raise an error:

DES> /assert p(null,'')
Error: Not null violation p.[a]

Subsequent existency constraints are allowed for the same predicate and arity;
the last declaration is the one to persist, overriding previous declarations for such
predicate.

4.1.14.3 Primary Key

A primary key constraint specifies that no two tuples have the same values for a
given set of columns. Next, a system session illustrates the use of a primary key
assertion:

DES> :-type(p,[a:int,b:string])

Fernando Sáenz-Pérez 52/204

Universidad Complutense de Madrid

Datalog Educational System

DES> :-pk(p,[a])

Primary key constraints are trivially satisfied when duplicates are disabled, as
relations are considered as sets, irrespective of the current database instance, that may
contain duplicates for the arguments in the primary key.

Several primary key declarations are allowed for the same predicate and arity;
the last declaration is the one to persist, overriding previous type declarations for such
predicate:

DES> :-pk(p,[a])
DES> :-pk(p,[c])
Error: Unknown column c.
DES> :-pk(p,[a,a])

A relation already defined with facts or rules is checked for consistency when
trying to assert a new primary key constraint:

DES> :-type(q,[a:int,b:int])
DES> /assert q(1,1)
DES> /assert q(2,2)
DES> /assert q(1,2)
DES> :-pk(q,[a])
Error: Primary key violation q.[a]
 Offending values in database: [pk(1)]
Info: Constraint has not been asserted.

4.1.14.4 Candidate Key (Uniqueness Constraint)

As a primary key, a candidate key constraint specifies that no two tuples have
the same values for a given set of columns. Next, a system session illustrates the use of
a candidate key assertion:

DES> :-type(p,[a:int,b:string])
DES> :-ck(p,[a])

Candidate key constraints are trivially satisfied when duplicates are disabled,
as relations are considered as sets, irrespective of the current database instance, that
may contain duplicates for the arguments in the candidate key.

Several candidate key declarations are allowed for the same predicate and arity.
By contrast to primary keys, several candidate key constraints are allowed for the same
predicate:

DES> :-ck(p,[b])
DES> :-ck(p,[a,b])
DES> /dbschema p
Info: Table:
 * p(a:number(integer),b:string(varchar))
 - NN: [a]
 - CK: [a]
 - CK: [b]
 - CK: [a,b]

Fernando Sáenz-Pérez 53/204

Universidad Complutense de Madrid

Datalog Educational System

4.1.14.5 Foreign Key

A foreign key constraint specifies that the values in a given set of columns of a
relation must exist already in the columns declared in the primary key constraint of
another relation. Next, an example of a foreign key assertion is shown:

DES> :-type(p(a:int)),type(q(b:int)),pk(q,[b])
DES> :-fk(p,[a],q,[b])

However, if the relations do not exist, an error is raised:

DES> :-fk(p,[a],q,[b])
Error: Relation p has not been typed yet.
DES> :-type(p,[a:int]), type(q,[b:int])

Trying to impose a foreign key with a referenced table which does not have a
primary key for matching columns raises an error:

DES> :-fk(p,[a],q,[b])
Error: Referenced column list q.[b] is not a primar y key.
DES> :-pk(q,[b])
DES> :-fk(p,[a],q,[b])

The same constraint cannot be reasserted:

DES> :-fk(p,[a],q,[b])
Error: Trying to reassert an existing constraint.
DES> /dbschema
Info: Table(s):
 * p(a:number(integer))
 - FK: p.[a] -> q.[b]
 * q(b:number(integer))
 - PK: [b]
Info: No views.
DES> /assert p(1)
Error: Foreign key violation p.[a]->q.[b]
 when trying to insert: p(1)
DES> /assert q(1)
DES> /assert p(1)
DES> /listing
p(1).
q(1).
Info: 2 rules listed.

Several foreign keys may exist for the same relation:

DES> :-type(p,[a:int])
DES> :-type(q,[b:int])
DES> :-type(r,[a:int,b:int,c:string])
DES> :-pk(p,[a]), pk(q,[b])
DES> :-fk(r,[a],p,[a]), fk(r,[b],q,[b])
DES> /dbschema r
Info: Table:
 * r(a:number(integer),b:number(integer),c:string(v archar))
 - FK: r.[a] -> p.[a]
 - FK: r.[b] -> q.[b]

Fernando Sáenz-Pérez 54/204

Universidad Complutense de Madrid

Datalog Educational System

Referenced columns have to match the types of foreign key columns, otherwise
an error is raised:

DES> :-fk(r,[c],q,[b])
Error: Type mismatch r.c:string(varchar) <> q.b:num ber(integer)

A relation already defined with facts or rules is checked for consistency when
trying to assert a new foreign key constraint:

DES> :-type(p,[a:int])
DES> :-type(q,[a:int])
DES> /assert p(1)
DES> :-pk(q,[a])
DES> :-fk(p,[a],q,[a])

Error: Foreign key violation p.[a]->q.[a]
 Offending values in database: [fk(1)]
Info: Constraint has not been asserted.

4.1.14.6 Functional Dependency

A functional dependency constraint specifies that, given a set of attributes A1 of
a relation R, they functionally determine another set A2, i.e., each tuple of values of A1
in R is associated with precisely one tuple of values A2 in the same tuple of R.

DES> :-fd(p,[a],[c])
Error: Relation p has not been typed yet.
DES> :-type(p,[a:int,b:int])
DES> :-fd(p,[a],[c])
Error: Unknown column c.
DES> :-fd(p,[a],[b])
DES> /dbschema p
Info: Table:
 * p(a:number(integer),b:number(integer))
 - FD: [a] -> [b]

By asserting the fact p(1,2) , it must hold that any other tuple with 1 in its first
attribute must have the value 2 in its second attribute.

DES> /assert p(1,2)
DES> /assert p(1,3)
Error: Functional dependency violation p.[a]->p.[b]
 in table p(a,b)
 when trying to insert: p(1,3)
 Witness tuple : p(1,2)

Several functional dependency constraints can be imposed on a given relation.
They can be deleted either with the command drop_ic or when a SQL DROP TABLE
or DROP DATABASE statements are issued.

Trivial functional dependencies are rejected:

DES> :-fd(p,[a],[a])
Warning: Trivial functional dependency. Not asserte d.

Fernando Sáenz-Pérez 55/204

Universidad Complutense de Madrid

Datalog Educational System

A relation already defined with facts or rules is checked for consistency when
trying to assert a new functional dependency constraint:

DES> :-type(p,[a:int,b:int,c:int])
DES> /assert p(1,1,1)
DES> /assert p(1,2,3)
DES> :-fd(p,[a],[c])
Error: Functional dependency violation p.[a]->p.[c]
 Offending values in database: [fd(1,1,1),fd(1,2,3)]
Info: Constraint has not been asserted.

4.1.14.7 User-defined Integrity Constraints

Users can also define their own integrity constraints. A user-defined integrity
constraint is represented with a rule without head. The rule body is an assertion that
specifies inconsistent data, i.e., should this body can be proved, an inconsistency is
detected and reported to the user.

Declaring such integrity constraints implies to change your mind w.r.t. usual
consistency constraints as domain constraints in SQL. For instance, to specify that a
column c of a table t can take values between two integers one can use the SQL clause
CHECK in the creation of the table as follows4:

CREATE TABLE t(c INT CHECK (c BETWEEN 0 AND 10));

In contrast, in Datalog you can submit the following constraints:

DES> :-type(t,[c:int])
DES> :-t(X),(X<0;X>10)

Notice that the rule body succeeds for values in t out of the interval [0,10]. So,
an integrity constraint specifies unfeasible values rather than feasible. Also note that
whilst several predefined constraints are allowed in a constraint, only one user-defined
integrity constraint is allowed. A couple of assertions to show the behaviour of the
above example follow:

DES> /assert t(0)
DES> /assert t(11)
Error: Integrity constraint violation.
 ic(X) :-
 t(X),
 X < 0
 ;
 X > 10.
 Offending values in database: [ic(11)]

Note that to be able to interpret that offending values, the integrity constraint is
shown as a rule defining a new predicate ic , where the rule's head has as many
variables as relevant variables in the constraint. Then, offending values are
encapsulated in the meaning of the constraint relation ic .

A rule body of a constraint is any valid rule body, i.e., goals in constrainsts can
refer to other user-defined or built-in predicates as well, including negation,

4 This CHECK SQL clause is not yet supported by DES.

Fernando Sáenz-Pérez 56/204

Universidad Complutense de Madrid

Datalog Educational System

aggregates, etc. Let's consider the following session, in which we are interested in
specifying a directed tree (a connected graph with no cycles):

DES> /verbose on
Info: Verbose output is on.
DES> /consult paths
Info: Consulting paths...
 edge(a,b).
 edge(a,c).
 edge(b,a).
 edge(b,d).
 path(X,Y) :-
 path(X,Z),
 edge(Z,Y).
 path(X,Y) :-
 edge(X,Y).
 end_of_file.
Info: 6 rules consulted.
Info: Computing predicate dependency graph...
Info: Computing strata...
DES> :-path(X,X)
Info: Parsing query...
Info: Constraint successfully parsed.
Info: Checking user-defined integrity constraint ov er database.
 :-
 path(X,X).
Info: Computing predicate dependency graph...
Info: Computing strata...
Error: Integrity constraint violation.
 ic(X) :-
 path(X,X).
 Offending values in database: [ic(b),ic(a)]
Info: Constraint has not been asserted.

The constraint :-path(X,X) specifies that a path from a node to itself is not
allowed. As the consulted program contains a cycle involving nodes a and b, the
constraint is violated and therefore it is not asserted. Offending values are listed (in
this case, all the values involved in any cycle; you can try out other edges and see the
outcome).

Another use is to first specify the constraint and then a graph. However, don't
be tempted to submit the constraint and consult the program: the constraint will be
removed since consulting a program amounts to erase the existing database, including
user-defined integrity constraints. Instead, use the reconsult command:

DES> /verbose on
Info: Verbose output is on.
DES> /cd examples
Info: Current directory is:
 c:/fernan/research/bddeduc/des/des3.0/examples/
DES> :-path(X,X)
Info: Parsing query...
Info: Constraint successfully parsed.
Info: Checking user-defined integrity constraint ov er database.

Fernando Sáenz-Pérez 57/204

Universidad Complutense de Madrid

Datalog Educational System

 :-
 path(X,X).
Info: Computing predicate dependency graph...
Warning: Undefined predicate(s): [path/2]
Info: Computing strata...
DES> /reconsult paths
Info: Consulting paths...
 edge(a,b).
 edge(a,c).
 edge(b,a).
 edge(b,d).
Info: Checking user-defined integrity constraint ov er database.
 :-
 path(X,X).
Info: Computing predicate dependency graph...
Info: Computing strata...
 path(X,Y) :-
 path(X,Z),
 edge(Z,Y).
Info: Checking user-defined integrity constraint ov er database.
 :-
 path(X,X).
Info: Computing predicate dependency graph...
Info: Computing strata...
Error: Integrity constraint violation.
 ic(X) :-
 path(X,X).
 Offending values in database: [ic(b),ic(a)]
 path(X,Y) :-
 edge(X,Y).
 File :
c:/fernan/research/bddeduc/des/des3.0/examples/path s.dl
 Lines: 10,10
 end_of_file.
Info: 5 rules consulted.
Info: Computing predicate dependency graph...
Info: Computing strata...

Note that the first rule for path is not rejected since in the already consulted
program it is still consistent w.r.t. to the constraint. However, trying to add the second
rule for path makes it infeasible, so that it is rejected. Now, only 5 rules have been
asserted. If the file was not included the third fact for edge , then it would be accepted
as a valid tree. Again, trying to insert such a tuple, after such a program is consulted,
raises an error:

DES> /assert edge(d,a)
Info: Checking user-defined integrity constraint ov er database.
 :-
 path(X,X).
Info: Computing predicate dependency graph...
Info: Computing strata...
Error: Integrity constraint violation.
 ic(X) :-
 path(X,X).

Fernando Sáenz-Pérez 58/204

Universidad Complutense de Madrid

Datalog Educational System

 Offending values in database: [ic(a),ic(b),i c(d)]

Observe that since the path relation is now complete, all the nodes in the cycle
are displayed (a, b, and c).

The considered constraint is not yet enough to ensure a directed tree defined by
edge facts. Two conditions remain: First, a given node cannot have more than one
incoming edge, and, second, a tree must be a connected graph. If the first condition is
imposed, it suffices for the second to check that the number of nodes is the number of
edges plus 1. So:

DES> /assert node(N):-edge(N,A);edge(A,N)
Info: Computing predicate dependency graph...
Info: Computing strata...
Info: Rule asserted.
DES> :-count(edge(A,B),Es), count(node(N),Ns), D is Ns-Es, D\=1.
Info: Parsing query...
Info: Constraint successfully parsed.
Info: Computing predicate dependency graph...
Info: Computing strata...
Info: Checking user-defined integrity constraint ov er database.
 :-
 count(edge(A,B),Es),
 count(node(N),Ns),
 D is Ns - Es,
 D \= 1.
Info: Computing by stratum of [edge(A,B),node(A)].
Info: Computing predicate dependency graph...
Info: Computing strata...
DES> /assert edge(e,f) % An unconnected component
Info: Checking user-defined integrity constraint ov er database.
 :-
 count(edge(A,B),Es),
 count(node(N),Ns),
 D is Ns - Es,
 D \= 1.
Info: Computing by stratum of [edge(A,B),node(A)].
Info: Computing predicate dependency graph...
Info: Computing strata...
Error: Integrity constraint violation.
 ic(Es,Ns,D) :-
 count(edge(A,B),Es),
 count(node(N),Ns),
 D is Ns - Es,
 D \= 1.
 Offending values in database: [ic(4,6,2)]

User-defined integrity constraints are dropped when abolishing the database or
consulting a file.

4.1.14.8 Dropping Constraints

Any predefined or user-defined integrity constraint can be dropped with the
command /drop_ic (see Section 5.13.1) followed by the constraint to be dropped with
the same syntax as its declaration.

Fernando Sáenz-Pérez 59/204

Universidad Complutense de Madrid

Datalog Educational System

4.1.14.9 Caveats

Either by consulting a program, or by dropping the current database, or by
abolishing the database, all integrity constraints are removed, including SQL table and
view definitions.

As rules are not checked for predefined constraints, a situations like the
following may occur:

DES> create table t(a int primary key)
DES> insert into t values (1)
Info: 1 tuple inserted.
DES> /assert t(X):-X=1
DES> /duplicates on
DES> t(X)
{
 t(1),
 t(1)
}
Info: 2 tuples computed.

Nonetheless, if you also want to monitor rules, you can otherwise use a user-
defined constraint such as:

DES> create table t(a int)
DES> insert into t values (1)
Info: 1 tuple inserted.
DES> :-group_by(t(X),[X],C=count(X),C>1),C>1
DES> /assert t(X):-X=1
Error: Integrity constraint violation.
 ic(X,C) :-
 group_by(t(X),[X],(C = count(X),C > 1)),
 C > 1.
 Offending values in database: [ic(1,2)]
Error: Asserting rules due to integrity constraint violation.

4.2 SQL

The syntax recognized by the interpreter is borrowed from the SQL standard.
This section describes the main limitations, features, and decisions taken in designing
SQL, which coexists with Datalog. Also, we describe the four parts of the supported
subset of the SQL language: DDL (Data Definition Language, for defining the database
schema), DQL (Data Query Language, for listing contents of the database) and DML
(Data Manipulation Language, for inserting and deleting tuples), and ISL (Information
Schema Language). Section 4.2.8 resumes the SQL grammar. As ODBC connections are
allowed, some DBMS specific features have been added, as well as non-standard
features in ISL.

4.2.1 Main Limitations

• The projection list consists of column references (column, table. column,
alias. column), wildcards (* , table.* , alias.*), alias references, arithmetic
expressions and SQL statements. Other expressions might be supported in further
releases.

Fernando Sáenz-Pérez 60/204

Universidad Complutense de Madrid

Datalog Educational System

• A limited coverage of database integrity constraints.

• Strong typing. Different numeric type values cannot be compared (e.g., real and
integer). Also, there is no provision for automatic type casting

• No provision for ordering results (order by clause).

• No insertions/deletions/updates into views.

• Limited syntax error reports. The parser does not inform about all the possible
syntax error causes, but for table, view and column misspelled names. However,
syntax errors from ODBC connections are displayed.

4.2.2 Main Features

As main features, we highlight:

• Data query, data definition, and data manipulation language parts provided.

• Subqueries (nested queries without depth limits).

• Correlated queries (tables and relations in nested subqueries can be referenced by
the host query). For example: SELECT * FROM t,(SELECT a FROM s) WHERE
t.a=s.a .

• Subqueries in comparisons, as SELECT a FROM t WHERE t.a > (SELECT a
FROM s) .

• Table, relation, and expression aliases with full scope.

• Support for duplicates and duplicate elimination

• Non-linear recursive queries.

• Recursive queries are not restricted w.r.t. aggregates or nested computations as
usual RDBMS's are (IBM DB2, MS SQL Server, SUN Oracle, MySQL, ...)

• Simplified recursive queries are allowed: Although supported, there is no need for
using a WITH clause

• Hypothetical queries, which are a novel proposal out of the standard

• Set operators build relations, which can be used wherever a data source is expected
(FROM clause).

• Null values are supported, along with outer joins (full, left and right).

• Aggregate functions allowed in expressions at the projection list and HAVING
conditions. GROUP BY clauses are also allowed.

• View support. Any relation built with a SQL query can be defined as a view (even
recursive queries).

• Supported database integrity constraints include type constraints, existency
(nullability), primary keys, candidate keys, and referential integrity constraints.

• Parentheses can be used elsewhere they are needed and also for easing the reading
of statements.

• Suggestions are provided for misspelled table, view and column names when
similar entries are found

Fernando Sáenz-Pérez 61/204

Universidad Complutense de Madrid

Datalog Educational System

4.2.3 Datalog vs. SQL

With respect to Datalog, some decisions have been taken:

• As in Datalog, user identifiers are case-sensitive (table and attribute names, ...). This
is not the normal behaviour of current relational database systems.

• In contrast to Datalog, built-in identifiers are not case-sensitive. This conforms to
the normal behaviour of current relational database systems.

4.2.4 Data Definition Language

This part of the language deals with creating (or replacing), and dropping tables
and views. There is no provision for updating the schema, which can be consulted with
the command /dbschema .

4.2.4.1 Creating Tables

The first form of this statement is as follows:

CREATE [OR REPLACE] TABLE TableName(Column1 Type1
[ColumnConstraint1], ..., ColumnN TypeN [ColumnConstraintN] [,
TableConstraints])

This statement defines the table schema with name TableName and column
names Column1, ..., ColumnN., with types Type1, ..., TypeN, respectively. If the
optional clause OR REPLACE is used, the table is dropped if existed already, deleting
all of its tuples.

A second form of this statement allows to create a table with the same schema
of an existing table, following SQL standard optional feature T171:

CREATE TABLE TableName (LIKE ExistingTableName)

Parentheses are not mandatory, though. This version copies the complete
schema, including all integrity constraints (both predefined and user-defined).

There is provision for several column constraints:
• NOT NULL. Existency constraint forbiding null values
• PRIMARY KEY. Primary key constraint for only one column
• UNIQUE. Uniqueness constraint for only one column (Also allowed the alternative

syntax: CANDIDATE KEY)
• REFERENCES TableName[(Column)] . Referential integrity constraint for only

one column

Check constraints are not supported in this syntax up to now. However, they
can be imposed via Datalog user-defined constraints as explained in Section 4.1.14.7.

Also, there is provision for several table constraints:
• PRIMARY KEY (Column,..., Column) . Primary key constraint for one or

more columns
• UNIQUE (Column,..., Column) . Uniqueness constraint for one or more

columns (Also allowed the non-standard alternative syntax: CANDIDATE KEY
(Column,..., Column))

Fernando Sáenz-Pérez 62/204

Universidad Complutense de Madrid

Datalog Educational System

• FOREIGN KEY (Column,..., Column) REFERENCES
TableName[(Column,..., Column)])] . Referential integrity constraint for
one or more columns

Allowed types include:

• CHAR. Fixed-length string of 1

• CHAR(n) . Fixed-length string of n characters

• VARCHAR(n) . Variable-length string of up to n characters

• VARCHAR (or STRING). Variable-length string of up to the maximum length of the
underlying Prolog atom

• INTEGER (or INT) . Integer number

• REAL. Real number

Examples:

CREATE TABLE t(a INT PRIMARY KEY, b STRING)

CREATE OR REPLACE TABLE s(a INT, b INT REFERENCES t (a), PRIMARY
KEY (a,b))

Note in this last example that if the column name in the referential integrity
constraint is missing, the referred column of table t is assumed to have the same name
that the column of s where the constraint applies (i.e., b). So, an error is thrown
because columns s.b and t.b have different types:

DES-SQL> CREATE OR REPLACE TABLE s(a INT, b INT REF ERENCES t,
PRIMARY KEY (a,b))

Error: Type mismatch s.b:number(int) <> t.b:string(varchar).
Error: Imposing constraints.

A declared primary key or foreign key constraint is checked whenever a new
tuple is added to a table, following relational databases. Note that assertion of rules
from the Datalog side are allowed but not checked. A Datalog rule should be viewed as
a component of the intensional database. RDBs avoid to define a view with the same
name as a table and, therefore, there is no way of unexpected behaviours such as the
illustrated below:

DES-SQL> create or replace table t(a int, b int, c int, d int,
primary key (a,c))

DES-SQL> insert into t values(1,2,3,4)
Info: 1 tuple inserted.

DES-SQL> % The following is expected to raise an er ror:

DES-SQL> insert into t values(1,1,3,4)
Error: Primary key violation when trying to insert: t(1,1,3,4)
Info: 0 tuples inserted.

DES-SQL> % However, the following is allowed:

Fernando Sáenz-Pérez 63/204

Universidad Complutense de Madrid

Datalog Educational System

DES-SQL> /assert t(X,Y,Z,U) :- X=1,Y=2,Z=3,U=4.

DES-SQL> /listing
t(1,2,3,4).
t(X,Y,Z,U) :-
 X = 1,
 Y = 2,
 Z = 3,
 U = 4.

Production rules (those defining the intensional database) are not checked for
primary key and foreign key constraints.

Next, a very simple example is reproduced to illustrate basic constraint
handling:

DES-SQL> create or replace ta ble u(b int primary key,c int)

DES-SQL> create or replace table s(a int,b int, pri mary key
(a,b))

DES-SQL> create or replace table t(a int,b int,c in t,d int,
primary key (a,c), foreign key (b,d) references s(a ,b), foreign
key(b) references u(b))

DES-SQL> insert into t values(1,2,3,4)
Error: Foreign key violation t.[b,d]->s.[a,b] when trying to
insert: t(1,2,3,4)
Info: 0 tuples inserted.

DES-SQL> insert into s values(2,4)
Info: 1 tuple inserted.

DES-SQL> insert into t values(1,2,3,4)
Error: Foreign key violation t.[b]->u.[b] when tryi ng to insert:
t(1,2,3,4)
Info: 0 tuples inserted.

DES-SQL> insert into u values(2,2)
Info: 1 tuple inserted.

DES-SQL> insert into t values(1,2,3,4)
Info: 1 tuple inserted.

DES-SQL> /listing
s(2,4).
t(1,2,3,4).
u(2,2).

4.2.4.2 Creating Views

CREATE [OR REPLACE] VIEW ViewName(Column1, ..., ColumnN)
 AS SQLStatement

Fernando Sáenz-Pérez 64/204

Universidad Complutense de Madrid

Datalog Educational System

This statement defines the view schema in a similar way as defining tables. If
the optional clause OR REPLACE is used, the view is dropped if existed already. Other
tuples or rules asserted (with the command /assert) are not deleted. The view is
created with the SQL statement SQLStatement as its definition.

Note that column names are mandatory.

Examples:

DES> /dbschema
Info: Table(s):
 * s(a:number(integer),b:number(integer))
 - PK: [a,b]
 * u(b:number(integer),c:number(integer))
 - PK: [b]
 *
t(a:number(integer),b:number(integer),c:number(inte ger),d:number
(integer))
 - PK: [a,c]
 - FK: t.[b,d] -> s.[a,b]
 - FK: t.[b] -> u.[b]
Info: View(s):
 * v(a:number(integer),b:number(integer),c:number(i nteger),
d:number(integer))
 - Defining SQL Statement:
 SELECT ALL *
 FROM
 t
 WHERE a > 1;
 - Datalog equivalent rules:
 v(A,B,C,D) :-
 t(A,B,C,D),
 A > 1.
 * w(a:number(integer),b:number(integer))
 - Defining SQL Statement:
 SELECT ALL t.a, s.b
 FROM
 t,
 s
 WHERE t.a > s.a;
 - Datalog equivalent rules:
 w(A,B) :-
 t(A,C,D,E),
 s(F,B),
 A > F.
Info: No integrity constraints.

Note that primary key constraints follow the table schema, and inferred types
are in the view schema.

4.2.4.3 Dropping Tables

DROP TABLE [IF EXISTS] TableName,..., TableName

This statement drops the table schema corresponding to each one of the
provided names (TableName), deleting all of its tuples (whether they were inserted

Fernando Sáenz-Pérez 65/204

Universidad Complutense de Madrid

Datalog Educational System

with INSERT or with the command /assert) and rules (which might have been
added via /assert). If the optional clause IF EXISTS is included, dropping an
inexistent table does not raise an error.

Example:

DROP TABLE t;

4.2.4.4 Dropping Views

DROP VIEW ViewName

This statement drops the view with name ViewName, deleting all of its tuples
(whether they were inserted with INSERT or with the command /assert) and rules
(which might have been added via /assert). Other tuples or rules asserted (with the
command /assert) are not deleted.

Example:

DROP VIEW v;

4.2.4.5 Renaming Tables

RENAME TABLE TableName TO NewTableName

This non standard statement (following IBM DB2) allows to change the name of
table TableName to NewTableName. Foreign keys referring to this table are modified
accordingly. Also, views including referenes to this table are modified to refer to the
new name.

4.2.4.6 Renaming Views

RENAME VIEW ViewName TO NewViewName

This non standard statement (following IBM DB2) allows to change the name of
view ViewName to NewViewName. Also, views including references to this view are
modified to refer to the new name.

4.2.4.7 Dropping Databases

DROP DATABASE

This statement drops the current database, dropping all tables, views, and rules
(this includes Datalog rules and constraints that may have been asserted or consulted).
It behaves exactly as the command /abolish .

Example:

DROP DATABASE;

4.2.5 Data Manipulation Language

This part of the language deals with inserting and deleting tuples from tables.
There is no provision for updating tuples.

4.2.5.1 Inserting Tuples

Fernando Sáenz-Pérez 66/204

Universidad Complutense de Madrid

Datalog Educational System

INSERT INTO TableName VALUES (Cte1,..., CteN)

This statement inserts into the table TableName a tuple built with the values
Cte1, ..., CteN. A value for each column in the table has to be provided (here, N is the
number of columns of TableName).

Example:

INSERT INTO t VALUES (1,1)

Another form of the INSERT statement allows to inserting tuples which are the
result set from a SELECT statement:

INSERT INTO TableName SQLStatement

This statement inserts into the table TableName as many tuples as returned by
the SQL statement SQLStatement. This statement has to return as many columns as
the columns of TableName.

Examples:

INSERT INTO t SELECT * FROM s

You can also insert tuples coming directly (or indirectly) from a table, as in:

INSERT INTO t SELECT * FROM t

For testing the new (duplicated) contents of t , you have to use /listing t ,
instead of a SELECT, since this statement always returns a set (no duplicates) when
duplicates are disabled (cf. Section 4.1.9).

4.2.5.2 Deleting Tuples

DELETE FROM TableName

This statement deletes all the tuples of the table TableName. It does not delete
production rules asserted via /assert .

Example:

DELETE FROM t

Another form of the DELETE statement allows to deleting tuples which fulfil a
given condition:

DELETE FROM TableName WHERE Condition

This statement deletes from the table TableName all of its tuples matching the
condition Condition. It does not delete production rules asserted via /assert .

Example:

DELETE FROM t WHERE a NOT IN (SELECT a FROM s)

4.2.6 Data Query Language

There are three main types of SQL query statements: SELECT statements, set
statements (UNION, INTERSECT, and EXCEPT), and WITH statements (for building
recursive queries).

Fernando Sáenz-Pérez 67/204

Universidad Complutense de Madrid

Datalog Educational System

4.2.6.1 Basic SQL Queries

The syntax of the basic SQL query statement is:

SELECT [DISTINCT|ALL] ProjectionList
[FROM Relations]
[WHERE Condition]

Where:

• Square brackets indicate that the enclosed text is optional. Also, the vertical bar is
used to denote alternatives.

• ProjectionList is a list of comma-separated columns or arithmetic expressions
that will be returned as a tuple result. Wildcards are allowed, as * (for referring to
all the columns in the data source) and Relation.* (for referring to all the
columns in the relation Relation). The name Relation can be the name of a
table or an alias (for a table or subquery). Clause DISTINCT discards duplicates
whereas clause ALL does not (this is only noticeable when duplicates are enabled
with the command /duplicates on).

• Condition is a logical condition built from comparison operators (=, <>, <, >, >=,
and <=), Boolean operators (AND, OR, and NOT), Boolean constants (TRUE, FALSE),
the existence operator (EXISTS) and the inclusion operator (IN). See the grammar
description in Section 4.2.8 for details. Subqueries are allowed with no limitations.

• Relations is a list of comma-separated relation definitions. A relation can be
either a table name, or a view name, or a subquery, or a join relation. They can be
renamed via aliases. If no FROM clause is provided, the built-in DUAL relation is
used as a data source (cf. Section 4.2.6.1.2).

Examples:

Given the tables:

CREATE TABLE s(a int, b int);
CREATE TABLE t(a int, b int);
CREATE TABLE v(a int, b int);

We can submit the following queries:

SELECT distinct a
FROM t

SELECT t.*, s.b
FROM t,s,v
WHERE t.a=s.a AND v.b=t.b

SELECT t.a, s.b, t.a+s.b
FROM t,s
WHERE t.a=s.a

SELECT *
FROM (SELECT * from t) as r1,
 (SELECT * from s) as r2
WHERE r1.a=r2.b;

Fernando Sáenz-Pérez 68/204

Universidad Complutense de Madrid

Datalog Educational System

SELECT *
FROM s
WHERE s.a NOT IN SELECT a FROM t;

SELECT *
FROM s
WHERE EXISTS
 SELECT a
 FROM t
 WHERE t.a=s.a;

SELECT *
FROM s
WHERE s.a > (SELECT a FROM t);

SELECT 1, a1+a2, a+1 AS a1, a+2 AS a2
FROM t;

SELECT 1;

Notes:

• SQL arithmetic expressions follow the same syntax as Datalog.

• A SQL arithmetic expression can be renamed and used in other expressions.

• Circular definitions will yield exceptions at run-time, as in a+a3 AS a3

A join relation is either of the form:

Relation NATURAL JoinOp Relation

or:

Relation JoinOp Relation [JoinCondition]

Where Relation is as before (without any limitation), JoinOP is any join
operator (including INNER JOIN , LEFT OUTER JOIN , RIGHT OUTER JOIN , and
FULL OUTER JOIN), and JoinCondition can be either:

ON Condition

or:

USING (Column1,..., ColumnN)

Where Condition is as described in a WHERE clause, and Column1, ...,
ColumnN are common column names of the joined relations.

Examples:

Given the tables:

CREATE TABLE s(a int, b int);
CREATE TABLE t(a int, b int);
CREATE TABLE v(a int, b int);

Fernando Sáenz-Pérez 69/204

Universidad Complutense de Madrid

Datalog Educational System

We can submit the following queries:

SELECT *
FROM t INNER JOIN s ON t.a=s.a AND t.b=s.b;

SELECT *
FROM t NATURAL INNER JOIN s;

SELECT *
FROM t INNER JOIN s USING (a,b);

SELECT * FROM t INNER JOIN s USING (a);

SELECT *
FROM t INNER JOIN s USING (b);

SELECT *
FROM (t INNER JOIN s ON t.a=s.a) AS s, v
WHERE s.a=v.a;

SELECT *
FROM (t LEFT JOIN s ON t.a=s.a) RIGHT JOIN v ON t.a =v.a;

SELECT * FROM t FULL JOIN s ON t.a=s.a;

Note:

The default keyword ALL following SELECT retains duplicates whenever
duplicates are enabled (command /duplicates on). In turn, DISTINCT discards
duplicates. But note that if duplicates are disabled, both ALL and DISTINCT behave
the same (i.e., discarding duplicates).

4.2.6.1.1 Top-N Queries

The number of computed tuples for a select statements can be limited with the
so-called Top-N queries. ISO 2008 includes this as a final clause in the select statement:

SELECT [DISTINCT|ALL] ProjectionList
FROM Rels
…
FETCH FIRST Integer ROWS ONLY

However, DES also provides another non-standard, but common form in other
RDBMS's of such queries:

SELECT [TOP Integer] [DISTINCT|ALL] ProjectionList
…

You can switch the order of the top and distinct clauses, and even specify both
forms of Top-N queries in the same statement, as long as they express the same limit.

4.2.6.1.2 The dual table

The dual table is a special one-row, one-column table present by default in all
Oracle database installations. It is suitable for use in selecting a pseudocolumn with no
data source. As propositional relations are also allowed in DES, dual does not need a

Fernando Sáenz-Pérez 70/204

Universidad Complutense de Madrid

Datalog Educational System

column at all, and it is therefore defined as a single fact without arguments. This table
can be used to compute arithmetics as, e.g.:

DES-SQL> select 1+1 from dual
answer($a0) ->
{
 answer(2)
}
Info: 1 tuple computed.

 As in MySQL, DES also allows to omit the FROM clause in theses cases (the
compilation from SQL to Datalog adds the dual table as data source):

DES-SQL> select 1+1
answer($a0) ->
{
 answer(2)
}
Info: 1 tuple computed.

 Although this table is not displayed with the command /dbschema , it can be
nevertheless dropped with a DROP TABLE SQL statement. If it is deleted, the just
described behaviour is no longer possible. In addition, it cannot be redeclared with a
CREATE TABLE SQL statement, but with a type declaration, as :-type(dual) . Both
DROP DATABASE statement and /abolish command restore this table.

4.2.6.2 Set SQL Queries

The three set operators defined in the standard are available: UNION, EXCEPT,
and INTERSECT. (Also, Oracle's MINUS is allowed as a synonymous for EXCEPT.) The
first one also admits the form UNION ALL for retaining duplicates. The syntax of a set
SQL query is:

SQLStatement
SetOperator
SQLStatement

Where SQLStatement is any SQL statement described in the data query part
(without any limitation). SetOperator is any of the abovementioned set operators.

Examples:

(SELECT * FROM s) UNION (SELECT * FROM t);

(SELECT * FROM s) UNION ALL (SELECT * FROM t);

(SELECT * FROM s) INTERSECT (SELECT * FROM t);

(SELECT * FROM s) EXCEPT (SELECT * FROM t);

Note that parentheses are not mandatory in these cases and are only used for
readability.

Fernando Sáenz-Pérez 71/204

Universidad Complutense de Madrid

Datalog Educational System

4.2.6.3 WITH SQL Queries

The WITH clause, as introduced in the SQL:1999 standard and available in
several RDBMS as DB2, Oracle and SQL Server, is intended in particular to define
recursive queries. Its syntax is:

WITH LocalViewDefinition1,
 ...,
 LocalViewDefinitionN
SQLStatement

Where SQLStatement is any SQL statement, and

LocalViewDefinition1, ..., LocalViewDefinition1 are (local) view definitions
that can only be used inside SQLStatement. These local views are not stored in the
database and are rather computed when executing SQLStatement. Although they are
local, they must have different names from existing objects (tables or views). The
syntax of a local view definition is as follows:

[RECURSIVE] ViewName(Column1, ..., ColumnN) AS SQLStatement

Here, the keyword RECURSIVE for defining recursive views is not mandatory
(the parser simply ignores it).

Examples5:

CREATE TABLE flights(airline,frm,to,departs,arrives);

WITH
 RECURSIVE reaches(frm,to) AS
 (SELECT frm,to FROM flights)
 UNION
 (SELECT r1.frm,r2.to
 FROM reaches AS r1, reaches AS r2
 WHERE r1.to=r2.frm)
SELECT * FROM reaches;

WITH
 Triples(airline,frm,to) AS
 SELECT airline,frm,to
 FROM flights,
 RECURSIVE Reaches(airline,frm,to) AS
 (SELECT * FROM Triples)
 UNION
 (SELECT Triples.airline,Triples.frm,Reaches.to
 FROM Triples,Reaches
 WHERE Triples.to = Reaches.frm AND
 Triples.airline=Reaches.airline)
(SELECT frm,to FROM Reaches WHERE airline = 'UA')
 EXCEPT
(SELECT frm,to FROM Reaches WHERE airline = 'AA');

5 Adapted from [GUW02].

Fernando Sáenz-Pérez 72/204

Universidad Complutense de Madrid

Datalog Educational System

In addition, shorter definitions for recursive views are allowed in DES. The next
view delivers the same result set as the first example above:

CREATE VIEW reaches(frm,to) AS
 (SELECT frm,to FROM flights)
 UNION
 (SELECT r1.frm,r2.to
 FROM reaches AS r1, reaches AS r2
 WHERE r1.to=r2.frm);

4.2.6.4 Hypothetical SQL Queries

A novel addition to SQL in DES includes hypothetical queries. Such queries are
useful, for instance, in decision support systems as they allow to submit a query by
assuming some knowledge which is not in the database.

Syntax of hypothetical queries is proposed as:

ASSUME
 LocalAssumption1,
 ...,
 LocalAssumptionN
SQLStatement

Where SQLStatement is any SQL DQL statement, and LocalAssumption1,
..., LocalAssumptionN are of the form:

DQLStatement IN ExistingRelation

And LocalAssumptionN are added as unions to existing relations (either
tables or views). Syntax of these local view definitions are as in WITH statements.

As an example, let's consider a flight database defined by the following:

CREATE TABLE flight(origin string, destination stri ng, time
real);

INSERT INTO flight VALUES('lon','ny',9.0);
INSERT INTO flight VALUES('mad','par',1.5);
INSERT INTO flight VALUES('par','ny',10.0);

CREATE OR REPLACE VIEW travel(origin,destination,ti me) AS WITH
connected(origin,destination,time) AS
 SELECT * FROM flight
 UNION
 SELECT flight.origin,connected.destination,
 flight.time+connected.time
 FROM flight,connected
 WHERE flight.destination = connected.origin
SELECT * FROM connected;

Here, relation flight represents possible direct flights between locations, and
travel represents possible connections by using one or more direct flights. Both
include flight time. By querying the relation travel, we get:

Fernando Sáenz-Pérez 73/204

Universidad Complutense de Madrid

Datalog Educational System

DES> select * from travel
answer(travel.origin:string(varchar),travel.destina tion:string(v
archar),travel.time:number(float)) ->
{
 answer(lon,ny,9.0),
 answer(mad,ny,11.5),
 answer(mad,par,1.5),
 answer(par,ny,10.0)
}
Info: 4 tuples computed.

Now, if we assume there is a tuple flight('mad','lon',2.0) , we can
query the database with this assumption with the following query (with multi-line
input enabled):

DES> ASSUME
 SELECT 'mad','lon',2.0
 IN
 flight(origin,destination,time)
 SELECT * FROM travel;

answer(travel.origin:string(varchar),travel.destina tion:string(v
archar),travel.time:number(float)) ->
{
 answer(lon,ny,9.0),
 answer(mad,lon,2.0),
 answer(mad,ny,11.0),
 answer(mad,ny,11.5),
 answer(mad,par,1.5),
 answer(par,ny,10.0)
}
Info: 6 tuples computed.

Note that the SELECT statement following the keyword ASSUME simply stands
for the construction of a single tuple for table flight (such statement can be otherwise
stated as SELECT 'mad','lon',2.0 FROM dual , where dual is the built-in table
described in Section 4.2.6.1.2).

In addition, not only tuples can be extensionally assumed, but any SQL DQL
statement, i.e., tuples intensionally assumed. As an example, let's suppose that the
relation flight is as previously defined, and a view connect that displays locations
connected by direct flights:

DES> CREATE VIEW connect(origin,destination) AS
 SELECT origin,destination FROM flight;

DES> SELECT * FROM connect;
answer(connect.origin:string(varchar),connect.desti nation:string
(varchar)) ->
{
 answer(lon,ny),
 answer(mad,par),
 answer(par,ny)
}
Info: 3 tuples computed.

Fernando Sáenz-Pérez 74/204

Universidad Complutense de Madrid

Datalog Educational System

Then, if we assume that connections are allowed with transits, we can submit
the following hypothetical query (note that the assumed SQL statement is recursive):

DES> ASSUME
 (SELECT flight.origin,connect.destination
 FROM flight,connect
 WHERE flight.destination = connect.origin)
 IN
 connect(origin,destination)
 SELECT * FROM connect;

answer(connect.origin:string(varchar),connect.desti nation:string
(varchar)) ->
{
 answer(lon,ny),
 answer(mad,ny),
 answer(mad,par),
 answer(par,ny)
}
Info: 4 tuples computed.

In addition to this, one can use a WITH statement instead of an ASSUME
statement, by simply stating an existing relation in the definition of the local view. For
instance, for the last example, we can write:

DES> WITH
 connect(origin,destination) AS
 (SELECT flight.origin,connect.destination
 FROM flight,connect
 WHERE flight.destination = connect.origin)
 SELECT *
 FROM connect;

answer(connect.origin:string(varchar),connect.desti nation:string
(varchar)) ->
{
 answer(lon,ny),
 answer(mad,ny),
 answer(mad,par),
 answer(par,ny)
}
Info: 4 tuples computed.

One can use several assumptions in the same query, but only one for a given
relation. If needed, you can assume several rules by using UNION. For example:

WITH
flight(origin,destination,time) AS
 SELECT 'mad','lon',2.0
 UNION
 SELECT 'ny','par',10.0
SELECT *
FROM travel;

which is equivalent to:

Fernando Sáenz-Pérez 75/204

Universidad Complutense de Madrid

Datalog Educational System

ASSUME
 SELECT 'mad','lon',2.0
 UNION
 SELECT 'ny','par',10.0
IN
 flight(origin,destination,time)
SELECT *
FROM travel;

Note:

SQL queries are only allowed as such, i.e., they cannot be used as part of any
view declaration. Further versions might allow this.

4.2.7 Information Schema Language (ISL)

Several non-standard statements are provided to display schema information:

• SHOW TABLES; List table names. TAPI enabled

• SHOW VIEWS; List view names. TAPI enabled

• SHOW DATABASES; List database names. TAPI enabled

• DESCRIBE Relation; Display schema for Relation, as /dbschema

4.2.8 SQL Grammar

Here, terminal symbols are: Parentheses, commas, semicolons, single dots,
asterisks, and apostrophes. Other terminal symbols are completely written in capitals,
as SELECT. Percentage symbols (%) start comments. User identifiers must start with a
letter and consist of letters and numbers; otherwise, a user identifier can be enclosed
between quotation marks (both square brackets and double quotes are supported) and
contain any characters. Next, SQLstmt stands for a valid SQL statement.

SQLstmt ::=
 DDLstmt[;]
 |
 DMLstmt[;]
 |
 DQLstmt[;]
 |
 ISLstmt[;]

%%%
% DDL (Data Definition Language) statements
%%%

DDLstmt ::=
 CREATE [OR REPLACE] TABLE CompleteConstrainedSche ma
 |
 CREATE [OR REPLACE] TABLE TableName LIKE TableNam e
 |
 CREATE [OR REPLACE] VIEW ViewSchema AS DQLstmt
 |

Fernando Sáenz-Pérez 76/204

Universidad Complutense de Madrid

Datalog Educational System

 RENAME TABLE TableName TO TableName
 |
 RENAME VIEW ViewName TO ViewName
 |
 DROP TABLE [IF EXISTS] TableName,...,TableName % Extended
syntax following MySQL 5.6
 |
 DROP VIEW ViewName
 |
 DROP DATABASE

Schema ::=
 RelationName
 |
 RelationName(Att,...,Att)

CompleteConstrainedSchema ::=
 RelationName(Att Type [ColumnConstraint ...
ColumnConstraint],...,Att Type [ColumnConstraint .. .
ColumnConstraint] [, TableConstraints])

CompleteSchema ::=
 RelationName(Att Type,...,Att Type)

Type ::=
 CHAR(n) % fixed-length string of n characters
 |
% CHARACTER(n) % equivalent to the former
% |
 CHAR % fixed-length string of 1 character
 |
 VARCHAR(n) % variable-length string of up to n c haracters
 |
 VARCHAR2(n) % Oracle's variable-length string of up to n
characters
 |
 VARCHAR % variable-length string of up to the ma ximum length
of the underlying Prolog atom
 |
 STRING % As VARCHAR
 |
% CHARACTER VARYING(n) % equivalent to the forme r
% |
 INT
 |
 INTEGER % equivalent to the former
 |
% SMALLINT
% |
% NUMERIC(p,d) % a total of p digits, where d of those are in
the decimal place
% |
 REAL
 |

Fernando Sáenz-Pérez 77/204

Universidad Complutense de Madrid

Datalog Educational System

% DOUBLE PRECISION % equivalent to the former
% |
% FLOAT(n) % with precision of at least n digits
% |
% DATE % four digit year, month and day
% |
% TIME % hours, minutes and seconds
% |
% TIMESTAMP % combination of date and time

ColumnConstraint ::=
 NOT NULL
 |
 PRIMARY KEY
 |
 UNIQUE
 |
 CANDIDATE KEY
 |
 REFERENCES TableName[(Att)]

TableConstraints ::=
 TableConstraint,...,TableConstraint

TableConstraint ::=
 UNIQUE (Att,...,Att)
 |
 CANDIDATE KEY (Att,...,Att)
 |
 PRIMARY KEY (Att,...,Att)
 |
 FOREIGN KEY (Att,...,Att) REFERENCES TableName[(A tt,...,Att)]

RelationName is a user identifier for naming tables , views and
aliases
TableName is a user identifier for naming tables
ViewName is a user identifier for naming views
Att is a user identifier for naming relation attrib utes

%%%
% DML (Data Manipulation Language) statements
%%%

DMLstmt ::=
 INSERT INTO TableName[(Att,...,Att)] VALUES (Cte, ...,Cte)
 |
 INSERT INTO TableName[(Att,...,Att)] DQLstmt
 |
 DELETE FROM TableName
 |
 DELETE FROM TableName WHERE Condition
 |
 UPDATE TableName SET Att1=Expr1,...,Attn=Exprn WH ERE Condition

Fernando Sáenz-Pérez 78/204

Universidad Complutense de Madrid

Datalog Educational System

Cte is a constant

%%%
% DQL (Data Query Language) statements:
%%%

DQLstmt ::=
 (DQLstmt)
 |
 UBSQL

UBSQL ::=
 SELECTstmt
 |
 DQLstmt UNION [ALL] DQLstmt
 |
 DQLstmt EXCEPT DQLstmt
 |
 DQLstmt MINUS DQLstmt
 |
 DQLstmt INTERSECT DQLstmt
 |
 WITH LocalViewDefinition,...,LocalViewDefinition DQLstmt
 |
 ASSUME LocalAssumption,...,LocalAssumption DQLstm t

LocalViewDefinition ::=
 [RECURSIVE] CompleteSchema AS DQLstmt

LocalAssumption ::=
 DQLstmt IN CompleteSchema

SELECTstmt ::=
 SELECT [TOP Integer] [[ALL|DISTINCT]] SelectExpre ssionList
 [FROM Rels
 [WHERE WhereCondition]
 [GROUP BY Atts]
 [HAVING HavingCondition]
 [ORDER BY OrderDescription]
 [FETCH FIRST Integer ROWS ONLY]]

Atts ::=
 Att,...,Att

OrderDescription ::=
 Att [[ASC|DESC]],...,Att [[ASC|DESC]]

SelectExpressionList ::=
 *
 |
 SelectExpression,...,SelectExpression

SelectExpression ::=

Fernando Sáenz-Pérez 79/204

Universidad Complutense de Madrid

Datalog Educational System

 UnrenamedSelectExpression
 |
 RenamedExpression

UnrenamedSelectExpression ::=
 Att
 |
 RelationName.Att
 |
 RelationName.*
 |
 ArithmeticExpression
 |
 DQLstmt

RenamedExpression ::=
 UnrenamedExpression [AS] Identifier

ArithmeticExpression ::=
 Op1 ArithmeticExpression
 |
 ArithmeticExpression Op2 ArithmeticExpression
 |
 ArithmeticFunction(ArithmeticExpression,...,
 ArithmeticExpression)
 |
 Number
 |
 Att
 |
 RelationName.Att
 |
 ArithmeticConstant
 |
 DQLstmt

Op1 ::=
 - | \

Op2 ::=
 ^ | ** | * | / | // | rem | \/ | # | + | - | /\ | << | >>

ArithmeticFunction ::=
 sqrt/1 | ln/1 | log/1 | log/2 | sin/1 | cos/1 | tan/1 |
cot/1
 | asin/1 | acos/1 | atan/1 | acot/1 | abs/1 | flo at/1
 | integer/1 | sign/1 | gcd/2 | min/2 | max/2 | tr uncate/1
 | float_integer_part/1 | float_fractional_part/1
 | round/1 | floor/1 | ceiling/1

Aggregate Functions:
The argument may include a prefix "distinct" for al l but "min"
and "max":
 avg/1 | count/1 | count/0 | max/1 | min/1 | sum/1 | times/1

Fernando Sáenz-Pérez 80/204

Universidad Complutense de Madrid

Datalog Educational System

ArithmeticConstant ::=
 pi | e

Rels ::=
 Rel,...,Rel

Rel ::=
 UnrenamedRel
 |
 RenamedRel

UnrenamedRel ::=
 TableName
 |
 ViewName
 |
 DQLstmt
 |
 JoinRel

RenamedRel ::=
 UnrenamedRel [AS] Identifier

JoinRel ::=
 Rel [NATURAL] JoinOp Rel [JoinCondition]

JoinOp ::=
 INNER JOIN
 |
 LEFT [OUTER] JOIN
 |
 RIGHT [OUTER] JOIN
 |
 FULL [OUTER] JOIN

JoinCondition ::=
 ON WhereCondition
 |
 USING (Atts)

WhereCondition ::=
 BWhereCondition
 |
 UBWhereCondition

HavingCondition
 As WhereCondition, but including aggregate functi ons

BWhereCondition ::=
 (WhereCondition)

UBWhereCondition ::=
 TRUE

Fernando Sáenz-Pérez 81/204

Universidad Complutense de Madrid

Datalog Educational System

 |
 FALSE
 |
 EXISTS DQLstmt
 |
 NOT (WhereCondition)
 |
 (AttOrCte,...,AttOrCte) [NOT] IN DQLstmt
 |
 WhereExpression IS [NOT] NULL
 |
 WhereExpression [NOT] IN DQLstmt
 |
 WhereExpression Operator [[ALL|ANY]] WhereExpress ion
 |
 WhereCondition [AND|OR] WhereCondition

WhereExpression ::=
 Att
 |
 Cte
 |
 ArithmeticExpression
 |
 DQLstmt

AggrArithmeticExpression ::=
 [AVG|MIN|MAX|SUM]([DISTINCT] Att)
 |
 COUNT([*|Att])

AttOrCte ::=
 Att
 |
 Cte

Operator ::=
 = | <> | < | > | >= | <=

Cte ::=
 Number
 |
 'String'
 |
 NULL

Number is an integer or floating-point number

%%%
% ISL (Information Schema Language) statements
%%%

ISLstmt ::=
 SHOW TABLES

Fernando Sáenz-Pérez 82/204

Universidad Complutense de Madrid

Datalog Educational System

 |
 SHOW VIEWS
 |
 SHOW DATABASES
 |
 DESCRIBE [TableName|ViewName]

4.3 (Extended) Relational Algebra

Following the seminal proposal [Codd70] there have been some extensions to
the basic and additional operators in the original proposal. Here, we include all the
originals but division, and extended operators for dealing with outer joins, duplicate
elimination, recursion, and grouping with aggregates. However, there exists an
important difference, as visibility rules follow SQL instead of RA, i.e., column and
relation names are visible to outermost operator applications, even when projection or
renaming would restrict its visibility.

With respect to textual syntax, we follow [Diet01], where arguments of
functions are enclosed between parentheses (as relations), and subscripts and
superscripts are delimited between blanks. Arguments in infix operators are not
enclosed between any delimiters, also parentheses can be used to enhance reading.
Conditions and expressions are built with the same syntax as in SQL. Examples below
refer to the database defined in examples/relop.ra .

4.3.1 Operators

This section includes descriptions for basic, additional and extended operators.

4.3.1.1 Basic operators

� Selection σθ(R). Select tuples in relation R matching condition θ.

Concrete syntax:

select Condition (Relation)

Example:

select a<>'a1' (c);

� Projection ̟A1,...,An(R). Return all tuples in R only with columns A1,...,An.

Concrete syntax:

project A1,...,An (Relation)

Example:

project b (c);

� Set Union R1 ∪ R2.

Concrete syntax:

Relation1 union Relation2

Example:

Fernando Sáenz-Pérez 83/204

Universidad Complutense de Madrid

Datalog Educational System

a union b;

� Set Difference R1 - R2.

Concrete syntax:

Relation1 difference Relation2

Example:

a difference b;

� Cartesian Product R1 × R2.

Concrete syntax:

Relation1 product Relation2

Example:

a product b;

� Renaming ρR2(A1,...,An)(R1). Rename R1 to R2, and also arguments of R1 to A1,...,An.

Concrete syntax:

rename Schema (Relation)

Example:

project v.a (rename v(a) (select true (a)));

� Assignment R1(A1,...,An) ← R2. Create a new relation R1 with argument names
A1,...,An as a copy of R2. It allows to define new views.

Concrete syntax:

Relation1 := Relation2

Example:

v(c) := select true (a);

4.3.1.2 Additional operators

These operators can be expressed in terms of basic operators, and include:

� Set Intersection R1 ∩ R2.

Concrete syntax:

Relation1 intersect Relation2

Example:

a intersect b;

� Theta join R1 θ R2. Equivalent to σθ(R1 × R2).

Concrete syntax:

Fernando Sáenz-Pérez 84/204

Universidad Complutense de Madrid

Datalog Educational System

Relation1 zjoin Condition Relation2

Example:

a zjoin a.a<b.b b;

� Natural (inner) join R1 R2. Return tuples of R1 joined with R2 such that common
attributes are pair wise equal and occur only once in output relation.

Concrete syntax:

Relation1 njoin Relation2

Example:

a njoin c;

4.3.1.3 Extended operators

These operators can not be expressed in terms of former operators, and include:

� Extended projection ̟E1,...,En(R). Return tuples of R with columns E1,...,En where each
Ei is an expression built from constants and attributes of R.

Concrete syntax:

project E1,...,En (Relation)

Example:

:-type(d(a:string,b:int)).
project b+1 (d);

� Duplicate elimination δ(R). Return tuples in R, discarding duplicates.

Concrete syntax:

distinct (Relation)

Example:

distinct (project a (c));

� Left outer join R1 θ R2. Includes all tuples of R1 joined with matching tuples of R2
w.r.t. condition θ. Those tuples of R1 which do not have matching tuples of R2 are
also included in the result, and columns corresponding to R2 are filled with null
values.

Concrete syntax:

Relation1 ljoin Condition Relation2

Example:

a ljoin a=b b;

� Right outer join R1 θ R2. Equivalent to R2 θ R1.

Concrete syntax:

Relation1 rjoin Condition Relation2

Fernando Sáenz-Pérez 85/204

Universidad Complutense de Madrid

Datalog Educational System

Example:

a rjoin a=b b;

� Full outer join R1 θ R2. Equivalent to R1 θ R2 ∪ R1 θ R2.

Concrete syntax:

Relation1 fjoin Condition Relation2

Example:

a fjoin a=b b;

� Grouping with aggregations G1,...,Gn ζE1,...,En θ (R). Build groups of tuples in R so that:
first, each tuple in the group have the same values for attributes G1,...,Gn , second,
matches condition θ (possibly including aggregate functions) and, third, is
projected by expressions E1,...,En (also possibly including aggregate functions).

Concrete syntax:

group_by GroupingAtts ProjectingExprs HavingCond Relation

Example:

group_by a avg(b) min(b)>=0 (d);

4.3.2 Recursion in RA

Recursion in RA expressions can be specified by simply including the name of
the view which is being defined in its definition body. Solving recursion in RA has
been proposed as the application of a fixpoint operator to an RA expression (see, for
instance, [Agra88, HA92]). DES compiles RA expressions to Datalog programs and
uses the (fixpoint-based) deductive engine to solve them.

As an example of recursion in RA, let's consider the following classic program
for finding paths in a graph:

create table edge(origin string, destination string);

paths(origin, destination) :=
 select true (edge)
 union
 project paths.origin, edge.destination
 (select paths.destination=edge.origin (edge pro duct paths));

select true (paths);

4.3.3 RA Grammar

Here, terminal symbols are: Parentheses, commas, semicolons, single dots,
asterisks, and apostrophes. Other terminal symbols are completely written in capitals,
as SELECT. However, they are recognized by the parser in any letter case. Percentage
symbols (%) start comments. User identifiers must start with a letter and consist of
letters and numbers; otherwise, a user identifier can be enclosed between quotation

Fernando Sáenz-Pérez 86/204

Universidad Complutense de Madrid

Datalog Educational System

marks (both square brackets and double quotes are supported) and contain any
characters. Next, RAstmt stands for a valid RA statement.

This grammar is built following [Diet01], so that RA files read in WinRDBI (a
tool described in that book) are also read in DES. DES grammar extends WinRDBI
grammar in providing support also for: Theta join operator, outer join operators,
duplicate elimination (distinct operator), grouping (group_by operator), recursive
queries, and renaming operator (this avoids to resort to building new relations with the
assignment operator := , although it is supported, too).

RAstmt ::=
 SELECT WhereCondition (RArel) % Selection (sigma)
 |
 PROJECT SelectExpressionList (RArel) % Projection (pi)
 |
 RENAME Schema (RArel) % Renaming (rho)
 |
 DISTINCT (RArel) % Duplicate elimination
 |
 RArel PRODUCT RArel % Cartesian Product
 |
 RArel UNION RArel % Set union
 |
 RArel DIFFERENCE RArel % Set differ ence
 |
 RArel INTERSECT RArel % Set inters ection
 |
 RArel NJOIN RArel % Natural jo in
 |
 RArel ZJOIN WhereCondition RArel % Zeta join
 |
 RArel LJOIN WhereCondition RArel % Left outer join
 |
 RArel RJOIN WhereCondition RArel % Right oute r join
 |
 RArel FJOIN WhereCondition RArel % Full outer join
 |
 GROUP_BY Atts SelectExpressionList HavingConditio n (RArel)
 % Grouping

RArel ::=
 RAstmt
 |
 Relation

View definition (assignment statement):
RAview ::=
 Schema := [RAstmt | Relation]

Schema ::=
 ViewName
 |
 ViewName(ColName,...,ColName)

Fernando Sáenz-Pérez 87/204

Universidad Complutense de Madrid

Datalog Educational System

WhereCondition , SelectExpressionList and HavingCondition are as in
SQL grammar

4.4 Prolog

Syntax of Prolog programs and goals is the same as for Datalog, including all
built-in operators (cf. next Section) but aggregates. Notice that negation is written as
not(Goal) , instead of the usual \+ Goal.

When a goal is solved, instead of displaying the variable substitution for the
answer, the goal is displayed with the substitution applied, as in:

DES-Prolog> t(X)
t(1)
? (type ; for more solutions, <Intro> to continue) ;
t(2)
? (type ; for more solutions, <Intro> to continue) ;
no

4.5 Built-ins

Most built-ins are shared by the four languages. For instance, w.r.t. comparison
operators, the only difference is the less or equal (=<) operator used in Datalog and
Prolog. This operator is different from the used in SQL and RA, which is written as <=.
The former is written that way since in Prolog and Datalog, it is distinguished from the
implication to the left operator (<=). SQL does not provide implications; so, the SQL
syntax seems to be more appealing since the order of the two symbols matches the
order of words.

Arithmetic expressions are constructed with the same built-ins in the three
languages. However, in Datalog and Prolog, you need to use the infix is (cf. Section
4.5.2).

The built-in predicates is_null/1 and is_not_null/1 belong to the Datalog
language.

Also, consult Section 5.3 for limitations regarding safety in the use of built-ins in
Datalog.

4.5.1 Comparison Operators

All comparison operators are infix and apply to terms. For the inequality and
disequality operators (greater than, less than, etc.), numbers are compared in terms of
their arithmetical value; other terms are compared in Prolog standard order.

If a compound term is involved in a comparison operator, it is evaluated as an
arithmetic expression and its result is then compared (for all operators by equality) or
unified (for equality).

All comparison operators, but equality, demand ground arguments since they
are not constraints, but test operators, and argument domains are infinite. If a ground
argument is demanded and a variable is received, an exception is raised.

Fernando Sáenz-Pérez 88/204

Universidad Complutense de Madrid

Datalog Educational System

Next, we list the available comparison operators, where X and Y are terms
(variables, constants or arithmetic expressions).

• X = Y (Syntactic equality)
Tests syntactic equality between X and Y. It also performs unification when
variables are involved. This is the only comparison operator that does not demand
ground arguments.
• X \= Y (Syntactic disequality)
Tests syntactic disequality between X and Y.
• X > Y (Greater than)
Tests whether X is greater than Y.
• X >= Y (Greater than or equal to)
Tests whether X is greater than or equal to than Y.
• X < Y (Less than)
Tests whether X is less than Y .
• X =< Y (Less than or equal to)
Tests whether X is less than or equal to Y .

4.5.2 Datalog and Prolog Arithmetic

Borrowed from most Prolog implementations, arithmetic is allowed by using
the infix operator is , which is used to construct a query with two arguments, as
follows:

X is Expression

where X is a variable or a number, and Expression is an arithmetic expression
built from numbers, variables, built-in arithmetic operators, constants and functions,
mainly following ISO for Prolog (they are labelled, if so, in the listings below).
Availability of arithmetic built-ins mainly depend on the underlying Prolog system
(binary distributions cope with all the listed built-ins).

At evaluation time, the expression must be ground (i.e., its variables must be
bound to numbers or constants); otherwise, problems as stated in the previous section
may arise. Evaluating the above query amounts to evaluate the arithmetic expression
according to the usual arithmetic rules, which yields a number (integer or float), and X
is bound to this number if it is a variable or tested its equivalence if it is a number.
Precision depends on the underlying Prolog system.

Arithmetic built-ins have meaning only in the second argument of is ; they
cannot be used elsewhere. For example:

DES> X is sqrt(2)

{
 1.4142135623730951 is sqrt(2)
}
Info: 1 tuple computed.

Here, sqrt(2) is an arithmetic expression that uses the built-in function sqrt
(square root). But:

DES> sqrt(2) is sqrt(2)

Fernando Sáenz-Pérez 89/204

Universidad Complutense de Madrid

Datalog Educational System

raises an input error because an arithmetic expression can only occur as the
right argument of is . Another example is:

DES> X is e

{
 2.718281828459045 is exp(1)
}
Info: 1 tuple computed.

DES> e is e

{
}
Info: 0 tuples computed.

This means that the built-in arithmetic constant e cannot be used outside of an
arithmetic expression, and it is otherwise understood as a user defined relation. Here,
an input error is not raised since e could be a user defined relation. In fact, this should
raise a type error, but they are not currently controlled.

In addition, note that arithmetic expressions are compound terms which are
translated into an internal equivalent representation. The last example shows this since
the constant e is translated to exp(1) .

Concluding, the infix (infinite) relation is is understood as the set of pairs <V,
E> such that V is the equivalent value to the evaluation of the arithmetical expression
E. Note that, since this relation is infinite, we may reach non-termination: Let’s
consider the following program (loop.dl in the distribution directory) with the query
loop(X) :

loop(0).
loop(X) :-
 loop(Y),
 X is Y + 1.

Evaluating that query results in a non-terminating cycle because unlimited
tuples is(N, N+1) become computed. To show it, try the query, press Ctrl-C, and type
listing(et) at the Prolog prompt (only when DES has been started from a Prolog
interpreter).

4.5.3 SQL Arithmetic

Arithmetic expressions are constructed with the arithmetic operators listed in
the next section. They are used in projection lists and conditions.

4.5.4 Arithmetic Built-ins

This section contains the listings for the supported arithmetic operators,
constants, and functions.

Fernando Sáenz-Pérez 90/204

Universidad Complutense de Madrid

Datalog Educational System

4.5.4.1 Arithmetic Operators

The following operators are the only ones allowed in arithmetic expressions,
where X and Y stand also for arithmetic expressions.

• \X (Bitwise negation) ISO
Bitwise negation of the integer X.
• -X (Negative value) ISO
Negative value of its single argument X.
• X ** Y (Power) ISO
X raised to the power of Y.
• X ^ Y (Power)
Synonym for X ** Y .
• X * Y (Multiplication) ISO
X multiplied by Y.
• X / Y (Real division) ISO
Float quotient of X and Y.
• X + Y (Addition) ISO
Sum of X and Y.
• X - Y (Subtraction) ISO
Difference of X and Y.
• X // Y (Integer quotient) ISO
Integer quotient of X and Y. The result is always truncated towards zero.
• X rem Y (Integer remainder) ISO
The value is the integer remainder after dividing X by Y, i.e., integer(X)-
integer(Y)*(X//Y) . The sign of a nonzero remainder will thus be the same as
that of the dividend.
• X \/ Y (Bitwise disjunction) ISO
Bitwise disjunction of the integers X and Y .
• X /\ Y (Bitwise conjunction) ISO
Bitwise disjunction of the integers X and Y .
• X # Y (Bitwise exclusive or)
Bitwise exclusive or of the integers X and Y .
• X << Y (Shift left) ISO
X shifted left Y places.
• X >> Y (Shift right) ISO
X shifted right Y places.

4.5.4.2 Arithmetic Constants

• pi (π)
Archimedes' constant.
• e (Neperian number)
Neperian number.

4.5.4.3 Arithmetic Functions

• sqrt(X) (Square root) ISO
Square root of X .
• log(X) (Natural logarithm) ISO
Logarithm of X in the base of the Neperian number (e).
• ln(X) (Natural logarithm)
Synonym for log(X) .

Fernando Sáenz-Pérez 91/204

Universidad Complutense de Madrid

Datalog Educational System

• log(X,Y) (Logarithm)
Logarithm of Y in the base of X.
• sin(X) (Sine) ISO
Sine of X.
• cos(X) (Cosine) ISO
Cosine of X.
• tan(X) (Tangent) ISO
Tangent of X.
• cot(X) (Cotangent)
Cotangent of X.
• asin(X) (Arc sine)
Arc sine of X.
• acos(X) (Arc cosine)
Arc cosine of X.
• atan(X) (Arc tangent) ISO
Arc tangent of X.
• acot(X) (Arc cotangent)
Arc cotangent of X.
• abs(X) (Absolute value) ISO
Absolute value of X.
• float(X) (Float value) ISO
Float equivalent of X, if X is an integer; otherwise, X itself.
• integer(X) (Integer value)
Closest integer between X and 0, if X is a float; otherwise, X itself.
• sign(X) (Sign) ISO
Sign of X, i.e., -1, if X is negative, 0, if X is zero, and 1, if X is positive, coerced into
the same type as X (i.e., the result is an integer, iff X is an integer).
• gcd(X,Y) (Greatest common divisor)
Greatest common divisor of the two integers X and Y.
• min(X,Y) (Minimum)
Least value of X and Y.
• max(X,Y) (Maximum)
Greatest value of X and Y.
• truncate(X) (Truncate) ISO
Closest integer between X and 0.
• float_integer_part(X) (Integer part as a float) ISO
The same as float(integer(X)) .
• float_fractional_part(X) (Fractional part as a float) ISO
Fractional part of X, i.e., X - float_integer_part(X) .
• round(X) (Closest integer) ISO
Closest integer to X. X has to be a float. If X is exactly half-way between two
integers, it is rounded up (i.e., the value is the least integer greater than X).
• floor(X) (Floor) ISO
Greatest integer less or equal to X. X has to be a float.
• ceiling(X) (Ceiling) ISO
Least integer greater or equal to X. X has to be a float.

Fernando Sáenz-Pérez 92/204

Universidad Complutense de Madrid

Datalog Educational System

4.5.5 Negation

• not(Query) (Stratified negation)
It stands for the complement of the relation Query w.r.t. the meaning of the
program (i.e., closed world assumption). See Sections 4.1.8 and 5.16.3. If Query is
not an atom, a new predicate defined by a head Head with relevant variables in
Query is built, and defined by the single rule Head :- Query. Then, not(Head)
replaces not(Query) .

4.5.6 Datalog Outer Joins

• lj(LeftRelation,RightRelation,JoinCondition) (Left join)
It stands for the left outer join of the relations LeftRelation and relations
RightRelation, under the condition JoinCondition (expressed as literals, cf.
Section 4.1.1), as understood in extended relational algebra (LeftRelation

JoinCondition RightRelation).
• rj(LeftRelation,RightRelation,JoinCondition) (Right join)
It stands for the right outer join of the relations LeftRelation and relations
RightRelation, under the condition JoinCondition (expressed as literals, cf.
Section 4.1.1), as understood in extended relational algebra (LeftRelation

JoinCondition RightRelation).
• fj(LeftRelation,RightRelation,JoinCondition) (Full join)
It stands for the full outer join of the relations LeftRelation and relations
RightRelation, under the condition JoinCondition (expressed as literals, cf.
Section 4.1.1), as understood in extended relational algebra (LeftRelation

JoinCondition RightRelation).

4.5.7 Datalog Aggregates

4.5.7.1 Aggregate Functions

Aggregate functions can only occur in the context of a group _by aggregate
predicate (see next section) and apply to the result set for its input relation.

• count(Variable)
Return the number of tuples so that the value for Variable is not null.

• count
Return the number of tuples of the result set.
• sum(Variable)
Return the sum of possible values for Variable , ignoring nulls.
• times(Variable)
Return the product of possible values for Variable , ignoring nulls.
• avg(Variable)
Return the average of possible values for Variable , ignoring nulls.
• min(Variable)
Return the minimum value for Variable , ignoring nulls.
• max(Variable)
Return the maximum value for Variable , ignoring nulls.

4.5.7.2 Group_by Predicate

• group_by(Query,Variables,GroupConditions)
Solve GroupConditions in the context of Query, building groups w.r.t. the
possible values the variables in the list Variables. This list is specified as a Prolog

Fernando Sáenz-Pérez 93/204

Universidad Complutense de Madrid

Datalog Educational System

list, i.e., a sequence of comma-separated values enclosed between brackets. If this
list is empty, there is only one group: the answer set for Query. The goal
GroupConditions may contain expressions including aggregate functions.

4.5.7.3 Aggregate Predicates

• count(Query,Variable,Result)
Count in Result the number of tuples in the result set for the query Query so that
Variable is a variable of Query (an attribute of the result relation set) and this
attribute is not null. It returns 0 if no tuples are found in the result set.
• count(Query,Result)
Count in Result the total number of tuples in the result set for the query Query,
disregarding whether they contain nulls or not. It returns 0 if no tuples are found in
the result set.
• sum(Query,Variable,Result)
Sum in Result the numbers in the result set for the query Query and the attribute
Variable, which should occur in Query. Nulls are simply ignored.

• times(Query,Variable,Result)
Compute in Result the product of all the numbers in the result set for the query
Query and the attribute Variable, which should occur in Query. Nulls are
simply ignored.
• avg(Query,Variable,Result)
Compute in Result the average of the numbers in the result set for the query
Query and the attribute Variable, which should occur in Query. Nulls are
simply ignored.
• min(Query,Variable,Result)
Compute in Result the minimum of the numbers in the result set for the query
Query and the attribute Variable, which should occur in Query. Nulls are
simply ignored. If there are no such numbers, it returns null .
• max(Query,Variable,Result)
Compute in Result the maximum of the numbers in the result set for the query
Query and the attribute Variable, which should occur in Query. Nulls are
simply ignored. If there are no such numbers, it returns null .

4.5.8 Datalog Null-related Predicates

• is_null(Term)
Succeed if Term is bound to a null value. It raises an exception if Term is a variable.

• is_not_null(Term)
Succeed if Term is not bound to a null value. It raises an exception if Term is a
variable.

4.5.9 Duplicates

The following built-ins take effect when duplicates are enabled via the
command /duplicates on .

• distinct(Query)
Succeed as many times as different ground answers are computed for Query.
• distinct([Variables], Query)
Succeed as many times as different ground tuples (built with Variables) are
computed for Query.

Fernando Sáenz-Pérez 94/204

Universidad Complutense de Madrid

Datalog Educational System

4.5.10 Top-N Queries

• top(N, Query)
Succeed at most N times for Query.

5. System Description

This section includes descriptions about the connection to relational database
systems via ODBC connections, persistency, safety and computability issues, source-to-
source transformations, the declarative debuggers and tracers, the batch processing,
system messages, and finally lists all the available commands.

5.1 RDBMS connections via ODBC

DES provides support for connections to (relational) database management
systems (RDBMSs) in order to provide data sources for relations. This means that a
relation defined in a RDBMS as a view or table is allowed as any other relation defined
via a predicate in the deductive database. Then, computing a query can involve
computations both in the deductive inference engine and in the external RDBMS SQL
engine. Such relations become first-class citizens in the deductive database and,
therefore, can be queried in Datalog and RA. If the relation is a view, it will be
processed by the SQL engine. When an ODBC connection is opened, all SQL
statements are redirected to such connection, so DES does not longer process such
statements. This means that all the SQL features of the connected RDBMS are available.

Almost any relational database (RDB) can be accessed from DES using an
ODBC connection. Relational database management system (RDBMS) manufacturers
provide ODBC implementations which run on many operating systems (Microsoft
Windows, Linux, Mac OS X, ...) RDBMSs include enterprise RDBMS (as Oracle,
MySQL, DB2, ...) and desktop RDBMS (as MS Access and FileMaker).

ODBC drivers are usually bundled with OS platforms, as Windows OSs (ODBC
implementation), Linux OS distributions as Ubuntu, Red Hat and Mandriva
(UnixODBC implementation), and Mac OSs 10x (iODBC implementation). However,
additional drivers for specific databases are needed to be installed.

Since each RDBMS provides an ODBC driver and each OS an ODBC
implementation, details on how to configure such connections are out of the scope of
this manual. However, to configure such a connection, typically, the ODBC driver is
looked for and installed in the OS. Then, following the manufacturer
recommendations, it is configured. You can find many web pages with advice on this.
Here, we assume that there are ODBC connections already available.

5.1.1 Opening an ODBC Connection

To access a RDB in DES, first open the connection with the following command,
where test is the name of a previously created ODBC connection to a database:

DES-SQL> /open_db test

You can also provide a username and password (if needed) as in:

DES-SQL> /open_db test user(smith) password(my_pwd)

Fernando Sáenz-Pérez 95/204

Universidad Complutense de Madrid

Datalog Educational System

If ODBC connector returns an error, then you have to enclose these between
apostrophes (') as in:

DES-SQL> /open_db test user('smith') password('my_p wd')

Note that if you have previously created some database objects (tables, views,
...) in DES without an ODBC connection, they are still available and can be queried
system asks for dropping the current DES database before starting to use a new
database6.

5.1.2 Using a Connection

Assuming that the connection links to an empty database, let's start creating
some database objects:

(Note that, depending on the installed MySQL ODBC driver version, annoying
messages can be displayed.)

DES-SQL> create table t(a varchar(20) primary key)
DES-SQL> create table s(a varchar(20) primary key)
DES-SQL> create view v(a,b) as select * from t,s
DES-SQL> insert into t values(1)
Info: 1 tuple inserted.
DES-SQL> insert into s select * from t
Info: 1 tuple inserted.
DES-SQL> insert into s values(2)
Info: 1 tuple inserted.

Next, one can ask for the database schema (metadata) with the command:

DES-SQL> /dbschema
Info: Table(s):
 * s(a:varchar)
 * t(a:varchar)
Info: View(s):
 * v(a:varchar,b:varchar)

All of these tables and views can be accessed from DES, as if they were local:

DES-SQL> select * from s;
answer(a:varchar) ->
{
 answer('1'),
 answer('2')
}
Info: 2 tuples computed.

DES-SQL> select * from t;
answer(a:varchar) ->
{
 answer('1')

6 Further improvements of the system will include to handle multiple database
connections, removing the requirement of dropping the DES database.

Fernando Sáenz-Pérez 96/204

Universidad Complutense de Madrid

Datalog Educational System

}
Info: 1 tuple computed.

DES-SQL> select * from v;
answer(a:varchar,b:varchar) ->
{
 answer('1','1'),
 answer('1','2')
}
Info: 2 tuples computed.

DES-SQL> insert into t values('1')
Exception: error(odbc(23000,1062,[MySQL][ODBC 3.51
Driver][mysqld-5.0.41-community-nt]Duplicate entry '1' for key
1),_G3)

In this example, as table t has its single column defined as its primary key,
trying to insert a duplicate entry results in an exception from the ODBC driver.
Integrity constraints are handled by the RDBMS connected, instead of DES (notice that
the exception message is different from the one generated by DES).

Moreover, you can submit SQL statements that are not supported by DES but
otherwise by the connected RDBMS, as:

DES-SQL> alter table t drop primary key;

Then, you can insert again and see the result (including duplicates):

DES-SQL> insert into t values('1')
Info: 1 tuple inserted.

DES-SQL> select * from v;
answer(a:varchar,b:varchar) ->
{
 answer('1','1'),
 answer('1','1'),
 answer('1','2'),
 answer('1','2')
}
Info: 4 tuples computed.

Also, duplicate removing is also possible by the external RDBMS:

DES-SQL> select distinct * from v;
answer(a:varchar,b:varchar) ->
{
 answer('1','1'),
 answer('1','2')
}
Info: 2 tuples computed.

Nonetheless, these external objects can be accessed from Datalog as well (please
remember to enable duplicates to get the expected result):

DES-SQL> /datalog
DES> /duplicates on

Fernando Sáenz-Pérez 97/204

Universidad Complutense de Madrid

Datalog Educational System

Info: Duplicates are on.
DES> s(X),t(X)
Info: Processing:
 answer(X) :-
 s(X),
 t(X).
{
 answer('1'),
 answer('1')
}
Info: 2 tuples computed.

This is equivalent to the following SQL statement:

DES> select s.a from s,t where s.a=t.a
answer(a:varchar) ->
{
 answer('1'),
 answer('1')
}
Info: 2 tuples computed.

However, whilst the former has been processed by the Datalog engine, the
latter has been processed by the external RDBMS. So, some complex SQL statements
might be more efficiently processed by the external RDBMS.

Duplicates are relevant in a number of situations. For instance, consider the
following, where duplicates are initially disabled:

DES> group_by(v(X,Y),[X,Y],C=count)
Info: Processing:
 answer(X,Y,C) :-
 group_by(v(X,Y),[X,Y],C = count).
{
 answer('1','1',1),
 answer('1','2',1)
}
Info: 2 tuples computed.

Although there are a couple of tuples for each group (see the table contents
above), only one is returned in the count because they are indistinguishable in a set.
Now, if duplicates are allowed, we get the expected result:

DES> /duplicates on
Info: Duplicates are on.

DES> group_by(v(X,Y),[X,Y],C=count)
Info: Processing:
 answer(X,Y,C) :-
 group_by(v(X,Y),[X,Y],C = count).
{
 answer('1','1',2),
 answer('1','2',2)
}
Info: 2 tuples computed.

Fernando Sáenz-Pérez 98/204

Universidad Complutense de Madrid

Datalog Educational System

Note that, even when you can access SQL objects from Datalog, the contrary is
not allowed because there is nor Datalog metadata information for the external SQL
engine, neither access to Datalog data. The data bridge is only opened from DES to the
external DBMS, not the other way round. This is in contrast to the SQL database
internally provided by DES, which allows a bidirectional communication since type
information is supported for Datalog predicates.

5.1.3 Opening Several Connections

From release 3.0 on, several OCBC connections can be opened simultaneously.
Each time a new connection is opened, it becomes the new current connection, and all
query processing is related to it by default. For instance, to inspect (a rather limited set
of) metadata, one can submit the following command:

DES> /open_db mysql
DES> /dbschema
Info: Database 'mysql'
Info: Table(s):
 * s(a:varchar(20))
 * t(a:integer(4))
 * w(a:varchar(20))
Info: View(s):
 * v(a:varbinary(20))
Info: No integrity constraints.

To list all the opened connections, use the command:

DES> /show_dbs
$des
access
csv
db2
excel
mysql
oracle
postgresql
sqlserver

where you can see the list of opened connections, starting with $des , which is
the default database (DES deductive engine). You can close all connections but the
default one. As the names suggest, you can open a wide range of data sources, not only
from database management systems as DB2, Oracle, SQL Server but also from other
sources as datasheets (Excel) and text files (CSV (comma-separated values) files). For
defining a "table" in MS Excel, you should use Insert -> Name -> Define, where you
specify the name of the table and the cell range it covers (where first row can be used
as field names, optionally). Types are inferred by the Excel system. Similarly, when
defining a connection to a text file, field names can be those in the first line of explicitly
given. Again, types are inferred. In both cases, you can inspect the "database" schema
and query them with either SQL statatements, or Datalog queries or RA expressions.

A warning for newbies: You have to define connection names following ODBC
installation; do not expect the ones listed above are provided by default, you need both
the ODBC connection and the data provider (database server or whatever) already
installed and configured.

Fernando Sáenz-Pérez 99/204

Universidad Complutense de Madrid

Datalog Educational System

5.1.4 Current Connection

To find out the current opened ODBC database, use the command:

DES-SQL> /current_db

5.1.5 Making a Connection the Current One

Making a given connection the current one is simply done with:

DES-SQL> /use_db access

where access is an example of an already opened connection name.

5.1.6 Closing a Connection

Closing the current connection is simply done with:

DES-SQL> /close_db

You can also specify to close a given connection, as in:

DES-SQL> /close_db access

5.1.7 Schema and Data Visibility

Any submitted query or command refer to the current connection if not
otherwise specified as an argument of a command. When opening a connection (and
automatically making it the current one), their data and schema are visible, but not the
data and schema of other already opened connections. In contrast, data from the
default deductive database are visible for Datalog and RA queries, although its schema
does not. Recall that you can create tables and views in the default database, which
will be handled by DES but not projected to any external database (unless you persist a
predicate; see Section 5.2). Anyway, data from the default deductive database ($des)
are not visible for SQL statements for a current connection other than $des , as they are
submitted for processing to the external database.

 In the following system session, one creates a table in the default database of
DES (DDB), inserts a value, opens a connection, and realize that the table schema is not
visible, but its data do. This comes from the fact that, first, SQL data is translated by
DES to Datalog data and, second, Datalog data can be seamlessly combined with
external databases (EDB).

DES> create table t(a int) % Create table t in DDB
DES> insert into t values(1)
Info: 1 tuple inserted.

% Insert t(1) in DDB

DES> select * from t
answer(t.a:number(integer)) - >
{
 answer(1)
}
Info: 1 tuple computed.

% Select data from DDB

DES> /open_db mysql % Open an EDB

Fernando Sáenz-Pérez 100/204

Universidad Complutense de Madrid

Datalog Educational System

DES> select * from t
Error: ODBC Code (1146):
[MySQL][ODBC 5.1 Driver][mysqld-
5.5.9]Table 'test.t' doesn't exist

% Select data from EDB
% As t is not defined in EDB,
% then, error

DES> t(X)
{
 t(1)
}
Info: 1 tuple computed.

% Predicate t is known to DDB and
% can be queried from Datalog

In this way, you can also combine data from DES and the external data source.
Next system session example shows this by creating a new table in the external
database and combining above predicate t/1 , defined in DDB, with a new table s
created in EDB:

DES> create table s(a int) % Create table s in EDB
DES> insert into s values(2)
Info: 1 tuple inserted.

% Insert s(2) in EDB

DES> select * from s
answer(a:integer(4)) ->
{
 answer(2)
}
Info: 1 tuple computed.

% Select data from EDB.
% Note the different type w.r.t. DDB

DES> t(X),s(Y)
Info: Processing:
 answer(X,Y) :-
 t(X),
 s(Y).
{
 answer(1,2)
}
Info: 1 tuple computed.

% Join t/1 (DDB) with s/1 (EDB)

5.1.8 Integrity Constraints, ODBC Connections, and Persistency

Integrity constraints as described in Section 4.1.14 are monitored by DES for the
local deductive database. This means that inserting values directly into external tables
(either by submitting an INSERT INTO statement from the opened connection or by
inserting values out of DES) is not monitored for constraint consistency. However, as
constraint consistency checking considers all visible data, when asserting into the local
database, data from the current opened connection is also taken into account. The
following system session shows a possible scenario illustrating these situations:

DES> /use_db $des
DES> create or replace table t(a int primary key)
DES> /dbschema
Info: Database '$des'
Info: Table(s):
 * t(a:number(integer))
 - PK: [a]
Info: No views.

Fernando Sáenz-Pérez 101/204

Universidad Complutense de Madrid

Datalog Educational System

Info: No integrity constraints.
DES> /open_db mysql

Table 't ' is also an external table in connection 'mysql ':

DES> /dbschema t
Info: Database 'mysql'
Info: Table:
 * t(a:integer(4))

Retrieve tuples from external table 't ':

DES> select * from t
answer(a:integer(4)) ->
{
}
Info: 0 tuples computed.

The following is inserted in external table 't '. Recall that SQL statements under
an opened connection are submitted directly to the external RDBMS:

DES> insert into t values (1)
Info: 1 tuple inserted.
DES> insert into t values (1) % Not rejected as it is not
monitored by DES
Info: 1 tuple inserted.

DES does monitor the following assertion as it is directed to the local database:

DES> /assert t(1)
Error: Primary key violation t.[a]
 when trying to insert: t(1)
Error: Asserting rules due to integrity constraint violation.
DES> /use_db $des

When the current database is the local database ('$des '), the external table 't ' is
not visible. So, the following fact is asserted in the local database:

DES> insert into t values (1)
Info: 1 tuple inserted.

Any other attempt to assert the same fact t(1) is rejected

DES> /assert t(1)
Error: Primary key violation t.[a]
 when trying to insert: t(1)
Error: Asserting rules due to integrity constraint violation.

The following would also go to the local database:

DES> insert into t values (1)
Error: Primary key violation t.[a]
 when trying to insert: t(1)
Error: Asserting rules due to integrity constraint violation.
Info: 0 tuples inserted.

Fernando Sáenz-Pérez 102/204

Universidad Complutense de Madrid

Datalog Educational System

Finally, any persisted predicate (see Section 5.2) which has attached constraints
is checked for its consistency, irrespective of the external database it is stored. Also,
any of the supported constraints can be attached to persistent predicates, therefore
providing a high expressivity and declarative consistency level.

5.1.9 Caveats and Limitations

This section lists some caveats and limitations of the current implementation of
ODBC connections to external data sources.

5.1.9.1 Caching

Data in relational tables are cached in the memo table during Datalog
computations, and it is not requested anymore until this cache is cleared (either
explicitly with the command /clear_et or because a command or statement
invalidating its contents, as a SQL update query). Therefore, it could be possible to
access outdated data from a Datalog query. Let's consider:

DES-SQL> /datalog t(X)
{
 t('1')
}
Info: 1 tuple computed.

Then, from the MySQL client:

mysql> insert into t values('2');
Query OK, 1 row affected (0.06 sec)

And, after, in DES, the new tuple is not listed via a Datalog query:

DES-SQL> /datalog t(X)
{
 t('1')
}
Info: 1 tuple computed.

However, a SQL statement returns the correct answer:

DES-SQL> select * from t;
answer(a:varchar) ->
{
 answer('1'),
 answer('2')
}
Info: 2 tuples computed.

In addition, it is not recommended to mix Datalog and SQL data. It is possible
to assert tuples with the same name and arity as existing RDBMS's tables and/or
views. Let's consider the same table t as above with the same data (two tuples t('1')
and t('2')) and assert a tuple t('3') as follows:

DES-SQL> /assert t('3')

DES-SQL> /datalog t(X)
{

Fernando Sáenz-Pérez 103/204

Universidad Complutense de Madrid

Datalog Educational System

 t('1'),
 t('2'),
 t('3')
}
Info: 3 tuples computed.

DES-SQL> select * from t
answer(a:varchar) ->
{
 answer('1'),
 answer('2')
}
Info: 2 tuples computed.

This reveals that, although on the DES side, Datalog data are known, it is not on
the RDBMS side. This is in contrast to the DES management of data: if no ODBC
connection is opened, the DES engine is aware of any changes to data, both from
Datalog and SQL sides.

Concluding, those updates that are external to DES might not be noticed by the
DES engine. And, also, an ODBC connection should be seen as a source of external data
that should not be mixed with Datalog data. However, you can safely use the more
powerful Datalog language to query external data (and to be sure the current data is
retrieved, clear the cache with /clear_et).

5.1.9.2 ODBC Metadata

When computing the predicate dependency graph and stratification, metadata
from the external DBMS is retrieved, which can be a costly operation if the number of
tables and views is large. This is the default case when opening connections to DBMSs
as SQL Server or Oracle, where many views are defined for an empty database. Also,
ODBC connections to Oracle seem to be slow.

Listing the database schema can suffer this situation as well, by issuing the
command /dbschema . Instead, it is better to focus on the required object to display, as
either /dbschema relname or /dbschema connection: relname.

5.1.9.3 ODBC Limitations

As predicate dependency graphs are not computed from external data sources,
several features are not supported in the context of an opened ODBC connection:

• SQL tracer

• Test case generator

5.1.9.4 Platform-specific Issues

ODBC connections are only supported by the provided binaries, and the source
distributions for SWI-Prolog and SICStus Prolog. The stable releases Ciao Prolog 1.14.2
and GNU-Prolog 1.4.0 do not support this implementation.

If you use a 64 bit Windows OS, notice that you can select to run either a 64 bit
version of DES or a 32 bit one (binaries built with SWI-Prolog are provided in the
download area). In the first case (64 bit), you must use the Database Connectivity
(ODBC) Data Source Administrator tool (Odbcad32.exe):

Fernando Sáenz-Pérez 104/204

Universidad Complutense de Madrid

Datalog Educational System

 • The 32-bit version of the Odbcad32.exe file is located in the
%systemdrive%Windows%SysWoW64 folder.

 • The 64-bit version of the Odbcad32.exe file is located in the
%systemdrive%Windows%System32 folder.

 Also notice that a 64 bit driver requires also a 64 bit database installation. For
instance, you can define a 32 bit ODBC connection to 32 bit MS Access installation and
a 64 bit ODBC connection to a 64 bit Oracle installation. In this scenario, both
connectinos cannot be opened from the same DES instance (which is either a 32 bit or
64 bit release).

5.1.10 Tested ODBC Drivers

Several data sources have been successfully tested on Windows XP/Vista/7 32
bit with both SICStus Prolog and SWI-Prolog executables and sources:

� IBM DB2 v9.7.200.358

� Oracle Database Express Edition 11g Release 2 (also tested with Windows 7 64 bit
and SWI-Prolog 6.0.0 64 bit)

� SQL Server Express 2008 (including spatial components)

� MySQL 5.5.9

� PostgreSQL 9.1.3

� Access 2003

� Excel 2003

� CSV text files

5.2 Persistency

Since DES 3.0, it is possible to make predicates persist on either an external
database, or datasheet or text file, i.e., any data source supported by an ODBC
connection. This sections describes how to persist a predicate, use it, examine its
schema, unpersist it, and also lists a couple of caveats.

5.2.1 Persisting a Predicate

An assertion is used to declare a persisted predicate, as in:

DES> :-persistent(p(a:int),mysql)

where its first argument is the predicate and its schema, and the second one is the
ODBC connection name. This name can be omitted if the current connection is the one
you want to use to persist the predicate, as in:

DES> /current_db
Info: Current database is 'mysql'. DBMS: mysql
DES> :-persistent(p(a:int))

You can confirm that predicate p has been declared as persistent with:

DES> /list_persistent

Fernando Sáenz-Pérez 105/204

Universidad Complutense de Madrid

Datalog Educational System

mysql:p(a:number(integer))

where the connection name is shown, followed by a semicolon and the predicate
schema.

Also, if you have type information declared already, you can simply refer to the
predicate with its name and arity in the persistency assertion:

DES> /use_db $des
DES> create table p(a int)
DES> /use_db mysql
DES> :-persistent(p/1)
DES> /list_persistent
mysql:p(a:number(integer))

The general form of a persistency assertion is as follows:

:-persistent(PredSpec[, Connection]))

This assertion makes a predicate to persist on an external RDBMS via an ODBC
connection. PredSpec can be either the pattern PredName/ Arity or
PredName(Schema) , where Schema can be either ArgName1, …, ArgNameN or
ArgName1: Type1, …, ArgNameN: TypeN. If a connection name is not provided, the
current open database is used. The local, default database $des cannot be used to
persist, but an ODBC connection.

5.2.2 Using Persistent Predicates

You can assert facts as usual and query the persisted predicate p/1 as the
following example shows:

DES> /assert p(1)
DES> p(X)
{
 p(1)
}
Info: 1 tuple computed.

And, as expected, it can seamlessly be combined with other non-persistent
predicates, as in:

DES> /assert q(2)
DES> p(X),q(Y),X<Y
Info: Processing:
 answer(X,Y) :-
 p(X),
 q(Y),
 X < Y.
{
 answer(1,2)
}
Info: 1 tuple computed.

where q(2) is in the meaning of q/1.

Also, you can use SQL or RA languages to query such persistent predicates, as
in:

Fernando Sáenz-Pérez 106/204

Universidad Complutense de Madrid

Datalog Educational System

DES> :-type(q(a:int))
DES> select * from p,q where p.a<q.a
answer(p.a:number(integer),q.a:number(integer)) ->
{
 answer(1,2)
}
Info: 1 tuple computed.
DES> p zjoin p.a<q.a q
answer(p.a:number(integer),q.a:number(integer)) ->
{
 answer(1,2)
}
Info: 1 tuple computed.

And persistent predicates can be combined even with external data coming
from other ODBC connection, as in:

DES> /open_db access
DES> /dbschema t
Info: Database 'access'
Info: Table:
 * t(a:INTEGER(4))
DES> p(X),t(X)
Info: Processing:
 answer(X) :-
 p(X),
 t(X).
{
 answer(1)
}
Info: 1 tuple computed.

Here, the current database is access and all its data is available (as already
introduced in Section 5.1.2); in particular, the table t , which contains in particular the
tuple t(1) .

As well, one can retract the rules previously asserted. For instance:

DES> /retract p(1)
DES> /retract p(X):-r(X)

5.2.3 Processing a Persistency Assertion

Processing a persistency assertion means to make persistent a predicate, i.e., all
of its current rules as well as rules added afterwards are stored in a persistent media,
as a relational database. A fact is projected to a table whereas a rule is translated into a
SQL view. Each persisted predicate is translated into a table for holding such facts and
a view which is the union of all the SQL translations for its rules. Translating rules into
SQL views includes an adaptation of Draxler's Prolog to SQL compiler [Drax92].

Any rule belonging to the definition of a predicate pred which is being made
persistent is expected, in general, to involve calls to other predicates. Each callee (such
other called predicate) can be:

� An existing relation in the external database.

Fernando Sáenz-Pérez 107/204

Universidad Complutense de Madrid

Datalog Educational System

� An already persisted predicate which is loaded in the local database.

� An already persisted predicate which is no yet loaded in the local database.

� A predicate which has not been made persistent yet.

For the first two cases, besides making pred persistent, nothing else is
performed when processing its persistency assertion.

For the third case, a persistent predicate is automatically restored in the local
database (c.f. next section), i.e., it is made available to the deductive engine.

For the fourth case, each non-persistent predicate is automatically made
persistent, if possible, inferring its types. This is needed in order for the external
database to be aware of a predicate which is only known by the deductive engine so
far, as this database will eventually compute pred.

However, not all rules can be made persistent for a number of reasons:
including that the external database does not support some features, and the
translations of some built-ins are not supported yet. In the current state of the
implementation, the following conditions must hold for a rule to be made persistent:

� The rule does not contain calls to built-ins but comparison operators.

� The rule does not form a recursive cycle.

Nonetheless, the rule is kept in the in-memory database for computing the
meaning of the predicate when needed. This is performed by the deductive engine,
which couples the processing of the external database with its own processing to
derive the meaning of the predicate. Therefore, all the deductive computing power is
preserved although the external persistent media lacks some features as, for instance,
recursion (think of MySQL and MS Access). Anyway, such rules which are not
projected to the external database are stored on it as metadata information. This is
needed to restore the complete definition of a persistent predicate upon restoring (c.f.
next section). Further releases might contain relaxed conditions.

Any time a predicate is made persistent, its associated connection is opened if it
not was opened already (the current connection is not changed, anyway). The
connection is not closed even when you drop the assertion (see Section 5.2.6).

5.2.4 Restoring a Session

As expected, if you make a predicate persistent and quit DES, in a next session
you can recover the state of this predicate. It is simply done by submitting again the
same assertion as used to make the predicate persist for the first time.

However, note that any rule in the in-memory database for such a predicate
will be persisted, too. This is to say that, for instance, if you have persisted already a
predicate which is not loaded already, and you have a rule asserted a rule for this
predicate, then the result of restoring its persistency is the union of the asserted rule
and the rules in the external database. For instance, let's consider the following system
session:

DES> :-persistent(p(a:int),mysql)
DES> /assert p(1)

Now, let's assume another system session (quit and restart DES):

Fernando Sáenz-Pérez 108/204

Universidad Complutense de Madrid

Datalog Educational System

DES> /assert p(2)
DES> :-persistent(p(a:int),mysql)
Info: Recovering existing data from external databa se for 'p'...
DES> /listing
p(1).
p(2).
Info: 2 rules listed.

As it can be seen, the resulting database is composed of the union of the
external rules and the local rules.

Finally, restoring compiled rules in a different system session does not recover
source rules as they were originally asserted. They are only recovered "as is" (i.e.,
compiled form and without textual variable names as they were originally typed) in
the same system session. Let's consider the following:

DES> :-persistent(p(a:int),mysql)
DES> /assert p(X):-X=1;X=2
DES> /listing
p(X) :-
 X = 1
 ;
 X = 2.
Info: 1 rule listed.
DES> /drop_assertion :-persistent(p(a:int),mysql)
DES> /listing
p(X) :-
 X = 1
 ;
 X = 2.
Info: 1 rule listed.
DES> :-persistent(p(a:int),mysql)
DES> /listing
p(X) :-
 X = 1
 ;
 X = 2.
Info: 1 rule listed.
DES> /quit

Then, we open a new system session and type:

DES> :-persistent(p(a:int),mysql)
Info: Recovering existing data from external databa se...
DES> /listing
p(A) :-
 A = 2.
p(A) :-
 A = 1.
Info: 2 rules listed.

As can be seen, two rules are the result of the compilation of the originally
asserted single rule with a disjunctive body. Also original variable names (only X in

Fernando Sáenz-Pérez 109/204

Universidad Complutense de Madrid

Datalog Educational System

tnis case) are missing. However, a next release of DES might deal with this, allowing to
restore the very same rules as the original ones.

5.2.5 Schema of Persistent Predicates

You can request the current database schema with:

DES> /dbschema
Info: Database '$des'
Info: No tables.
Info: View(s):
 * p(a:number(integer))
 - Defining SQL statement:
 CREATE VIEW p(a) AS
 SELECT ALL *
 FROM
 p_des_table;
 - Datalog equivalent rules:
Info: No integrity constraints.

where the persisted predicate is listed in the database schema of the default
database $des and, therefore, it can be combined in a query with any predicate visible
in this database.

Note that predicate p has been declared as a view depending on a table (with
the same name as the predicate and view, but ending with "_des_table "). Since
predicates are defined in general with intensional rules, the view p will contain those
intensional rules whereas the table will contain the extensional rules (facts). For
instance, assuming that the predicate r has been made persisted already in the same
connection, we assert an intensional rule for p, and examine its schema:

DES> /assert p(X):-r(X)
DES> /dbschema p
Info: Database '$des'
Info: View:
 * p(a:number(integer))
 - Defining SQL statement:
 CREATE VIEW p(a) AS
 (
 SELECT ALL *
 FROM
 p_des_table
)
 UNION ALL
 (
 SELECT ALL rel1.a
 FROM
 r AS rel1
);
 - Datalog equivalent rules:
 p(1).
 p(2).
 p(X) :-
 r(X).

Fernando Sáenz-Pérez 110/204

Universidad Complutense de Madrid

Datalog Educational System

If you change the current database to the external one and request the schema
for p, you get:

DES> /use_db mysql
DES> /dbschema p
Info: Database 'mysql'
Info: View:
 * p(a:integer(4))

which is the schema of view p as provided by the external database system.
Now, the detailed metadata information supplied by $des is not available in the
external database.

Also note that the above couple of commands can be simply written as a single
one without resorting to change the current database, with:

DES> /dbschema mysql:p

5.2.6 Removing Predicate Persistency

Finally, one can unpersist a given predicate by simply dropping its assertion, as
in:

DES> /drop_assertion :-persistent(p(a:int),mysql)

This retrieves all the data stored in the external database and stores it back in
the in-memory database of DES. In addition to the view p and table p_des_table
created in the external database for p, there is also a table p_des_metadata holding
the Datalog intensional rules that have been made persistent. This is needed to recover
the original rules as they were asserted (in its compiled Datalog form).

If you have persisted a predicate for which no type constraints has been given
before, a type constraint is derived, if possible, and asserted. This type constraint
remains even when the persistency assertion is removed. If you want to remove this
too, then submit a /drop_ic command. The following session illustrates this:

DES> /dbschema
Info: Database '$des'
Info: No tables.
Info: No views.
Info: No integrity constraints.
DES> :-persistent(p(a:int),mysql)
DES> /dbschema
Info: Database '$des'
Info: No tables.
Info: View(s):
 * p(a:number(integer))
 - Defining SQL statement:
 CREATE VIEW p(a) AS
 SELECT ALL *
 FROM
 p_des_table;
Info: No integrity constraints.
DES> /drop_assertion :-persistent(p(a:int),mysql)
DES> /dbschema

Fernando Sáenz-Pérez 111/204

Universidad Complutense de Madrid

Datalog Educational System

Info: Database '$des'
Info: Table(s):
 * p(a:number(integer))
Info: No views.
Info: No integrity constraints.
DES> /drop_ic :-type(p(a:int))
DES> /dbschema
Info: Database '$des'
Info: No tables.
Info: No views.
Info: No integrity constraints.

If you want to completely remove a predicate, even its persistent
representation, you can use the command /abolish , as in:

DES> /abolish p
DES> /dbschema
Info: Database '$des'
Info: No tables.
Info: No views.
Info: No integrity constraints.
DES> /listing p
Info: 0 rules listed.
DES> /use_db mysql
DES> /dbschema mysql:p
Info: Database 'mysql'
Error: No table or view found with name 'p'.

Also, dropping the SQL view corresponding to a predicate removes persistency,
as in:

DES> :-persistent(t(a:int),mysql)
DES> /dbschema
Info: Database '$des'
Info: No tables.
Info: View(s):
 * t(a:number(integer))
 - Defining SQL statement:
 CREATE VIEW t(a) AS
 SELECT ALL *
 FROM
 t_des_table;
Info: No integrity constraints.
DES> drop view t
DES> /dbschema
Info: Database '$des'
Info: No tables.
Info: No views.
Info: No integrity constraints.

5.2.7 Schema and Data Visibility

The default database (DDB) is called $des , and it contains metadata of each
predicate for which either a type assertion or a SQL table creation statement has been

Fernando Sáenz-Pérez 112/204

Universidad Complutense de Madrid

Datalog Educational System

issued. If one makes a predicate persistent in an external database (EDB), its metadata
as well as its data is visible both to DDB and EDB. The following session illustrates this:

DES> /use_db $des
DES> :-persistent(p(a:int),mysql)
DES> /assert p(1)
DES> /show_compilations on
DES> select * from p
Info: SQL statement compiled to:
answer(A) :-
 p(A).
answer(p.a:number(integer)) ->
{
 answer(1)
}
Info: 1 tuple computed.
DES> /use_db mysql
DES> select * from p
answer(a:integer(4)) ->
{
 answer(1)
}
Info: 1 tuple computed.

Note that in the first case (first SELECT above) when the current database is
$des , DES solves the query (in this case retrieving tuples from DDB), and in the
second case (second SELECT above), the query is directly submitted to the EDB, which
solves it. In the first, case, the SQL statement is compiled to Datalog and solved by the
deductive engine, and in the second one, data and metadata are collected from EDB
and shown as a result. Retrieved types from an external database differ in general to
those managed by DES, as it can be seen in this example. This is not an issue as long as
equivalent types are found (in this case, number(integer) is considered as
equivalent to integer(4) , as numeric size constraints are not handled by DES, up to
now).

As already introduced in Section 5.1.7, even when a connection is opened, their
data and metadata is not known unless it becomes the current database, as illustrated
next:

DES> /use_db mysql
DES> create table q(a int)
DES> insert into q values (2)
Info: 1 tuple inserted.
DES> select * from q
answer(a:integer(4)) ->
{
 answer(2)
}
Info: 1 tuple computed.
DES> /use_db $des
DES> select * from q
Error: Unknown table or view "q"
DES> q(X)
Warning: Undeclared predicate(s): [q/1]

Fernando Sáenz-Pérez 113/204

Universidad Complutense de Madrid

Datalog Educational System

{
}
Info: 0 tuples computed.

However, a persisted predicate does have access to data and metadata in the
EDB it was made persistent. To show this, and following the above system session, let's
assert the following rule:

DES> /assert p(X):-q(X)
Warning: Undefined predicate(s): [q/1]
DES> p(X)
{
}
Info: 0 tuples computed.
DES> :-persistent(p(a:int),mysql)
DES> p(X)
{
 p(2)
}
Info: 1 tuple computed.

Here, the external database is assumed to hold a relation q/1 with a tuple q(2)
in its meaning.

5.2.8 Applications

Persisting predicates opens a brand new scenario for several reasons: First,
predicates are no longer limited by available memory; instead, persisted predicates are
using as much secondary storage as needed and provided by the underlying external
database. Predicate size limit is therefore moved to the external database. Second,
processing is directed to the external database for rules that can be projected, and to the
deductive engine for rules that can not. This way, one can take advantage of the
external database performance and scalability. Third, queries which are not possible in
an external database can be solved by the deductive engine. So, one can extend
external database expressiveness with the added features in DES. Finally, as several
ODBC connections are allowed at a time, different predicates can be made persistent in
different DMBSs, which allows for interoperability among external relational engines
and the local deductive engine, therefore enabling bussiness intelligence applications.

For instance, let's consider MySQL, which does not support recursive queries
up to its current version 5.5. The following predicate can be made persistent in this
RDBMS even when it is recursive:

DES> :-persistent(path(a:int,b:int),mysql)
DES> /assert path(1,2)
DES> /assert path(2,3)
DES> /assert path(X,Y):-path(X,Z),path(Z,Y)
Warning: Recursive rule cannot be transferred to ex ternal
database (kept in local database for its processing):
path(X,Y) :-
 path(X,Z),
 path(Z,Y).
DES> path(X,Y)
{

Fernando Sáenz-Pérez 114/204

Universidad Complutense de Madrid

Datalog Educational System

 path(1,2),
 path(1,3),
 path(2,3)
}
Info: 3 tuples computed.

Here, non-recursive rules are stored in the external database whereas the
recursive one is kept in the local database. External rules are processed by MySQL and
local rules by the local deductive engine.

In addition, recall that you can use SQL on the current database schema (for
which the persistent predicate schema is known). Then, even special SQL features
included in DES, such as hypothetical queries, can be used. For example, and following
the above system session:

DES> assume select 3,1 in path(a,b) select * from p ath
answer(path.a:number(integer),path.b:number(integer)) ->
{
 answer(1,1),
 answer(1,2),
 answer(1,3),
 answer(2,1),
 answer(2,2),
 answer(2,3),
 answer(3,1),
 answer(3,2),
 answer(3,3)
}
Info: 9 tuples computed.

This example also shows that DES is able to compute more queries than an
RDBMS. For instance, neither MS SQL Server nor DB2 allow cycles in the above path
definition. This is not the most important limitation of recursion in current RDBMSs,
note that stratified recursion is not supported for more than one stratum. This means
that recursive SQL queries involving EXCEPT, NOT IN , aggregates, ... are not allowed
in current RDBMSs such as SQL Server and DB2. Another limitation is linear recursion:
the above rules cannot be expressed in a RDMBS's SQL as there are several recursive
calls. To name another, UNION ALL is enforced in those SQLs, so that just UNION is not
allowed. For instance, the following query is rejected in any current commercial
RDBMS, but accepted by DES:

DES> /duplicates on
DES> /multiline on
DES> CREATE TABLE edge(a int, b int);
DES> INSERT INTO edge VALUES(1,2);
Info: 1 tuple inserted.
DES> INSERT INTO edge VALUES(2,3);
Info: 1 tuple inserted.
DES> INSERT INTO edge VALUES(1,3);
Info: 1 tuple inserted.
DES> :-persistent(edge(a:int,b:int),mysql).
DES> :-persistent(path(a:int,b:int),mysql).
DES> WITH RECURSIVE path(a, b) AS
 SELECT * FROM edge

Fernando Sáenz-Pérez 115/204

Universidad Complutense de Madrid

Datalog Educational System

 UNION -- Discarding duplicates (ALL is not requir ed)
 SELECT p1.a,p2.b
 FROM path p1, path p2
 WHERE p1.b=p2.a
SELECT * FROM path;
Warning: Recursive rule cannot be transferred to ex ternal
database (kept in local database for its processing):
path_2_1(A,B) :-
 path(A,C),
 path(C,B).
answer(path.a:number(integer),path.b:number(integer)) ->
{
 answer(1,2),
 answer(1,3),
 answer(2,3)
}
Info: 3 tuples computed.

Note the difference against the next query, which does not discard duplicates:

DES> WITH RECURSIVE path(a, b) AS
 SELECT * FROM edge
 UNION ALL -- Keeping duplicates
 SELECT p1.a,p2.b
 FROM path p1, path p2
 WHERE p1.b=p2.a
SELECT * FROM path;
Warning: Recursive rule cannot be transferred to ex ternal
database (kept in local database for its processing):
path(A,B) :-
 path(A,C),
 path(C,B).
answer(path.a:number(integer),path.b:number(integer)) ->
{
 answer(1,2),
 answer(1,3),
 answer(1,3),
 answer(2,3)
}
Info: 4 tuples computed.

5.2.9 Caveats

5.2.9.1 Incomplete Meanings

If a predicate p which depends on an external relation r is made persistent,
then it may be the case that the default database engine cannot get the meaning of r
but via p, as illustrated in the following example:

DES> /current_db
Info: The current database is '$des'. DBMS: $des
DES> /assert p(1)
DES> /assert p(X):-r(X)
Warning: Undefined predicate(s): [r/1]
DES> :-persistent(p(a:int),access)

Fernando Sáenz-Pérez 116/204

Universidad Complutense de Madrid

Datalog Educational System

DES> p(X)
{
 p(1),
 p(2),
 p(3)
}
Info: 3 tuples computed.
DES> r(X)
{
}
Info: 0 tuples computed.
DES> /use_db access
DES> /current_db
Info: The current database is 'access'. DBMS: acces s
DES> r(X)
{
 r(2),
 r(3)
}
Info: 2 tuples computed.

5.2.9.2 Opening and Closing Connections

Each time a persistent assertion is issued over a given connection, this
connection is opened, although the current database is not changed to it. In addition,
its is not closed although a /drop_assertion command was issued.

A connection cannot be closed if any persistent predicate remains on it.

5.2.9.3 Abolishing Predicates

The command /abolish not only abolishes rules in the deductive database but
also those predicates that have been persistent in the external database, dropping their
table and view definitions.

5.2.9.4 Null Values

Processing of null values involving LDB and EDB is not still supported as they
have different representations. So, outer joins are not supported up to now.

5.2.9.5 External Database Processing

Only the transferred rules of persisted predicates can be processed by the EDB.
In particular, neither Datalog queries nor SQL queries submitted from $des are
translated into external SQL and therefore processed by such EDB. Only SQL queries
in the same connection as the persisted predicate are processed by the EDB. However,
future releases might translate queries submitted from $des .

5.2.9.6 Supported Platforms

As stable versions of GNU Prolog and Ciao Prolog do not support ODBC
connections, persistency is not available in source distributions for these two systems.

Fernando Sáenz-Pérez 117/204

Universidad Complutense de Madrid

Datalog Educational System

5.3 Safety and Computability

5.3.1 Classical Safety

Built-in predicates are appealing, but they come at a cost, which was already
noticed in Section 4.5. The domain of their arguments is infinite, in contrast to the finite
domains of each argument of any user-defined predicate. Since it is neither reasonable
nor possible to (extensionally) give an infinite answer, when a subgoal involving a
built-in is going to be computed, its arguments need to be range restricted, i.e., the
arguments have to take values provided by other subgoals. To illustrate this point,
consider submitting the following view to the program file relop.dl :

less(X,Y) :- X < Y, c(X,Y).

Since the goal is less(X,Y) , and the computation is left to right, both X and Y
are not range restricted when computing the goal X < Y and, therefore, this goal
ranges over two infinite domains: the one for X and the one for Y. We do not allow the
computation of such rules. However, if we reorder the two goals as follows:

less(X,Y) :- c(X,Y), X < Y.

we get the expected result:
{
 less(a1, b2),
 less(a2, b2)
}

Note, then, that built-in predicates affect declarative semantics, i.e., the
intended meaning of the two former views should be the same, although actually it is
not. Declarative semantics is therefore affected by the underlying operational
mechanism. Notice, nonetheless, that Datalog is less sensitive to operational issues
than Prolog and it could be said to be more declarative. First, because of terminating
issues as already introduced, and second, because the problematic first view can be
automatically transformed into the second, computation-safe, one, as we explain next.

We can check whether a rule is safe in the sense that all its variables are range
restricted and, then, reorder the goals for allowing its computation. First, we need a
notion of safety, which intuitively seems clear but that actually is undecidable
[ZCF+97]. Some simple sufficient conditions for the safety of Datalog programs can be
imposed, which means that rules obeying these conditions can be safely computed,
although there are rules that, even violating some conditions, can be actually
computed. We impose the following (weak) conditions [Ullm95, ZCF+97] for safe rules
adapted to our context:

1. Any variable X in a rule r is safe if:

a. X occurs in some positive goal referring to a user-defined predicate

b. r contains some equality goal X=Y, where Y is safe (Y can be a constant,
which, obviously, makes X safe)

c. A variable X in the goal X is Expression is safe whenever all variables in
Expression are safe

2. A rule is safe if all its variables are safe.

Fernando Sáenz-Pérez 118/204

Universidad Complutense de Madrid

Datalog Educational System

Notice that these conditions, currently supported by the system, are weak since
they assume that user-defined predicates are safe, which is not always the case (but
only require analysing locally each rule for deciding weak safety). To make these
conditions stronger, 1.a. has to be changed to: “X occurs in some positive goal referring
to a safe user-defined predicate”, and add “3. A predicate is safe if all of its variables are
safe”. The changed conditions would require a global analysis of the program, which is
not supported by DES up to now.

The built-in predicate is has the same problem as comparison operators as
well, but it only demands ground its second argument (cf. condition 1.c above).
Negation requires its argument to have no unsafe variables. In addition, to be correctly
computed, the restrictions in the domains of the safe variables it may contain should be
computed before. The reader is referred to Section 3.6 in [Ullm95] for finding the
problems when interpreting rules with negation.

DES provides a check that allows deciding if a rule is safe and, if so, it follows a
program transformation for reordering its goals in order to make it computable in a
left-to-right order. This transformation does not come by default, and it can be changed
with the command /safe Switch, where Switch can take two values: on , for
enabling program transformation, and off , for disabling this transformation. If
Switch is not included, then the command informs whether program transformation
is enabled or disabled.

The analysis performed by the system at compile-time warns about safety and
computability as follows:

1. Raise an error if:

a. A goal involving a comparison operator will be non-ground at run-time.

b. The expression E in a goal X is E will be non-ground at run-time.

c. The goal not(G) contains unsafe variables or its safe variables are not
restricted so far.

2. Raise a warning if:

a. A goal involving a comparison operator may be non-ground at run-time.

b. The expression E in a goal X is E may be non-ground at run-time.

This analysis is performed in several cases:

• Whenever a rule is asserted (either manually with the command /assert or
automatically when consulting programs). A rule is always asserted, even
when it is detected as unsafe or it may raise an exception at run-time. Recall
that safety is undecidable and there are rules detected as unsafe that can be
actually and correctly computed.

• When a query, conjunctive query (autoview) or view is submitted. They are
rejected and not computed if unsafety or uncomputability is detected and
cannot be repaired (because program transformation is disabled or there is no
way). Notice that there can be unsafe or uncomputable rules already consulted
than can yield an incorrect result or raise a run-time exception.

Fernando Sáenz-Pérez 119/204

Universidad Complutense de Madrid

Datalog Educational System

Concluding, one can expect a correct answer whenever no unsafe,
uncomputable rule has been asserted to an empty database. Recall that the local
analysis relies on the weak condition that assumes that the consulted rules are safe.

Next, an example of unsafe rule including negation is provided. As introduced,
such a rule, when asserted, raises an error, but it is asserted in any case in order to
show its misbehaviour.

DES> /assert q(0)
DES> /assert p(X):-not(q(X))
Error: not(q(X)) might not be correctly computed be cause of the
unrestricted variable(s):
 [X]
Warning: This rule is unsafe because of variable(s) :
 [X]
DES> p(X)
{
}
Info: 0 tuples computed.

As the domain of X in p(X) is not range restricted, no tuples are found in the
left-to-right top-down search. If we submit a query as p(1) , the negation not(q(1))
should be proven:

DES> p(1)
{
}
Info: 0 tuples computed.

However, as illustrated, there is no tuples in the answer for such a query. The
misbehaviour of the rule for p/1 emerges here due to the way answers are computed
via an extension table. As far as the query p(1) is subsumed by a previous call (p(X)),
results in the extension table are reused. But if the extension table is cleared, then p(1)
can be proved:

DES> /clear_et
DES> p(1)
{
 p(1)
}
Info: 1 tuple computed.

Notice that both calls can occur during a computation, disabling the
opportunity to clear the extension table, as in:

DES> p(X),p(1)
Info: Processing:
 answer(X) :-
 p(X),
 p(1).
{
}
Info: 0 tuples computed.

A similar situation happens with equality:

Fernando Sáenz-Pérez 120/204

Universidad Complutense de Madrid

Datalog Educational System

DES> p(X),X=1
Info: Processing:
 answer(X) :-
 p(X),
 X = 1.
{
}
Info: 0 tuples computed.

Also notice that, if simplification mode is enabled with the command
/simplification on , then this conjunctive query is simplified and computed as
follows:

DES> p(X),X=1
Info: Processing:
 answer(1) :-
 p(1).
{
 answer(1)
}
Info: 1 tuple computed.

5.3.2 Safety for Aggregates and Duplicate Elimination

Another source of unsafety, departing from the classical notion, resides in
metapredicates as distinct /2 and aggregates. A set variable is any variable occurring
in a metapredicate such that it is not bound by the metapredicate. For instance, Y in the
goal distinct([X],t(X,Y)) is a set variable, as well as in
group_by(t(X,Y),[X],C=count) .

Because computing a goal follows SLD order, if a set variable is used after the
metapredicate, as in distinct([X],t(X,Y)), p(Y) , then this is an unsafe goal as
in the call to distinct , variable Y is not bound, and all tuples in t /2 are considered
for computing its outcome. Swapping both subgoals yields a safe goal. So, data
providers for set variables are only allowed before their use in such metapredicates.

Along compilations, unsafe rules can be automatically generated, as in the
translations of outer joins. However, they are safe because of their use: unsafe
arguments of such rules are always given as input in goals. So, mode information for
predicates is handled throughout program compilations to detect truly unsafe rules,
avoiding to raise warnings about system generated rules. Notice, however, that you
can still manually write an unsafe call to these system-generated predicates, yielding to
incorrect results, as the following examples illustrates:

DES> /assert t(1)
DES> /assert s(2)
DES> /assert l(X):-lj(t(X),s(Y),X=Y)
DES> /development on
DES> /listing
'$p0'(X,Y) :-
 '$p1'(X,Y).
'$p0'(X,'$NULL'(A)) :-
 t(X),

Fernando Sáenz-Pérez 121/204

Universidad Complutense de Madrid

Datalog Educational System

 not('$p1'(X,Y)).
'$p1'(X,Y) :-
 X = Y,
 t(X),
 s(Y).
l(X) :-
 lj('$p0'(X,Y)).
s(2).
t(1).
Info: 6 rules listed.
DES> '$p0'(X,Y)
{
 '$p0'(1,'$NULL'(0))
}
Info: 1 tuple computed.
DES> /list_et
Answers:
{
 not('$p1'(1,A)),
 t(1),
 '$p0'(1,'$NULL'(0))
}
Info: 3 tuples in the answer table.
Calls:
{
 '$p0'(A,B)
}
Info: 1 tuple in the call table.

Extension table contains the non-ground entry not('$p1'(1,A)) , which is
not safe.

5.4 Source-to-Source Transformations

Currently, two source-to-source transformations are possible under demand:
First, as explained in the previous section, when safety transformations are enabled via
the command /safe on , rule bodies are reordered to try to produce a safe rule.
Second, when simplification is enabled via the command /simplification on , rule
bodies containing equalities, true , and not(BooleanValue) are simplified.

In addition, there is also place for several automatic transformations (cf. Section
5.6 to know how to display such transformations):

• A clause containing a disjunctive body is transformed into a sets of clauses
with conjunctive bodies.

• A clause containing an outer join predicate is transformed into an
executable form.

• A clause containing an aggregate predicate is transformed into an
executable form including grouping criterion.

• A clause containing the goal not(is_null(+ Term)) is transformed into a
clause with this goal replaced by is_not_null(+ Term) .

Fernando Sáenz-Pérez 122/204

Universidad Complutense de Madrid

Datalog Educational System

5.5 Multi-line Mode

By default, DES command prompt reads single-line inputs and, therefore,
ending termination character is optional (as the dot (.) in Datalog and the semicolon
(;) in SQL and RA). But, when writing a long query, as usual in SQL, breaking down
the sentence along several lines enhances readability. This is also possible in DES by
enabling multi-line mode with the command /multiline on . However, in this
scenario, the terminating character must be issued in order to know when to finish
parsing the input query. Returning to single-line mode is just by issuing /multiline
off .

With multi-line input, multi-line remarks (enclosed between /* and */) are
also allowed. Note that nested remarks are supported, too, as:

/*
 First remark
 /*
 Second, nested remark
 */

*/

5.6 Development Mode

This section is focused at those interested in modifying and extending the
system. So, from a system implementor viewpoint, it is handy to show several
implementation-specific issues such as source-to-source transformations and internal
representation of null values. To this end, the command /development [on|off]
has been made available. Let’s consider the following system session:

DES> /development off
DES> /assert p(X):-X=1;X=2
DES> /assert c(C):-count(p(X),X,C)
DES> /assert q(1)
DES> /assert l(X,Y):-lj(p(X),q(Y),X=Y)
DES> /listing

c(C) :-
 count(p(X),X,C).
l(X,Y) :-
 lj(p(X),q(Y),X = Y).
p(X) :-
 X = 1
 ;
 X = 2.
q(1).

Info: 4 rules listed.

DES> l(X,Y)
{
 l(1,1),
 l(2,null)
}

Fernando Sáenz-Pérez 123/204

Universidad Complutense de Madrid

Datalog Educational System

Info: 2 tuples computed.

Next, we enable the development mode for listings:

DES> /development on
DES> l(X,Y)

{
 l(1,1),
 l(2,'$NULL'(59))
}
Info: 2 tuples computed.

Here, the internal representation of nulls is available. If we request the listing of
the stored rules in development mode:

DES> /listing

'$p0'(A,'$NULL'(B)) :-
 p(A),
 not('$p1'(A,C)).
'$p0'(A,B) :-
 '$p1'(A,B).
'$p1'(A,B) :-
 p(A),
 q(B),
 A = B.
c(C) :-
 count(p(X),X,'[]',C).
l(X,Y) :-
 '$p0'(X,Y).
p(X) :-
 X = 2.
p(X) :-
 X = 1.
q(1).

Info: 8 rules listed.

Here, we see several source-to-source transformations: First, the left join, then
the aggregate count, and finally the disjunctive rule.

Development listings also allows to inspect the extension table looking at
(repeated) facts involving nulls, as follows:

DES> /assert q(null)
DES> /assert q(null)
DES> q(X)

{
 q(1),
 q(3),
 q('$NULL'(64)),
 q('$NULL'(67))
}

Fernando Sáenz-Pérez 124/204

Universidad Complutense de Madrid

Datalog Educational System

Info: 4 tuples computed.

Compare this to the non-development mode:

DES> /development off
DES> q(X)
{
 q(1),
 q(3),
 q(null)
}
Info: 3 tuples computed.

Also, one can be aware from where nulls come because of their IDs, as in:

DES> /assert p(null)
DES> /listing p

p('$NULL'(70)).
p(X) :-
 X = 1.
p(X) :-
 X = 2.

Info: 3 rules listed.

DES> l(X,Y)
{
 l(1,1),
 l(2,'$NULL'(72)),
 l('$NULL'(70),'$NULL'(74))
}
Info: 3 tuples computed.

Observe above ID 70. There, the data source rule providing such an entry in the
answer is the first rule of p.

As SQL statements and RA expressions are compiled to Datalog programs, the
command /show_compilations on enables the display of compilations each time a
SQL statement is submitted, as the following example illustrates:

DES> /show_compilations on
DES> create table t(a int, b int)
DES> create table s(a int, b int)
DES> select * from t where a>1 union select * from s where b<2
Info: SQL statement compiled to:
answer(A,B) :-
 distinct(answer_2_1(A,B)).
answer_2_1(A,B) :-
 t(A,B),
 A > 1.
answer_2_1(A,B) :-
 s(A,B),
 B < 2.
answer(t.a, t.b) ->
{

Fernando Sáenz-Pérez 125/204

Universidad Complutense de Madrid

Datalog Educational System

}
Info: 0 tuples computed.

5.7 Datalog and SQL Tracers

In contrast to imperative programming languages, deductive and relational
database query languages feature solving procedures which are far from the query
languages itself. Whilst one can trace an imperative program by following each
statement as it is executed, along with the program state, this is not feasible in
declarative (high abstraction) languages as Datalog and SQL. However, this does not
apply to Prolog, also acknowledged as a declarative language, because one can follow
the execution of a goal via the SLD resolution tree and use the four-port debugging
approach.

Datalog stems from logic programming and Prolog in particular, and it can be
also understood as a subset of Prolog. However, its operational behaviour is quite
different, since the outcome of a query represents all the possible resolutions, instead of
a single one as in Prolog. In addition, tabling (cf. Section 5.4) and program
transformations (due to outer joins, aggregates, simplifications, disjunctions, ...) make
tracing cumbersome.

Similarly, SQL represents a true declarative language which is even farthest
from its computation procedure than Prolog. Indeed, the execution plan for a query
include transformations considering data statistics to enhance performance. These
query plans are composed of primitive relational operations (such as Cartesian
product) and specialized operations for which efficient algorithms have been
developed, containing in general references to index usage.

Therefore, instead of following a more imperative approach to tracing, here we
focus on a (naïve) declarative approach which only take into account the outcomes at
some program points. This way, the user can inspect each point and decide whether
its outcome is correct or not. This approach will allow to examine the syntactical graph
of a query, which possibly depends on other views or predicates (SQL or Datalog,
resp.) This graph may be cyclic when recursive views or predicates are involved.
However, a given node in the graph will be traversed only once. In the case of Datalog
queries, this graph contains the nodes and edges in the dependency graph restricted to
the query, ignoring other nodes which do not take part in its computation. In the case
of SQL, the graph shows the dependencies between a view and its data sources (in the
FROM clause).

Next, tracing for both Datalog queries and SQL views are explained and
illustrated with examples.

5.7.1 Tracing Datalog Queries

The command /trace_datalog Goal [Order] allows to trace a Datalog
goal in the given order (postorder or the default preorder). Goals should be basic,
i.e., no conjunctive or disjunctive goals are allowed. For instance, let's consider the
program in the file negation.dl and its dependency graph, shown in Figure 3. A
tracing session could be as follows:

DES> /c negation
Warning: Undefined predicate(s): [d/0]

Fernando Sáenz-Pérez 126/204

Universidad Complutense de Madrid

Datalog Educational System

DES> /trace_datalog a
Info: Tracing predicate 'a'.
{
 a
}
Info: 1 tuple in the answer table.
Info : Remaining predicates: [b/0,c/0,d/0]
Input: Continue? (y/n) [y]:
Info: Tracing predicate 'b'.
{
 not(b)
}
Info: 1 tuple in the answer table.
Info : Remaining predicates: [c/0,d/0]
Input: Continue? (y/n) [y]:
Info: Tracing predicate 'c'.
{
 c
}
Info: 1 tuple in the answer table.
Info : Remaining predicates: [d/0]
Input: Continue? (y/n) [y]:
Info: Tracing predicate 'd'.
{
}
Info: No more predicates to trace.

5.7.2 Tracing SQL Views

Tracing SQL views is similar to tracing Datalog queries, but, instead of posing a
goal (involving in general variables and constants) to trace, only the name of a view
should be given. For example, let's consider the file family.sql , which contains view
definitions for ancestor and parent , where tables father and mother are
involved in the latter view. Note that this view is recursive since it depends on itself:

create view parent(parent,child) as
 select * from father
 union
 select * from mother;

create or replace view ancestor(ancestor,descendant) as
 select parent,child from parent
 union
 select parent,descendant
 from parent,ancestor where parent.child=ances tor.ancestor;

Then, tracing the view ancestor is as follows:

DES-SQL> /trace_sql ancestor
Info: Tracing view 'ancestor'.
{
 ancestor(amy,carolIII),
 ...

Fernando Sáenz-Pérez 127/204

Universidad Complutense de Madrid

Datalog Educational System

 ancestor(tony,carolIII)
}
Info: 16 tuples in the answer table.
Info : Remaining views: [parent/2,father/2,mother/2]
Input: Continue? (y/n) [y]:
Info: Tracing view 'parent'.
{
 parent(amy,fred),
 ...
 parent(tony,carolII)
}
Info: 8 tuples in the answer table.
Info : Remaining views: [father/2,mother/2]
Input: Continue? (y/n) [y]:
Info: Tracing view 'father'.
{
 father(fred,carolIII),
 ...
 father(tony,carolII)
}
Info: 4 tuples in the answer table.
Info : Remaining views: [mother/2]
Input: Continue? (y/n) [y]:
Info: Tracing view 'mother'.
{
 mother(amy,fred),
 ...
 mother(grace,amy)
}
Info: 4 tuples in the answer table.
Info: No more views to trace.
DES-SQL> /trace_datalog father(X,Y)
Info: Tracing predicate 'father'.
{
 father(fred,carolIII),
 ...
 father(tony,carolII)
}
Info: 4 tuples in the answer table.
Info: No more predicates to trace.

5.8 Datalog Declarative Debugger

Our approach [CGS07] to debug Datalog programs is anchored to the semantic
level instead of the computation level. We have implemented a novel way of applying
declarative debugging, also called algorithmic debugging (a term first coined in the
logic programming field by E.H. Shapiro [Shap83]) to Datalog programs. With this
approach, it is possible to debug queries and diagnose missing answers (an expected
tuple is not computed) as well as wrong answers (a given computed tuple should not
be computed). Our system uses a question-answering procedure which starts when the
user detects an unexpected answer for some query. Then, if possible, it points to the
program fragment responsible of the incorrectness.

Fernando Sáenz-Pérez 128/204

Universidad Complutense de Madrid

Datalog Educational System

The debugging process consists of two phases. During the first phase the
debugger builds a computation graph (CG) for the initial query Q w.r.t. the program P.
This graph represents how the meanings of queries are constructed. See more details in
[CGS07]. The second phase consists of traversing the CG to find either a buggy vertex
or a set of related incorrect vertices. The vertex associated to the initial query Q is
marked automatically as non-valid by the debugger. The rest of the vertices are
marked initially as unknown. In order to minimize the number of questions asked by a
declarative debugger, several traversing strategies have been studied [Caba05,Silv07].
However, these strategies are only adequate for declarative debuggers based on trees
and not on graphs. The currently implemented strategy already contains some ideas of
how to minimize the number of questions in a CG:

• First, the debugger asks about the validity of vertices that are not part of cycles in
order to find a buggy vertex, if it exists. Only when this is no longer possible, the
vertices that are part of cycles are visited.

• Each time the user indicates that a vertex (Query = FactSet) is valid, i.e., the validity
of the answer for the subquery Query is ensured, the tool changes to valid all the
vertices with queries subsumed by Query.

• Each time the user indicates that a vertex (Query = FactSet) is non-valid, the tool
changes to non-valid all the vertices with queries subsumed by Query.

The last two items help to reduce the number of questions, deducing
automatically the validity of some vertices from the validity of others.

As an example, we show a debugger session for the query br_is_even in the
program parity.dl , which has been changed to contain an error in the following
rule:

has_preceding(X) :− br(X), br(Y), Y>X. %error: Y>X should be Y<X

In this case, the user expects the answer for the query br_is_even to be
{br_is_even} , because the relation br contains two elements: a and b. However, the
answer returned by the system is {} , which means that the corresponding query was
unsuccessful.

The available command for starting a debugging session is /debug_datalog
Goal, where Goal is a basic goal, i.e., no conjunctive or disjunctive goals are allowed.
Therefore, the user can start a typical debugging session as follows:

DES> /debug_datalog br_is_even
Debugger started ...
Is br(b) = {br(b)} valid(v)/non-valid(n) [v]? v
Is has_preceding(b) = {} valid(v)/non-valid(n) [v]? n
Is br(X) = {br(b),br(a)} valid(v)/non-valid(n) [v]? v
! Error in relation: has_preceding/1
! Witness query: has_preceding(b) = { }

In this particular case, only three questions are necessary to find out that the
relation has_preceding is incorrectly defined.

Fernando Sáenz-Pérez 129/204

Universidad Complutense de Madrid

Datalog Educational System

5.9 SQL Declarative Debugger

As in the previous section, here we focus on a declarative approach to
debugging, following [CGS12a] (former version of the debugger is based on [CGS11b]
and subsumed by the current one, which is a brand new implementation). There,
possible erroneous objects correspond to views, and the debugger looks for erroneous
views asking the user whether the result of a given view is as expected.

When the user starts the debugger for a view with the command /debug_sql
View, the debugger builds internally its computation tree and starts the debugging
session. The root of the tree is the view under debugging, its nodes can be either views
or tables, and children of a view are all of the views and tables occurring in that view
(table nodes do not have children). This tree is traversed and the validity (whether the
view outcome matches its intended meaning) of each node is asked to the user. If a
given node is checked as valid, its subtree is assumed to be valid and it is no longer
traversed. Otherwise, the node itself or one of its descendants is assumed to be
nonvalid. In this case, the subtree is traversed to find the erroneous node.

Considering the file pets1.sql in the directory examples/SQLDebugger
(the problem is explained in the same file), we find that the view Guest returns an
unexpected answer:

DES> /process examples/SQLDebugger/pets1.sql
...
DES> select * from Guest;

answer(Guest.id:number(integer),Guest.name:string(v archar(50)))
->
{
 answer(1,'Mark Costas'),
 answer(2,'Helen Kaye'),
 answer(3,'Robin Scott')
}
Info: 3 tuples computed.

In fact, only Robin Scott is expected in the result set. Then, we can debug
that view as follows:

DES> /debug_sql Guest
Info: Debugging view 'Guest'.
{
 1 - 'Guest'(1,'Mark Costas'),
 2 - 'Guest'(2,'Helen Kaye'),
 3 - 'Guest'(3,'Robin Scott')
}
Input: Is this the expected answer for view 'Guest' ?
(y/n/m/mT/w/wN/a/h) [n]: n
Info: Debugging view 'CatsAndDogsOwner'.
{
 1 - 'CatsAndDogsOwner'(1,'Wilma'),
 2 - 'CatsAndDogsOwner'(2,'Lucky'),
 3 - 'CatsAndDogsOwner'(3,'Rocky')
}

Fernando Sáenz-Pérez 130/204

Universidad Complutense de Madrid

Datalog Educational System

Input: Is this the expected answer for view 'CatsAn dDogsOwner'?
(y/n/m/mT/w/wN/a/h) [y]: n
Info: Debugging view 'NoCommonName'.
{
 1 - 'NoCommonName'(1),
 2 - 'NoCommonName'(2),
 3 - 'NoCommonName'(3)
}
Input: Is this the expected answer for view 'NoComm onName'?
(y/n/m/mT/w/wN/a/h) [y]: n
Info: Debugging view 'LessThan6'.
{
 1 - 'LessThan6'(1),
 2 - 'LessThan6'(2),
 3 - 'LessThan6'(3),
 4 - 'LessThan6'(4)
}
Input: Is this the expected answer for view 'LessTh an6'?
(y/n/m/mT/w/wN/a/h) [y]: y
Info: Debugging view 'AnimalOwner'.
{
 1 - 'AnimalOwner'(1,'Kitty',cat),
 2 - 'AnimalOwner'(1,'Wilma',dog),
 3 - 'AnimalOwner'(2,'Lucky',dog),
 4 - 'AnimalOwner'(2,'Wilma',cat),
 5 - 'AnimalOwner'(3,'Oreo',cat),
 6 - 'AnimalOwner'(3,'Rocky',dog),
 7 - 'AnimalOwner'(4,'Cecile',turtle),
 8 - 'AnimalOwner'(4,'Chelsea',dog)
}
Input: Is this the expected answer for view 'Animal Owner'?
(y/n/m/mT/w/wN/a/h) [y]: y
Info: Buggy relation found: CatsAndDogsOwner

In this example, tables have been trusted, but it is also possible to ask the user
for the validity of the involved tables in the debugging process via the command
/debug_sql Guest trust_tables(no) . In this example session, validity of table
Owner would be asked to the user.

5.9.1 Trusted Specifications

In SQL, the following scenario is very usual: A set of correct views is updated
to improve its efficiency. The new set of views includes both new views and improved
versions of some old views, keeping their names and intended answers. Sometimes,
the new, usually more involved system, no longer produces the expected results. We
allow to use the first, reliable version, which we call a trusted specification during the
subsequent debugging session.

For instance, let's consider that the user has corrected the former example,
which is now working properly. Now, suppose that, in order to improve readability,
the set of views is changed by removing AnimalOwner , adding instead a new view
CatOrDogOwner , and modifying LessThan6 and CatsAndDogsOwner , which now
make use of CatOrDogOwner .

Fernando Sáenz-Pérez 131/204

Universidad Complutense de Madrid

Datalog Educational System

Next, the modified and new views (Guest and NoCommonName remain the
same; this new version is located in file examples/SQLDebugger/pets2.sql) are
listed.

create or replace view CatsOrDogsOwner(id,aname,spe cie) as
 select O.id, P.name, P.specie
 from Owner O, Pet P, PetOwner PO
 where O.id = PO.id and P.code = PO.code
 and (specie='cat' or specie='dog');

 create or replace view CatsAndDogsOwner(id,aname) as
 select A.id, A.aname
 from CatsOrDogsOwner A, CatsOrDogsOwner B
 where A.id=B.id and A.specie=B.specie;

 create or replace view LessThan6(id) as
 select id from CatsOrDogsOwner
 group by id having count(*)<6;

The intended answer of the views with the same name is kept. In the case of
CatOrDogOwner , its intended answer is the multiset of owners with their pet names
and species, but limited to cats and dogs.

The very same computation tree as for pets1.sql results after replacing
literals AnimalOwner by CatOrDogOwner . However, the new set of views is
erroneous, since the WHERE condition A.specie=B.specie of CatsAndDogsOwner
should be A.specie <> B.specie , in order to ensure that the owner has at least one
dog and one cat.

Now, the user again detects an unexpected result from the view Guest since its
outcome incorrectly includes the owner with identifier 4: Tom Cohen . A new
debugging session starts, but now the old version of the views (in the file
pets_trust) can be used as a trusted specification as follows:

DES> /process examples/SQLDebugger/pets2.sql
...
DES> /debug_sql Guest
trust_file('examples/SQLDebugger/pets_trust')

Info: Debugging view 'Guest'.
{
 1 - 'Guest'(3,'Robin Scott'),
 2 - 'Guest'(4,'Tom Cohen')
}
Input: Is this the expected answer for view 'Guest' ?
(y/n/m/mT/w/wN/a/h) [n]: n
Info: view 'NoCommonName' is nonvalid w.r.t. the tr usted file.
Info: view 'LessThan6' is valid w.r.t. the trusted file.
Info: view 'CatsAndDogsOwner' is nonvalid w.r.t. th e trusted
file.
Info: Debugging view 'CatsOrDogsOwner'.
{
 1 - 'CatsOrDogsOwner'(1,'Kitty',cat),
 2 - 'CatsOrDogsOwner'(1,'Wilma',dog),

Fernando Sáenz-Pérez 132/204

Universidad Complutense de Madrid

Datalog Educational System

 3 - 'CatsOrDogsOwner'(2,'Lucky',dog),
 4 - 'CatsOrDogsOwner'(2,'Wilma',cat),
 5 - 'CatsOrDogsOwner'(3,'Oreo',cat),
 6 - 'CatsOrDogsOwner'(3,'Rocky',dog),
 7 - 'CatsOrDogsOwner'(4,'Chelsea',dog)
}
Input: Is this the expected answer for view 'CatsOr DogsOwner'?
(y/n/m/mT/w/wN/a/h) [y]:
Info: Buggy view found: CatsAndDogsOwner

Here, the debugger traverses the computation tree as before, but the user is not
asked for views in the set of trusted views, and the erroneous view is caught with only
one final check (compared to the four checks that would be needed otherwise). The
debugger detects that the new version of CatsAndDogsOwner is erroneous.

5.9.2 Missing and Wrong Tuples

The debugger also allows the user to specify the error type, indicating if there is
either a missing answer (a tuple was expected but it is not in the result) or a wrong
answer (the result contains an unexpected tuple). This information is used for slicing
the associated queries, keeping only those parts that might be the cause of the error.
The validity of the results produced by sliced queries is easier to determine, thus
facilitating the location of the error.

5.9.2.1 Missing Tuples

Let's consider another following example (located at examples/SQLDebugger
/example1.sql): The loyalty program of an academy awards an intensive course for
students that satisfy the following constraints:

• The student has completed the basic level course (level = 0).

• The student has not completed an intensive course.

• To complete an intensive course, a student must either pass the all in one course, or
the three initial level courses (levels 1, 2 and 3).

The database schema includes three tables:

• courses(id,level) contains information about the standard courses, including
their identifier and the course level

• registration(student,course,pass) indicates that the student is in the
course, with pass taking the value true if the course has been successfully
completed

• allInOneCourse(student,pass) contains information about students
registered in a special intensive course, with pass playing the same role as in
registration.

File example1.sql contains the SQL views selecting the award candidates.
The first view is standard , which completes the information included in the table
registration with the course level. The view basic selects those standard students that
have passed a basic level course (level 0). View intensive defines as intensive
students those in the table allInOneCourse , together with the students that have
completed the three initial levels. However, this view definition is erroneous: We have
forgotten to check that the courses have been completed (flag pass). Finally, the main

Fernando Sáenz-Pérez 133/204

Universidad Complutense de Madrid

Datalog Educational System

view awards selects the students in the basic but not in the intensive courses. Suppose
that we try the query select * from awards , and that in the result we notice that
the student Anna is missing. We know that Anna completed the basic course, and that
although she registered in the three initial levels, she did not complete one of them,
and hence she is not an intensive student. Thus, the result obtained by this query is
nonvalid.

So, the user starts the debugger as Anna is not among the (possibly large) list of
student names produced by view awards . The debugging session proceeds as follows:

DES> /process examples/SQLDebugger/awards1
...
DES> /debug_sql awards
Info: Debugging view 'awards'.
{
 1 - awards('Carla')
}
Input: Is this the expected answer for view 'awards '?
(y/n/m/mT/w/wN/a/h) [n]: m'Anna'
Info: Debugging view 'intensive'.
Input: Should 'intensive' include a tuple of the fo rm 'Anna'?
(y/n/a) [y]: n
Info: Debugging view 'standard'.
Input: Should 'standard' include a tuple of the for m 'Anna,1,1'?
(y/n/a) [y]: y
Info: Debugging view 'standard'.
Input: Should 'standard' include a tuple of the for m 'Anna,2,1'?
(y/n/a) [y]: y
Info: Debugging view 'standard'.
Input: Should 'standard' include a tuple of the for m 'Anna,3,0'?
(y/n/a) [y]: y
Info: Buggy view found: intensive

The first answer m'Anna' indicates that (’Anna’) is missing in the view
awards. Next, the user indicates that view intensive should not include (’Anna’). The
debugger then asks three simple questions involving the view standard. After checking
the information for Anna, the user indicates that the listed tuples are correct. Then, the
tool points out intensive as the buggy view, after only five simple questions.
Observe that intermediate views can contain hundreds of thousands of tuples, but the
slicing mechanism helps to focus only on the source of the error.

5.9.2.2 Wrong Tuples

Let's consider a modification of the database defined in awards1.sql as found
in file awards2.sql , where the view basicLevelStudents has been incorrectly
defined. We process this file, inspect the outcome of awards and notice that Anna
should not be in the result set. Then, we proceed with the debugging session as
follows:

DES> /process examples/SQLDebugger/awards2
...
DES> /debug_sql awards
Info: Debugging view 'awards'.
{

Fernando Sáenz-Pérez 134/204

Universidad Complutense de Madrid

Datalog Educational System

 1 - awards('Ana'),
 2 - awards('Mica')
}
Input: Is this the expected answer for view 'awards '?
(y/n/m/mT/w/wN/a/h) [n]: w1
Info: Debugging view 'intensiveStudents'.
{
 1 - intensiveStudents('Juan')
}
Input: Is this the expected answer for view 'intens iveStudents'?
(y/n/m/mT/w/wN/a/h) [y]:
Info: Debugging view 'candidates'.
Input: Should 'candidates' include a tuple of the f orm 'Ana'?
(y/n/a) [y]: n
Info: Debugging view 'basicLevelStudents'.
Input: Should 'basicLevelStudents' include a tuple of the form
'Ana'? (y/n/a) [y]: n
Info: Debugging view 'salsaStudents'.
Input: Should 'salsaStudents' include a tuple of th e form
'Ana,1,teach1'? (y/n/a) [y]:
Info: Debugging view 'salsaStudents'.
Input: Should 'salsaStudents' include a tuple of th e form
'Ana,2,teach2'? (y/n/a) [y]:
Info: Debugging view 'salsaStudents'.
Input: Should 'salsaStudents' include a tuple of th e form
'Ana,3,teach1'? (y/n/a) [y]:
Info: Buggy view found: basicLevelStudents

5.9.2.3 Displaying Extended Information

Enabling verbose output allows to extend the display with further information
as, e.g., view definitions when they are asked for its validity. As well, enabling
development output allows to check how the logic program that represents the
computation tree is built (c.f. [CGS12a]). For that, use the following commands, resp.:

DES> /verbose on
Info: Verbose output is on.

DES> /development on
Info: Development listings are on.

5.10 SQL Test Case Generator

Checking that a view produces the same result as its intended interpretation is a
daunting task when large databases and both dependent and correlated queries are
considered. Test case generation provides tuples that can be matched to the intended
interpretation of a view and therefore be used to catch possible design errors in the
view.

A test case for a view in the context of a database is a set of tuples for the
different tables involved in the computation of the view. Executing a view for a positive

Fernando Sáenz-Pérez 135/204

Universidad Complutense de Madrid

Datalog Educational System

test case (PTC)7 should return, at least, one tuple. This tuple can be used by the user to
catch errors in the view, if any. This way, if the user detects that this tuple should not
be part of the answer, it is definitely a witness of the error in the design of the view. On
the contrary, the execution of the view for a negative test case (NTC) should return at
least one tuple which should not be in the result set of the query. Again, if no such a
tuple can be found, this tuple is a witness of the error in the design.

A PTC in a basic query means that at least one tuple in the query domain
satisfies the where condition. In the case of aggregate queries, a PTC will require
finding a valid aggregate verifying the having condition, which in turn implies that
all its rows verify the where condition.

In the case of basic query, a NTC will contain at least one tuple in the result set
of the view not verifying the where condition. In queries containing aggregate
functions, this tuple either does not satisfy either the where condition or the having
condition. Set operations are also allowed in both PTC and NTC generation.

It is possible to obtain a test case which is both positive and negative at the
same time thus achieving predicate coverage with respect to the where and having
clauses (in the sense of [AO08]). We will call these tests PNTCs. For instance, consider
the following system session:

DES-SQL> create table t(a int primary key)
DES-SQL> create view v(a) as select a from t where a=5
DES-SQL> /test_case v
Info: Test case over integers:
[t(5),t(-5)]

The test case {t(5) ,t(4) } is a PNTC. However, a PNTC is not always possible
to be generated. For instance, it is possible for the following view to generate both
PTCs and NTCs but no PNTC:

create view v(a) as
select a
from t
where a=1 and not exists (select a from t where a<> 1);

The only one PTC for this view is {t(1) } (modulo duplicates). There are many
NTCs, as, e.g., {t(2) } and {t(1) ,t(2) }.

The command /test_case View [Options] allows two kind of options:
first, to specify which class of test case is to be generated: all (PNTC, the default
option), positive (PTC) or negative (NTC). The second option specifies an action:
the results are to be displayed via the option display (default option), added to the
corresponding tables (add option) or the contents of the tables replaced by the
generated test case tuples (replace option).

For experimenting with the domain of attributes, we provide the command
/tc_domain Min Max, which defines de range of values the integer attributes may
take. This range is determinant in the search of test cases in a constraint network that

7 That is, executing the view using as input data for the tables those in the PTC.

Fernando Sáenz-Pérez 136/204

Universidad Complutense de Madrid

Datalog Educational System

can easily become too complex as long as involved views grow. So, keeping this
domain small allows to manage bigger problems.

String constants occurring in all the views on which the view for the test case
generated depends are mapped to integers in the same domain, starting from 0. So, the
size of the domain has to be larger enough to hold, at least, the string constants in those
views.

Also, we provide the command /tc_size Min Max for specifying the size of
the test case generated, in number of tuples. Again, keeping this value small helps in
being able to cope with bigger problems.

Currently, we provide support for integer and string attributes. Binary
distributions, and both SICStus and SWI Prolog source distributions allow the
functionality described. GNU Prolog source distribution only allows non-negative
integers in the domain declaration. Ciao Prolog source distribution partially supports
test case generation.

5.11 Batch Processing

There are two ways for processing batch files:

1. If the file des.ini is located at the distribution directory, its contents are
interpreted as input prompts and executed before giving control to the user at start-
up of the system.

2. The command /process filename (or /p as a shorthand) allows to process each
line in the file as it was an input, the same way as before. If no file extension is
given and filename does not exists, then .ini , .sql , and .ra are appended in
turn to filename and tried in that order for finding an existing file.

When processing batch files, prompt inputs starting with the symbol % are
interpreted as comments. This way, the batch file des.ini may contain comments. The
user can also interactively input such comments, but again produce no effects.

Batch processing can include logging to produce output. This is useful to feed
the system with batch input and get its output in a file, maybe avoiding any interactive
input. For example, consider the following des.ini excerpt:

% Dump output to output.txt
/log output.txt
/pretty_print off
% Process (Datalog, SQL, ... queries and commands)
/c examples/fib
fib(100,F)
% End log
/nolog

The result found in output.txt should be (modulo blank lines):

DES> /pretty_print off
Info: Pretty print is off.
DES> % Process (Datalog, SQL, ... queries and comma nds)
DES> /c examples/fib
Warning: N > 1 may raise a computing exception if n on-ground at
run-time.

Fernando Sáenz-Pérez 137/204

Universidad Complutense de Madrid

Datalog Educational System

Warning: N2 is N - 2 may raise a computing exceptio n if non-
ground at run-time.
Warning: N1 is N - 1 may raise a computing exceptio n if non-
ground at run-time.
Warning: Next rule is unsafe because of variable(s) :
 [N]
fib(N,F) :- N > 1,N2 is N - 2,fib(N2,F2),N1 is N -
1,fib(N1,F1),F is F2 + F1.
DES> fib(100,F)
{
 fib(100,573147844013817084101)
}
Info: 1 tuple computed.
DES> % End log
DES> /nolog

5.12 Messages

DES system messages are prefixed by:

• Info : An information message which requires no attention from the user. Several
information messages are hidden with the command /verbose off , which is the
default mode.

• Warning : A warning message which does not necessarily imply an error, but the
user is requested to focus on its origin. These messages are always shown.

• Error : An error message which requires attention from the user. These messages
are always shown.

• Exception : An exception message which requires attention from the user. These
messages are always shown. Examples of exception messages include instantiation
errors and undefined predicates.

Prolog exceptions are caught by DES and shown to the user without any further
processing. Depending on the Prolog platform, the system may continue by itself;
otherwise the user must type des . (including the ending dot) to continue. Upon
exceptions, the extension table is cleared and stratification is recomputed. Note that the
latter computation may take a long time if there are multiple tables and views
(typically in opened ODBC connections for DBMS’s as Oracle and SQL Server).

5.13 Commands

The input at the prompt (i.e., commands or queries) must be written in a line
(i.e., without carriage returns, although it can be broken by the DES console due to
space limitations) and can end with an optional dot.

Commands are issued by preceding the command with a slash (/) at the DES
system prompt. Command arguments are not a comma-separated list enclosed
between brackets as usual, but they simply occur separated by at least one blank. This
enables short typing.

Command names and binary flags (on/off switches) are not case sensitive.

Fernando Sáenz-Pérez 138/204

Universidad Complutense de Madrid

Datalog Educational System

Ending dots are considered as part of the argument wherever they are expected.
For instance, /cd .. behaves as /cd ... (this command changes the working
directory to the parent directory). In this last case, the final dot is not considered as part
of the argument. The command /ls . shows the contents of the working directory,
whereas /ls .. shows the contents of the parent directory (which behaves as /ls
...).

Filenames and directories can be specified with relative or absolute names.
There is no need of enclosing such names between separators. For instance, file or
directory names can contain blanks (for Windows users) and you neither need to use
double quotes nor are allowed to use them.

Since commands are submitted with a preceding slash, they are only recognized
as commands in this way. Therefore, you can use command names for your relation
names without name clashes.

When consulting Datalog files, filename resolution works as follows:

• If the given filename ends with .dl , DES tries to load the file with this (absolute or
relative) filename.

• If the given filename does not end with .dl , DES firstly tries to load a file with .dl
appended to the end of the filename. If such a file is not found, it tries to load the
file with the given filename.

In command arguments, when applicable, you can use relative or absolute
pathnames. In general, you can use a slash (/) as a directory delimiter, but depending
on the platform, you can also use the backslash (\). Also, it might be needed to enclose
pathnames between single quotes (').

See Section 4.1.2 for information about DES queries.

Some commands are labelled with TAPI enabled, which means that they can be
submitted to the textual application programming interface (TAPI). There is additional
information for such commands in Section 5.14.2.

Next, commands are described, where italics indicate a parameter which must
be supplied by the user. Square brackets indicate an optional keyword or parameter
(excepting the first two DES Database commands for consulting and reconsulting files,
following Prolog syntax). If a parameter is not accepted, please try again enclosing it
between single quotes (').

5.13.1 DES Database

• /[FileNames]
Load the Datalog programs found in the comma–separated list [Filenames] ,
discarding both rules already loaded, integrity constraints, and SQL table and
view definitions. The extension table is cleared, and the predicate dependency
graph and strata are recomputed.
Examples:
Assuming we are on the examples distribution directory, we can write:
DES> /[mutrecursion,family]
TAPI enabled.
See also /consult Filename.

Fernando Sáenz-Pérez 139/204

Universidad Complutense de Madrid

Datalog Educational System

• /[+ FileNames]
Load the Datalog programs found in the comma–separated list Filenames,
keeping rules already loaded, integrity constraints, and SQL table and view
definitions. The extension table is cleared, and the predicate dependency graph
and strata are recomputed.
TAPI enabled.
See also /[Filenames] .

• /abolish
Delete the Datalog database. This includes all the local rules (including those
which are the result of SQL compilations) and external rules (persisted
predicates). Integrity constraints, and SQL table and view definitions are
removed. The extension table is cleared, and the predicate dependency graph
and strata are recomputed.

• /abolish Name
Delete the predicates matching Name. This includes all their local rules
(including those which are the result of SQL compilations) and external rules
(persisted predicates). Their integrity constraints, and SQL table and view
definitions are removed. The extension table is cleared, and the predicate
dependency graph and strata are recomputed.

• /abolish Name/Arity
Delete the predicates matching the pattern Name/Arity. This includes all their
local rules (including those which are the result of SQL compilations) and
external rules (persisted predicates). Their integrity constraints, and SQL table
and view definitions are removed. The extension table is cleared, and the
predicate dependency graph and strata are recomputed.

• /assert Head[:-Body]
Add a Datalog rule. If Body is not specified, it is simply a fact. Rule order is
irrelevant for Datalog computation. The extension table is cleared, and the
predicate dependency graph and strata are recomputed.

• /consult FileName
Load the Datalog program found in the file Filename, discarding the rules
already loaded, integrity constraints, and SQL table and view definitions. The
extension table is cleared, and the predicate dependency graph and strata are
recomputed. The default extension .dl for Datalog programs can be omitted.
Examples:
Assuming we are on the distribution directory, we can write:
DES> /consult examples/mutrecursion
which behaves the same as the following:
DES> /consult examples/mutrecursion.dl
DES> /consult ./examples/mutrecursion
DES> /consult c:/des3.0/examples/mutrecursion.dl
This last command assumes that the distribution directory is c:/des 3.0.
Synonyms: /c , /restore_ddb .
TAPI enabled.

• /check_db

Fernando Sáenz-Pérez 140/204

Universidad Complutense de Madrid

Datalog Educational System

Check database consistency w.r.t. declared integrity constraints (types,
existency, primary key, candidate key, foreign key, functional dependency, and
user-defined). Display a report with the outcome

• /drop_ic Constraint
Drop the specified integrity constraint, which starts with ":- " and can be either
one of:

• :- type(Table, [Column:Type])
• :- nn(Table, Columns)
• :- pk(Table, Columns)
• :- ck(Table, Columns)
• :- fk(Table, Columns, RTable, RColumns)
• :- fd(Table, Columns, DColumns)
• :- Goal

where Goal specifies a user-defined integrity constraint). Only one constraint
can be dropped at a time. Alternative syntax for constraint is also allowed.
TAPI enabled.

• /listing
List the loaded Datalog rules. Neither integrity constraints nor SQL views and
metadata are displayed.

• /listing Name
List the loaded Datalog rules matching Name. Neither integrity constraints nor
SQL views and metadata are displayed.

• /listing Name/Arity
List the loaded Datalog rules matching the pattern Name/Arity. Neither
integrity constraints nor SQL views and metadata are displayed.

• /listing Head
List the Datalog loaded rules whose heads are subsumed by the head Head.
Neither integrity constraints nor SQL views and metadata are displayed.

• /listing Head:-Body
List the Datalog loaded rules that are subsumed by Head:-Body. Neither
integrity constraints nor SQL views and metadata are displayed.

• /reconsult FileName
Load a Datalog program found in the file Filename, keeping the rules already
loaded. The extension table is cleared, and the predicate dependency graph and
strata are recomputed.
TAPI enabled.
See also /consult Filename.
Synonyms: /r .

• /restore_ddb Filename
Restore the Datalog database in the given file (same as consult) . Constraints
(type, nullability, primary key, candidate key, functional dependency, foreign
key, and user-defined) are also restored, if present in Filename

• /retract Head[:-Body]
Delete the first Datalog rule that unifies with Head:-Body (or simply with
Head, if Body is not specified. In this case, only facts are deleted). The extension

Fernando Sáenz-Pérez 141/204

Universidad Complutense de Madrid

Datalog Educational System

table is cleared, and the predicate dependency graph and strata are
recomputed.

• /retractall Head
Delete all the Datalog rules whose heads unify with Head. The extension table
is cleared, and the predicate dependency graph and strata are recomputed.

• /save_ddb [force] Filename
Save the current Datalog database to the file Filename. If option force is
included, no question is asked to the user should the file exists already.
Constraints (type, nullability, primary key, candidate key, functional
dependency, foreign key, and user-defined) are also saved

5.13.2 ODBC Database

• /open_db Name [Options]
Open and set the current ODBC connection to Name, where
Options=[user(Username)] [password(Password)]. This connection
must be already defined at the OS layer.
TAPI enabled

• /close_db
Close the current ODBC connection.
TAPI enabled

• /close_db Name
Close the given ODBC connection.
TAPI enabled

• /current_db
Display the current ODBC connection name and DSN provider.
TAPI enabled

• /show_dbs
Display the open database connections.
TAPI enabled

• /use_db Name
Make Name the current ODBC connection.
TAPI enabled

5.13.3 Debugging and Test Case Generation

• /debug_datalog Goal [Level]
Start the debugger for the basic goal Goal at predicate or clause levels, which is
indicated with the options p and c for Level, respectively. Default is p.

• /debug_sql View [Options]
Debug a SQL view where:
Options=[trust_tables([yes|no])] [trust_file(FileName)]
Defaults are trust tables and no trust file. It might be needed to enclose
FileName between single quotes.

• /trace_datalog Goal [Order]
Trace a Datalog goal in the given order (postorder or the default preorder).

Fernando Sáenz-Pérez 142/204

Universidad Complutense de Madrid

Datalog Educational System

• /trace_sql View [Order]
Trace a SQL view in the given order (postorder or the default preorder).

• /test_case View [Options]
Generate test case classes for the view View. Options may include a class
and/or an action parameters. The test case class is indicated by the values all
(positive-negative, the default), positive , or negative in the class
parameter. The action is indicated by the values display (only display tuples,
the default), replace (replace contents of the involved tables by the computed
test case), or add (add the computed test case to the contents of the involved
tables) in the action parameter.

• /tc_size Min Max
Set the minimum and maximum number of tuples generated for a test case.

• /tc_size
Display the minimum and maximum number of tuples generated for a test case.

• /tc_domain Min Max
Set the domain of values for test cases between Min and Max.

• /tc_domain
Display the domain of values for test cases.

5.13.4 Tabling

• /clear_et
Delete the contents of the extension table.

• /list_et
List the contents of the extension table in lexicographical order. First, answers
are displayed, then calls.

• /list_et Name
List the contents of the extension table matching Name. First, answers are
displayed, then calls.

• /list_et Name/Arity
List the contents of the extension table matching the pattern Name/Arity. First,
answers are displayed, then calls.

5.13.5 Operating System

• /cat Filename
Type the contents of Filename enclosed between the following lines:
%% BEGIN AbsoluteFilename %%
%% END AbsoluteFilename %%
Synonym: /type Filename.

• /cd Path
Set the current directory to Path.
TAPI enabled.

• /cd
Set the current directory to the directory where DES was started from.
TAPI enabled.

Fernando Sáenz-Pérez 143/204

Universidad Complutense de Madrid

Datalog Educational System

• /pwd
Display the absolute filename for the current directory.
TAPI enabled.

• /ls
Display the contents of the current directory in alphabetical order. First, files are
displayed, then directories.
Synonym: /dir .

• /ls Path
Display the contents of the given directory in alphabetical order. It behaves as
/ls .
Synonym: /dir Path.

• /shell Command
Submit Command to the operating system shell.
Notes for platform specific issues:
o Windows users:

command.exe is the shell for Windows 98, whereas cmd.exe is the one for
Windows NT/2000/2003/XP/Vista/7.

o Ciao users:
The environment variable SHELL must be set to the required shell.

o SICStus users:
Under Windows, if the environment variable SHELL is defined, it is
expected to name a Unix like shell, which will be invoked with the option -
c Command. If SHELL is not defined, the shell named by COMSPEC will be
invoked with the option /C Command.

o Windows and Linux/Unix executable users:
The same note for SICStus is applied.

Synonyms: /s .

• /rm FileName
Delete FileName from the file system.
Synonyms: /del .

5.13.6 Log

• /log
Display the current log file, if any.

• /log Filename
Set the current log to the given filename and mode: write (overwrite existing
file, if any, or creates a new one) or append (append to the contents of the
existing file).

• /nolog
Disable logging.

5.13.7 Informative

• /apropos Keyword
Display detailed help about Keyword, which can be a command or built-in.
Synonyms: /help .

Fernando Sáenz-Pérez 144/204

Universidad Complutense de Madrid

Datalog Educational System

• /builtins
List predefined operators, functions, and predicates.

• /check
Display whether integrity constraint checking is enabled.

• /compact_listings
Display whether compact listings are enabled.

• /dbschema
Display the database schema : Tables, views and constraints.

• /dbschema Name
Display the database schema for the given connection, view or table name.
TAPI enabled

• /dbschema Connection:Name
Display the database schema for the given view or table name in the given
connection.

• /dependent_relations Relation
Display the name of relations that directly depend on relation Relation/ Arity.
TAPI enabled

• /dependent_relations Relation/ Arity
Display in format Name/Arity those relations that directly depend on relation
Relation/ Arity.
TAPI enabled

• /development
Display whether development listings are enabled.

• /development Switch
Enable or disable development listings (on or off , resp.). These listings show
the source-to-source translations needed to handle null values, Datalog outer
join built-ins, and disjunctive literals.

• /duplicates
Display whether duplicates are enabled.

• /hypothetical
Display whether hypothetical queries are enabled (on) or not (off)

• /sql_left_delimiter
Display the SQL left delimiter as defined by the current database manager
(either DES or the external DBMS via ODBC).
TAPI enabled

• /sql_right_delimiter
Display the SQL left delimiter as defined by the current database manager
(either DES or the external DBMS via ODBC) .
TAPI enabled

• /help
Display resumed help on commands.
Shorthands: /h .

Fernando Sáenz-Pérez 145/204

Universidad Complutense de Madrid

Datalog Educational System

• /help Keyword
Display detailed help about Keyword, which can be a command or built-in.
Synonyms: /apropos .

• /is_empty relation_name
Display $true if the given relation is empty, and $false otherwise.
TAPI enabled

• /list_tables
List table names.
TAPI enabled

• /list_table_schemas
List table schemas.
TAPI enabled

• /list_table_constraints table_name
List table constraints for table_name.
TAPI enabled

• /list_views
List view names.
TAPI enabled

• /list_view_schemas
List view schemas.
TAPI enabled

• /negation
Display the selected algorithm for solving negation (strata or et_not).

• /pdg
Display the current predicate dependency graph.

• /pdg PredName
Display the current predicate dependency graph restricted to the first predicate
found with name PredName.

• /pdg PredName/ Arity
Display the current predicate dependency graph restricted to the predicate with
name PredName and Arity.

• /pretty_print
Display whether pretty print listings is enabled.

• /pretty_print Switch
Enable or disable pretty print for listings (on or off , resp.)

• /referenced_relations Relation
Display the name of relations that are directly referenced by a foreign key in
relation Relation.
TAPI enabled

• /referenced_relations Relation/ Arity
Display in format Name/Arity those relations that are directly referenced by a
foreign key in relation Relation/ Arity.
TAPI enabled

Fernando Sáenz-Pérez 146/204

Universidad Complutense de Madrid

Datalog Educational System

• /relation_exists relation_name
Display $true if the given relation exists, and $false otherwise.
TAPI enabled

• /relation_schema relation_name
Display relation schema of relation_name.
TAPI enabled

• /running_info
Display whether running information (as the incremental number of consulted
rules as they are read) is to be displayed.

• /running_info Switch
Enable or disable display of running information (on or off , resp.)

• /safe
Display whether safety transformation is enabled.

• /simplification
Display whether program simplification is enabled.

• /show_compilations
Display whether compilations from SQL DQL statements to Datalog rules are to
be displayed.

• /show_compilations Switch
Enable or disable display of extended information about compilation of SQL
DQL statements to Datalog clauses (on or off , resp.)

• /show_sql
Display whether SQL statements which are sent to an external database are to
be displayed

• /show_sql Switch
Enable or disable display of SQL statements which are sent to an external
database (on or off , resp.)

• /status
Display the current system status, i.e., verbose mode, the selected negation
algorithm, logging, elapsed time display, program transformation, and system
version.

• /strata
Display the current stratification as a list of pairs (PredName/Arity, Stratum).

• /timing
Display whether elapsed time display is enabled.

• /timing Switch
Disable or enable either a basic or detailed elapsed time display (off , on ,
detailed , resp.)

• /verbose
Display whether verbose output is either enabled or disabled (on or off , resp.)

• /verbose Switch
Enable or disable verbose output messages (on or off , resp.)

Fernando Sáenz-Pérez 147/204

Universidad Complutense de Madrid

Datalog Educational System

• /version
Display the current DES system version.

5.13.8 Query Languages

• /datalog
Switch to Datalog interpreter (all queries are parsed and executed first by
Datalog engine. If it is not a Datalog query, then it is tried first as a SQL
statement. If it is neither SQL, finally it is tried as an RA expression).

• /datalog Query
Trigger Datalog resolution for the query Query (the query is parsed and
executed in Datalog, but if a parsing error is found, it is tried first as a SQL
statement and second as an RA expression).

• /hypothetical Switch
Enable or disable hypothetical queries (on or off , resp.)

• /prolog
Switch to Prolog interpreter (all queries are parsed and executed in Prolog).

• /prolog Goal
Trigger Prolog’s SLD resolution for the goal Goal.

• /ra
Switch to RA interpreter (all queries are parsed and executed in RA).

• /ra Query
Trigger RA evaluation for the query Query.

• /sql
Switch to SQL interpreter (all queries are parsed and executed in SQL).

• /sql SQL_statement
Trigger SQL resolution for SQL_statement.

5.13.9 TAPI-related

See also Section 5.14.2 for more information.

• /tapi Input
Process Input and format its output for TAPI communication. Only a limited
set of possible inputs are allowed (cf. Section 5.14)

• /test_tapi
Test the current TAPI connection
TAPI enabled

5.13.10 Miscellanea

• /check Switch
Enable or disable integrity constraint checking (on or off , resp.)

• /compact_listings Switch
Enable or disable compact listings (on or off , resp.)

Fernando Sáenz-Pérez 148/204

Universidad Complutense de Madrid

Datalog Educational System

• / display_answer

Display whether display of computed tuples is enabled

• / display_answer Switch
Enable or disable display of computed tuples (on or off , resp.) The number of
tuples is still displayed

• /duplicates Switch
Enable or disable integrity constraint checking (on or off , resp.)

• /negation Algorithm
Set the required Algorithm for solving negation (strata or et_not) .

• /halt
Quit the system.
Synonyms: /quit , /q , /exit , /e .

• /multiline
Display whether multi-line input is enabled.

• /multiline Switch
Enable or disable multi-line input (on or off resp.)

• /output Switch
Enable or disable display output (on or off , resp.)

• /process Filename
Process the contents of Filename as if they were typed at the system prompt.
Extensions by default are: .sql and .ini . When looking for a file f, the
following filenames are checked in this order: f , f.sql , and f.ini .
Synonyms: /p .

• /safe Switch
Enable or disable program transformation (on or off , resp.)

• /simplification Switch
Enable or disable program simplification (on or off , resp.). Rules with
equalities, true , and not(BooleanValue) are simplified.

• /start_stopwatch
Start stopwatch. Precision depends on host Prolog system (1 second or
milliseconds).

• /stop_stopwatch
Stop stopwatch. Precision depends on host Prolog system (1 second or
milliseconds).

• /display_stopwatch
Display stopwatch. Precision depends on host Prolog system (1 second or
milliseconds).

5.13.11 Implementor

• /debug
Enable debugging in the host Prolog interpreter

Fernando Sáenz-Pérez 149/204

Universidad Complutense de Madrid

Datalog Educational System

• / indexing

Display whether hash indexing on extension table is enabled

• / indexing Switch
Enable or disable hash indexing on extension table (on or off , resp.) Default is
enabled, which shows a noticeable speed-up gain in some cases

• /nospyall
Remove all Prolog spy points in the host Prolog interpreter. Disable debugging

• /nospy SPred[/ Arity]
Remove the spy point on the given predicate in the host Prolog interpreter

• /spy Pred[/ Arity]
Set a spy point on the given predicate in the host Prolog interpreter

• /system Goal
Submit Goal to the underlying Prolog system

• /terminate
Terminate the current DES session without halting the host Prolog system
Synonym: /t .

5.14 Textual API

Rather than providing a Prolog underlying system dependent API, DES
provides a textual API (TAPI, Textual Application Programming Interface) for its
communication to external applications. It can used via standard input and output
streams, as provided by the OS.

Such interface has been guided by the demands of the ACIDE GUI (Graphical
User Interface) in order to allow users to interact with the system via a Java
application. This way, it is possible to inspect and modify database schema and table
contents, both those managed by DES and also external data sources as RDBMS's,
spreadsheets or csv plain files connected by an ODBC connection. However, this TAPI
can be used from any application wrote in any language and running on any platform,
provided that it can handle input and output standard streams.

Several existing commands, statements and queries can be processed via this
interface. As well, new commands and statements have been added to support the GUI
requirements described above. Input syntax is as for DES, whereas answers follow a
concrete format for easing their parsing. Any input to this interface must be prepended
by the command /tapi , and cannot be spread beyond a single line, as shown next:

Input: /tapi /test_tapi
Output: $success

Notice that after the command /tapi , another command follows:
/test_tapi , which is only intended to test whether a successful connection between
the external application and DES can be established. If so, the answer $success is sent
to the output stream. The usual DES command prompt is not sent, as well as no extra
blank lines (even if compact listings are disabled, cf. Section 5.13.10). Any input after
/tapi can also be submitted in the DES command prompt, but following the usual DES
output, instead of the TAPI-oriented way.

Fernando Sáenz-Pérez 150/204

Universidad Complutense de Madrid

Datalog Educational System

A typical scenario for accessing DES from an external application is to start a
process from this application and connecting adequately input and output streams. If
run on Windows, use the console application des.exe for such process; otherwise,
use des (both provided in the binary distribution for your concrete operating system).

5.14.1 Notes about the Interface

• Text in font Courier New are for textual input and output. Italized
Courier New stand for input that the TAPI user must provide with a concrete
input. For example, description for dropping a table includes: /tapi drop
table table_name, where table_name is the placeholder for your concrete
table to be dropped.

• Lines starting with % are remarks which are not needed to be included (they
are only for explanatory purposes)

• Types returned by a database or predicate handled by DES include:
o string(varchar)
o string(varchar(N))
o string(char(N))
o number(integer)
o number(float)

Where N is an integer greater than 0.

• Types returned by ODBC databases depend on the concrete external DBMS.
• Character strings as returned by DES are enclosed between single quotes. This

allows in particular to distinguish these strings from the null value, which can
occur in any data type.

• Datalog identifiers in TAPI inputs must be enclosed between single quotes
should they contain special characters (as blanks, commas and quotes). If an
identifier contains a single quote, this must be written twice as, e.g.,
'pete''s' , which represents pete's

• DDL (Data Definition Language) statements for SQL and Datalog include:
o CREATE TABLE (SQL)
o CREATE VIEW (SQL)
o RENAME (SQL)
o :- strong_constraint (Datalog)

• DQL (Data Query Language) SQL statements include:
o SELECT
o WITH

• Any input to command /tapi is processed as a DES input. However, output is
only formatted for those commands and queries as listed in sections 5.14.2 and
5.14.3. So, feeding unsupported inputs to /tapi might produce unexpected
results. Users of TAPI are expected to ask for other commands and/or
statements needed for their concrete applications. Feedback is welcome.

5.14.1.1 Identifiers

As SQL identifiers can contain special characters which can be missed with
other language constructors, they are enclosed between delimiters in such a case. This
document contains an abbreviated notation: name and column_name, for table and
views in the former, and columns in the second. When a SQL identifier is written as
part of a TAPI input, they must be enclosed between the characters L and R (left and
right delimiters, respectively). Characters for such delimiters depend on the external

Fernando Sáenz-Pérez 151/204

Universidad Complutense de Madrid

Datalog Educational System

DBMS. For instance, MS Access requires [and] , resp., but standard SQL defines
double quotes for both (") (MS Access does not support this).

In order to know what are such characters for the current connection, one can
submit the following commands:

/tapi /sql_left_delimiter

/tapi /sql_right_delimiter

Datalog identifiers suffer a similar situation but they must be enclosed, if
needed because containing special characters, between single quotes. For example:

/tapi /listing 't'

Datalog identifiers as returned by DES are not delimited, though.

5.14.1.2 Kinds of Answers

Any input can return either a successful answer (with a syntax described for
each supported command and statement) or an error. There are several kinds of
answers:

• Regular:
o Successful answer with no return data:

$success
o Error:

$error
code
text
...
text
$eot

Where code is the error code and text is its textual description, which
can consist of several lines. Last line is the text for denoting end of
transmission. Error codes are digits starting by either 0 (denoting an
exception error), or 1 (denoting a warning), or 2 (denoting an extended
informative message).

• Boolean:

Only one line, either one of the following:
o $true
o $false

If an error occurs, it is output as in the regular answer.

• Defined specifically for a given command or statement.

If an error occurs, it is output as in the regular answer.

5.14.2 TAPI-enabled Commands

This section shows each supported command for TAPI communication.
• Command:

/tapi /sql_left_delimiter

Fernando Sáenz-Pérez 152/204

Universidad Complutense de Madrid

Datalog Educational System

Answer:

Only one line with a single character corresponding to the SQL left delimiter as
defined by the database manager (either DES or the external DBMS via ODBC).

Example assuming an ODBC connection to MS Access:

Input:
/tapi /sql_left_delimiter

Output:
[

• Command:
/tapi /sql_right_delimiter

Answer:

Only one line with a single character corresponding to the SQL right delimiter
as defined by the database manager (either DES or the external DBMS via
ODBC).

Example assuming an ODBC connection to MS Access:

Input:
/tapi /sql_right_delimiter

Output:
]

• Command:

/tapi /cd

Answer:

Only one line with the full path DES was started from.

Example:

Input:
/tapi /cd

Output:
c:/des

• Command:

/tapi /cd Path

Answer:

Only one line with the full new path.

Example:

Input:
/tapi /cd examples

Output:
c:/des/examples

Fernando Sáenz-Pérez 153/204

Universidad Complutense de Madrid

Datalog Educational System

• Command:
/tapi /consult File
/tapi /c File
/tapi /[File]

Answer:

Information about the loaded program and a final line containing $eot .

Examples:

Input:
/tapi /[family]

Output:
Info: 11 rules consulted.
$eot

Input:
/tapi /c family,fact

Output:
Warning: N > 0 may raise a computing exception if n on-
ground at run-time.
Warning: N1 is N - 1 may raise a computing exceptio n if
non-ground at run-time.
Warning: F is N * F1 may raise a computing exceptio n if
non-ground at run-time.
Warning: Next rule is unsafe because of variable(s) :
 [F,N]
fac(N,F) :-
 N > 0,
 N1 is N - 1,
 fac(N1,F1),
 F is N * F1.
Info: 13 rules consulted.
$eot

• Command:

/tapi /reconsult Files
/tapi /r Files
/tapi /[+ Files]

Answer:

Information about the loaded program and a final line containing $eot .

Example:

Input:
/tapi /[+family]

Output:
Info: 11 rules consulted.
$eot

• Command:

Fernando Sáenz-Pérez 154/204

Universidad Complutense de Madrid

Datalog Educational System

/tapi /test_tapi

Answer:

Regular.

Remarks:

This command is used to test the current connection.

Example:

Input:
/tapi /test_tapi

Output:
$success

• Command:

/tapi /open_db db

Arguments:
db: Database connection name. Not delimited.

Answer:

Regular.

Remarks:

This command is used to open an ODBC connection (cf. Section 5.13.2).

Example:

Input:
/tapi /open_db test

Output:
$success

• Command:
/tapi /close_db

Answer:

Regular.

Remarks:

This command is used to close the current ODBC connection (cf. Section 5.13.2).

Example:

Input:
/tapi /close_db

Output:
$success

• Command:
/tapi /current_db

Answer:

Fernando Sáenz-Pérez 155/204

Universidad Complutense de Madrid

Datalog Educational System

Two lines: the first one containing the current ODBC connection name and the
second one the external DBMS (cf. Section 5.13.2).

Remarks:

This command is used to get the current ODBC connection name (cf. Section
5.13.2).

Example:

Input, assuming that the ODBC connection test is already opened:
/tapi /current_db

Output:
test
access

• Command:
/tapi /relation_exists relation_name

Arguments:
relation_name: Relation (table, view or predicate) name, which must be

enclosed between delimiters if needed.

Answer:

Boolean.

Remarks:

This command returns $true if the given relation exists, and $false
otherwise.

Example:

Input:
/tapi /relation_exists "v"

Output:
$true

• Command:
/tapi ddl_query

Answer:

Regular.

Remarks:

This DDL statement returns $success upon a successful processing.

Example:

Input:
/tapi create table [t]([a] int)

Output:
$success

• Command:
/tapi /dependent_relations pattern

Fernando Sáenz-Pérez 156/204

Universidad Complutense de Madrid

Datalog Educational System

Where pattern can be either relation_name or relation_name/arity,
where relation_name stands for a relation name and arity for its arity.

Answer:
relation_name
...
relation_name
$eot

Where relation_name stands for relation names.

Remarks:

Display the names of relations that directly depend on the given relation.
Relations are returned alphabetically sorted.

Example:

Input, considering that views z1 y z2 reference table t :
/tapi /dependent_relations "t"

Output:
z1
z2
$eot

• Command:
/tapi /list_table_schemas

Answer:
table_name(column_name: type,..., column_name: type)
table_name(column_name: type,..., column_name: type)
...
table_name(column_name: type,..., column_name: type)
$eot

Where table_name stands for table names, column_name is a column name,
type is the column type, and $eot is the end of the transmission.

Remarks:

Return table schemas.

Tables are returned alphabetically sorted.

Example:

Input:
/tapi /list_table_schemas

Output:
t(a:number(integer))
$eot

• Command:
/tapi /list_view_schemas

Answer:
view(column_name: type,..., column_name: type)

Fernando Sáenz-Pérez 157/204

Universidad Complutense de Madrid

Datalog Educational System

view(column_name: type,..., column_name: type)
...
view(column_name: type,..., column_name: type)
$eot

Where view_name stands for view names, column_name is a column name,
type is the column type, and $eot is the end of the transmission.

Remarks:

Return view schemas.

Views are returned alphabetically sorted.

Example:

Input:
/tapi /list_view_schemas

Output:
v(a:number(integer),b:string(varchar(20)))
$eot

• Command:
/tapi /list_table_constraints table_name

Arguments:
table_name: Table name (enclosed between SQL delimiters, if needed).

Answer:
NN
$
PK
$
CK
...
CK
$
FK
...
FK
$
FD
...
FD
$
IC
...
IC
$eot

Where $ is a delimiter for different kinds of integrity constraints, NN is a single
line with the names of columns with existency constraint, PK is a single line
with the primary key constraint, CK are candidate keys, FK are foreign keys, FD
are functional dependencies, IC are user-defined integrity constraints, and
$eot is the end of transmission.

Remarks:

Fernando Sáenz-Pérez 158/204

Universidad Complutense de Madrid

Datalog Educational System

 List table constraints.

If there are no constraints of a given type, no line is written.

Example:

Input:
/tapi /list_table_constraints "s"

Output (no existency constraint, primary key {b}, no candidate key, foreign key
{s.[a] } → {t.[a] }, functional dependency a → b, and user-defined integrity
constraint :- t(X),s(X,X).):
$
b
$
$
s.[a] -> t.[a]
$
[a] -> [b]
$
:- t(X),s(X,X).
$eot

• Command:
/tapi /relation_schema relation_name

Arguments:
relation_name: Relation name (either a table or view), which must be

enclosed between SQL delimiters if needed.

Answer:
relation_kind
relation_name
column_name
type
column_name
type
...
column_name
type
$eot

Remarks:

Return relation schema of relation_name. First line in the answer is the kind
of relation (either $table for a table or $view for a view), followed by its
name in the second line. Next and successive pair of lines contain the column
name and column type.

Example:

Input:
/tapi /relation_schema "t"

Output:
$table
t
a

Fernando Sáenz-Pérez 159/204

Universidad Complutense de Madrid

Datalog Educational System

number(integer)
$eot

• Command:
/tapi /drop_ic constraint

Arguments:
constraint: Constraint following Datalog syntax (cf. Section 4.1.14.8).

Answer:

Regular.

Example:

Input:
/tapi /drop_ic :-pk('s',['b'])

Output:
$success

• Command:
/tapi /dbschema view_name

Arguments:
view_name: View name as a SQL identifier, which needs to be enclosed

between SQL delimiters if needed.

Answer:
relation_kind
relation_name
column_name
type
...
column_name
type
$
SQL
...
SQL
$
Datalog
...
Datalog
$eot

Remarks:

First line in the answer is the kind of relation ($view), followed by its name in
the second line. Next and successive pair of lines contain the column name and
its type. Next lines contain the SQL definition of the view, starting with a line
containing the delimiter $. Next lines contain the Datalog definition of the view,
starting with a line containing the delimiter $. Finally, end of transmission is
the last line.

Both Datalog and SQL outputs are displayed depending on whether pretty
print is disabled or not (cf. Section 5.13.7), i.e., each statement or rule can be in a
single line or multiple lines.

Fernando Sáenz-Pérez 160/204

Universidad Complutense de Madrid

Datalog Educational System

Example:

Input:
/tapi /dbschema "v"

Output:
$view
v
a
number(integer)
b
string(varchar(20))
$
SELECT ALL *
FROM (t
 NATURAL INNER JOIN
 s);
$
$eot

• Command:
/tapi /is_empty relation_name

Arguments:
relation_name: Relation name (either a table or a view), which must be

enclosed between SQL delimiters if needed.

Answer:

Boolean.

Remarks:

Return $true is relation relation_name is empty (i.e., it contains no tuples in
its meaning) and $false otherwise.

Example:

Input:
/tapi /is_empty "t"

Output:
$false

5.14.3 TAPI-enabled Queries

This section shows each supported query for TAPI communication.

• Query:
/tapi sql_ddl_query

 Where sql_ddl_query can be any SQL DDL query (cf. Section 4.2.4).

Answer:

 Regular.

Examples:

Fernando Sáenz-Pérez 161/204

Universidad Complutense de Madrid

Datalog Educational System

Input:
/tapi create table t(a int)

Output:
$success

Input:
/tapi rename table t to q

Output:
$success

• Query:
/tapi sql_dml_query

 Where sql_dml_query can be any SQL DML query (cf. Section 4.2.5).

Answer:

 If successful, one single line with the number of affected tuples.

Examples:

Input:
/tapi insert into [t] values(3)

Output:
1

Input:
/tapi insert into [t] values('3')

Output:
$error
0
Type mismatch [number(integer)] (table declaration)
$eot

• Query:
/tapi sql_dql_query

 Where sql_dql_query can be any SQL DQL query (cf. Section 4.2.6).

Answer:
relation_name
column_name
type
...
column_name
type
$
value
...
value
$
...
$

Fernando Sáenz-Pérez 162/204

Universidad Complutense de Madrid

Datalog Educational System

value
...
value
$eot

Where relation_name is the name of the answer relation, column_name is a
column name, type is the column type, value is the column value, $ is the record
delimiter and $eot is the end of the transmission.

Remarks:

This DQL statement returns in the first line the name of the answer relation, the
first column name and its type in the next two lines, and so for all of its
columns. Then, each or the tuples in the relation preceded by the record
delimiter ($). Last line is the end of transmission.

Examples:

Input, considering that table s contains tuples {(1,'abc'), (null ,'def'),
(null ,null)}:
/tapi select * from [s]

Output:
answer
s.a
number(integer)
s.b
string(varchar(20))
$
1
'abc'
$
null
'def'
$
null
null
$eot

Input, considering an empty table s :
/tapi select * from [s]

Output:
answer
s.a
number(integer)
s.b
string(varchar(20))
$eot

5.15 ISO Escape Character Syntax

Special characters in constants and user identifiers can be specified by
prepending a backslash to a escape-sequence. This feature depends on its support by
the underlying Prolog system, so that the reader is referenced to read corresponding
entry in the manual of such system.

Fernando Sáenz-Pérez 163/204

Universidad Complutense de Madrid

Datalog Educational System

Currently, escape-sequences can only be specified in files to be consulted, but
not at the command prompt.

Common escape-sequences are:

• \a
Alarm (ASCII character code 7)

• \b
Backspace (ASCII character code 8)

• \d
Delete (ASCII character code 127)

• \e
Escape (ASCII character code 27)

• \f
Form feed (ASCII character code 12)

• \n
Line feed/Newline (ASCII character code 10)

• \r
Carriage return (ASCII character code 13). Go to the start of the line,
without feeding a new line

• \t
Horizontal tab (ASCII character code 9)

• \v
Vertical tab (ASCII character code 11)

• \xhex-digit...\
A character code represented by the hexadecimal digits.

5.16 Notes about the Implementation of DES

DES is implemented with the original ideas found in [Diet87, TS86, FD92], that
deal with termination issues of Prolog programs. These ideas have been already used
in the deductive database community. Our implementation uses extension tables for
achieving a top–down driven bottom–up approach. In its current form, it can be seen
as an extension of the work in [Diet87, FD92] in the sense that, in addition, we deal
with negation, undefined (although incomplete) information, nulls and aggregates,
also providing a more efficient tabled mechanism. Also, the implementation follows a
different approach: Instead of translating rules, we interpret them.

DES does not pretend to be an efficient system but a system capable of showing
the nice aspects of the more powerful form of logic we can find in Datalog systems wrt.
relational database systems.

Fernando Sáenz-Pérez 164/204

Universidad Complutense de Madrid

Datalog Educational System

5.16.1 Tabling8

DES uses an extension table which stores answers to goals previously
computed, as well as their calls. For the ease of the introduction, we assume an answer
table and a call table to store answers and calls, respectively. Answers may be positive
or negative, that is, if a call to a positive goal p succeeds, then the fact p is added as an
answer to the answer table; if a negated goal not(p) succeeds, then the fact not(p) is
added. Calls are also added to the call table whenever they are solved. This allows us
to detect whether a call has been previously solved and we can use the results in the
extension table (if any). The algorithm which implements this idea can be sketched as
follows:

First, test whether there is a previous call that subsumes9 the current call. There
are two possibilities: 1) there is such a previous call: then, use the result in the answer
table, if any. It is possible that there is no such a result (for instance, when computing
the goal p in the program p :- p) and we cannot derive any information, 2)
otherwise, process the new call knowing that there is no call or answer to this call in
the extension table. So, firstly store the current call and then, solve the goal with the
program rules (recursively applying this algorithm). Once the goal has been solved (if
succeeded), store the computed answer if there is no any previous answer subsuming
the current one (note that, through recursion, we can deliver new answers for the same
call). This so–called memoization process is implemented with the predicate memo/1 in
the file des.pl of the distribution, and will also be referred to as a memo function in
the rest of this manual.

Negative facts are produced when a negative goal is proved by means of
negation as failure (closed world assumption). In this situation, a goal as not(p)
which succeeds produces the fact not(p) which is added to the answer table, just the
same as proving a positive goal.

The command /list_et shows the current state of the extension table, both
for answers and calls already obtained by solving one or more queries (incidentally,
recall that you can focus on the contents of the extension table for a given predicate, cf.
Section 5.13.4). This command is useful for the user when asking for the meaning of
relations, and for the developer for examining the last calls being performed. Before
executing any query, the extension table is empty; after executing a query, at least the
call is not empty. Also, the extension table is empty after the execution of a temporary
view.10 The extension table contains the calls made during the last fixpoint iteration
(see next section for details); the calls are cleared before each iteration whereas the
answers are kept. The command /clear_et clears the extension table contents, both
for calls and answers.

8 For a complementary understanding of this section, the reader is advised to read
[Diet87].

9 A term T1 subsumes a term T2 if T1 is “more general” than T2 and both terms are
unifiable. Eg: p(X,Y) subsumes p(a,Z) , p(X,Y) subsumes p(U,V) , p(X,Y) subsumes
p(U,U) , but p(U,U) neither subsumes p(a,b) , nor p(X,Y) .

10 The contents of the extension table in this case should be restored instead of being
cleared; left for further improvements.

Fernando Sáenz-Pérez 165/204

Universidad Complutense de Madrid

Datalog Educational System

5.16.2 Fixpoint Computation

The tabling mechanism is insufficient in itself for computing all of the possible
answers to a query. The rationale behind this comes from the fact that the computed
information is not complete when solving a given goal, because it can use incomplete
information from the goals in its defining rules (these goals can be mutually recursive).
Therefore, we have to ensure that we produce all the possible information by finding a
fixpoint of the memo function. First, the call table is emptied in order to allow the
system to try to obtain new answers for a given call, preserving the previous computed
answers. Then, the memo function is applied, possibly providing new answers. If the
answer table remains the same as before after this last memo function application, we
are done. Otherwise, the memo function is reapplied as many times as needed until we
find a stable answer table (with no changes in the answer table). The answer table
contains the stable model of the query (plus perhaps other stable models for the
relations used in the computation of the given query).

The fixpoint is found in finite time because the memo function is monotonic in
the sense that we only add new entries each time it is called while keeping the old
ones. Repeatedly applying the memo function to the answer table delivers a finite
answer table since the number of new facts that can be derived from a Datalog
program is finite (recall that there are no compound terms such as s k(z)). On the one
hand, the number of positive facts which can be inferred are finite because there is a
finite number of ground facts which can be used in a given proof, and proofs have
finite depth provided that tabling prevents recomputations of older nodes in the proof
tree. On the other hand, the number of negative facts which can be inferred is also
finite because they are proved using negation as failure. (Failures are always finite
because they are proved trying to get a success.) Finally, there are facts that cannot be
proved to be true or false because of recursion. These cases are detected by the tabling
mechanism which prevent infinite recursion such as in p :- p .

It is also possible that both a positive and a negative fact have been inferred for
a given call. Then, an undefined fact replaces the contradictory information. The
implementation simply removes the contradictory facts and informs about the
undefinedness. As already indicated (see Section 6.9), the algorithm for determining
undefinedness is incomplete.

5.16.3 Dependency Graphs and Stratification: Negation, Outer Joins, and

Aggregates

Each time a program is consulted or modified (i.e., via submitting a temporary
view or changing the database), a predicate dependency graph is built [ZCF+97]. This
graph shows the dependencies, through positive and negative atoms, among
predicates in the program. Also, a negative dependency is added for each outer join
goal and aggregate goal.

This dependency graph is useful for finding a stratification for the program
[ZCF+97]. A stratification collects predicates into numbered strata (1..N). A basic
bottom-up computation would solve all of the predicates in stratum 1, then 2, and so
on, until the meaning of the whole program is found. With our approach, we only
resort to compute by stratum when a negative dependency occurs in the predicate
dependency graph restricted to the query; nevertheless, each predicate that is actually
needed is solved by means of the extension table mechanism described in the previous

Fernando Sáenz-Pérez 166/204

Universidad Complutense de Madrid

Datalog Educational System

section. As a consequence, many computations are avoided w.r.t. a naïve bottom-up
implementation. Outer join and aggregate goals are also collected into strata as if they
were negative atoms in order to have their answer set completely defined and
therefore ensure termination of the computation algorithm in presence of null values.

5.16.4 Porting to Unsupported Systems

DES is implemented with several Prolog files: des.pl , des_dcg.pl ,
des_sql.pl , des_ra.pl , des_sql_debug.pl , des_dl_debug.pl ,
des_types.pl , des_tc.pl , and des_glue.pl . The first file contains the common
predicates for all of the platforms (both Prolog interpreters and operating systems)
following the Prolog ISO standard. File des_dcg.pl , contains the definition of DCG
expansion (which varies from one system to another). Files des_sql.pl and
des_ra.pl contain the SQL and RA processor, respectively. Files
des_sql_debug.pl and des_dl_debug.pl contain the SQL and Datalog
declarative debuggers. File des_types.pl , contains the type checking and inference
system. File des_tc.pl contains the SQL test case generator code. The last file
des_glue.pl contains Prolog system specific code, which vary from a system to
another. Adapting the predicates found there should not pose problems, provided that
the Prolog interpreter and operating system feature some basic characteristics (mainly
about the file system commands). In particular, finite domain constraints is a must for
supporting several features of DES, such as type inference and test case generation. If
you plan to port DES to other systems not described here, you will have to modify the
system specific Prolog file to suit your system. If so, and if you want to figure as one of
the system contributors, please send an e–mail message with the code and reference
information to: fernan@sip.ucm.es , accepting that your contribution will be under
the GNU Lesser General Public License. (See the appendix for details.)

5.16.5 Differences among Platforms

Ciao, SWI, and SICStus Prolog implementations use a sort which eliminates
duplicates whereas GNU Prolog implementation does not.

In its current version, the Ciao system forces to use some directives for using
several basic Prolog primitives. This can only be done by writing them in the core file
(des.pl) of the system, making it incompatible with other platforms. This is why the
core file for Ciao has some preliminary directives not found in the core file shared by
other platforms. Future Ciao versions may change this particular behaviour. GNU
Prolog, as well, needs a prelude for avoiding the initialization call to
ensure_loaded/1 , since it does not support this ISO predicate.

See also Section 10 for consult unsupported features of some source
distributions.

6. Examples

The DES distribution contains the directory examples which shows several
features of the system. Unless explicitly noted, all queries have been solved after the
commands /verbose off and /pretty_print off have been executed.

Fernando Sáenz-Pérez 167/204

Universidad Complutense de Madrid

Datalog Educational System

6.1 Relational Operations (files relop.{dl,sql,ra})

The program relop.dl is intended to show how to mimic with Datalog rules
the basic relational operations that can be found in the file relop.sql . It contains
three relations (a, b, and c), which are used as arguments of relational operations. In
order to have loaded this program and be able to submit queries you can consult it
with /c relop . In the remarks below, relational operator symbols are represented
with ASCII characters, as =|x| to denote the left outer join , and x to simply denote
the Cartesian product.

% (Extended) Relational Algebra Operations

% pi(X)(c(X,Y)) : Projection of the first argument of c
projection(X) :- c(X,Y).

% sigma(X=a2)(a) : Selecting tuples from a such tha t its first
argument is a2
selection(X) :- a(X), X=a2.

% a x b : Cartesian product of relations a and b
cartesian(X,Y) :- a(X), b(Y).

% a |x| b : Natural inner join of relations a and b
inner_join(X) :- a(X), b(X).

% a =|x| b : Left outer join of relations a and b
left_join(X,Y) :- lj(a(X), b(Y), X=Y).

% a |x|= b : Right outer join of relations a and b
right_join(X,Y) :- rj(a(X), b(Y), X=Y).

% a =|x|= b : Full outer join of relations a and b
full_join(X,Y) :- fj(a(X), b(Y), X=Y).

% a U b : Set union of relations a and b
union(X) :- a(X) ; b(X).

% a - b: Set difference of relations a and b
difference(X) :- a(X), not(b(X)).

Once the program is consulted, you can query it by, for example:

DES> projection(X)

{
 projection(a1),
 projection(a2)
}
Info: 2 tuples computed.

The result of a query is the meaning of the view, i.e., the fact set for the query
derived from the program whether intensionally or extensionally. In the above
example, projection(X) corresponds to the projection of the first argument of
relation c .

Fernando Sáenz-Pérez 168/204

Universidad Complutense de Madrid

Datalog Educational System

The second view in Section 4.1.5 returns:

Info: Processing:
 a(X) :- b(X).
{
 a(a1),
 a(a2),
 a(a3),
 a(b1),
 a(b2)
}
Info: 5 tuples computed.

For abolishing this program and execute the SQL statements in relop.sql ,
you can type /abolish and /process relop.sql . Note that the extension can be
omitted in the process command.

Here, we depart from the Datalog interpreter and, if you are to submit SQL
queries, it is useful to switch to the SQL interpreter via the command /sql as inputs
will be parsed only by the SQL parser. Otherwise, it will be tried to be identified as a
Datalog input, and then as a SQL input.

Note that in the file relop.sql listed below, strings are enclosed between
apostrophes. This is not needed in the Datalog language. In order to execute the
contents of this file, type /process relop.sql .

% Switch to SQL interpreter
/sql
% Creating tables
create or replace table a(a);
create or replace table b(b);
create or replace table c(a,b);
% Listing the database schema
/dbschema
% Inserting values into tables
insert into a values ('a1');
insert into a values ('a2');
insert into a values ('a3');
insert into b values ('b1');
insert into b values ('b2');
insert into b values ('a1');
insert into c values ('a1','b2');
insert into c values ('a1','a1');
insert into c values ('a2','b2');
% Testing the just inserted values
select * from a;
select * from b;
select * from c;
% Projection
select a from c;
% Selection
select a from a where a='a2';
% Cartesian product
select * from a,b;

Fernando Sáenz-Pérez 169/204

Universidad Complutense de Madrid

Datalog Educational System

% Inner Join
select a from a inner join b on a.a=b.b;
% Left Join
select * from a left join b on a.a=b.b;
% Right Join
select * from a right join b on a.a=b.b;
% Full Join
select * from a full join b on a.a=b.b;
% Union
select * from a union select * from b;
% Difference
select * from a except select * from b;

If we have created the relations in Datalog, we cannot access them from SQL
unless they had been either defined as tables or views or declared with types. For
example, following the first alternative and after consulting the file relop.dl , we can
submit:

create table a(a varchar);

And, then, accessing with a SQL statement the tuples that were asserted in
Datalog:

DES-SQL> select * from a;
answer(a.a) ->
{
 answer(a1),
 answer(a2),
 answer(a3)
}
Info: 3 tuples computed.

Otherwise, an error is submitted:

Error: Unknown table or view "a"

Following the second alternative and after consulting the file relop.dl , we
can declare types for a:

DES-SQL> /datalog :-type(a,[a:varchar])
DES-SQL> select * from a
answer(a.a) ->
{
 answer(a1),
 answer(a2),
 answer(a3)
}
Info: 3 tuples computed.

Fernando Sáenz-Pérez 170/204

Universidad Complutense de Madrid

Datalog Educational System

6.2 Paths in a Graph (files paths.{dl,sql,ra})

This program11 introduces the use of recursion in DES by defining the graph in
Figure 1 and the set of tuples <origin, destination> such that there is a path from origin
to destination.

 b

c

a d

Figure 1. Paths in a Graph

The file paths.dl contains the following Datalog code, which can be consulted
with /c paths :

% Paths in a Graph

edge(a,b).
edge(a,c).
edge(b,a).
edge(b,d).

path(X,Y) :- path(X,Z), edge(Z,Y).
path(X,Y) :- edge(X,Y).

The query path(X,Y) yields the following answer:
{
 path(a,a),
 path(a,b),
 path(a,c),
 path(a,d),
 path(b,a),
 path(b,b),
 path(b,c),
 path(b,d)
}
Info: 8 tuples computed.

The file paths.sql contains the SQL counterpart code, which can be executed
with /process paths.sql :

create table edge(origin,destination);
insert into edge values('a','b');
insert into edge values('a','c');
insert into edge values('b','a');
insert into edge values('b','d');
create view paths(origin,destination) as
 with
 recursive path(origin,destination) as

11 Adapted from [TS86].

Fernando Sáenz-Pérez 171/204

Universidad Complutense de Madrid

Datalog Educational System

 (select * from edge)
 union
 (select path.origin,edge.destination
 from path,edge
 where path.destination =edge.origin)
 select * from path;

So, you can get the same answer as before with the SQL statement:

DES-SQL> select * from paths;
answer(paths.origin, paths.destination) ->
{
 answer(a,a),
 answer(a,b),
 answer(a,c),
 answer(a,d),
 answer(b,a),
 answer(b,b),
 answer(b,c),
 answer(b,d)
}
Info: 8 tuples computed.

Another shorter formulation is allowed in DES with the following view
definition:

create view path(origin,destination) as
 select * from
 (select * from edge)
 union
 (select path.origin,edge.destination
 from path,edge
 where path.destination=edge.origin)

You can finally compare this with the RA formulation:

paths(origin,destination) :=
 select true (edge)
 union
 project paths.origin,edge.destination
 (edge zjoin paths.destination=edge.origin paths);

6.3 Shortest Paths (file spaths.{dl,sql,ra})

Thanks to aggregate predicates, one can code the following version of the
shortest paths problem (file spaths.dl), which uses the same definition of edge as the
previous example:

path(X,Y,1) :-
 edge(X,Y).
path(X,Y,L) :-
 path(X,Z,L0),
 edge(Z,Y),
 count(edge(A,B),Max),

Fernando Sáenz-Pérez 172/204

Universidad Complutense de Madrid

Datalog Educational System

 L0<Max,
 L is L0+1.

sp(X,Y,L) :-
 min(path(X,Y,Z),Z,L).

Note that the infinite computation that may raise from using the builtin is/2 is
avoided by limiting the total length of a path to the number of edges in the graph.

The following query returns all the possible paths and their corresponding
minimal distances:

DES> sp(X,Y,L)
{
 sp(a,a,2),
 sp(a,b,1),
 sp(a,c,1),
 sp(a,d,2),
 sp(b,a,1),
 sp(b,b,2),
 sp(b,c,2),
 sp(b,d,1)
}
Info: 8 tuples computed.

Below is the SQL formulation for the same problem (file spaths.sql) :

DES-SQL> create or replace view
spaths(origin,destination,length) as with recursive
path(origin,destination,length) as
(select edge.*,1 from edge)
 union
(select path.origin,edge.destination,path.length+1
 from path,edge
 where path.destination=edge.origin and
 path.length<(select count(*) from edge))
select origin,destination,min(length) from path gro up by
origin,destination;

DES-SQL> select * from spaths
answer(spaths.origin, spaths.destination, spaths.le ngth) ->
{
 answer(a,a,2),
 answer(a,b,1),
 answer(a,c,1),
 answer(a,d,2),
 answer(b,a,1),
 answer(b,b,2),
 answer(b,c,2),
 answer(b,d,1)
}
Info: 8 tuples computed.

A possible RA formulation follows:

max_length(max_length) :=

Fernando Sáenz-Pérez 173/204

Universidad Complutense de Madrid

Datalog Educational System

 group_by [] count(*) true (edge);

path(origin,destination,length) :=
 project origin,destination,1 (edge)
 union
 project path.origin,edge.destination,path.length +1
 (
 path
 zjoin path.destination=edge.origin and
 path.length<max_length
 (edge product max_length)
);

spaths(origin,destination,length) :=
 group_by origin,destination origin,destination,mi n(length)
true
 (path);

And its query:

/ra select true (spaths);

6.4 Family Tree (files family.{dl,sql,ra})

This (yet another classic) program defines the family tree shown in Figure 2, the
set of tuples <parent ,child > such that parent is a parent of child (the relation
parent), the set of tuples <ancestor ,descendant > such that ancestor is an
ancestor of descendant (the relation ancestor), the set of tuples <father ,child >
such that father is the father of child (the relation father), and the set of tuples
<mother ,child > such that mother is the mother of child (the relation mother).

amy

tom grace

fred

jack

carolIII

carolII

tony carolI

Figure 2. Family Tree

The file family.dl contains the following Datalog code, which can be
consulted with /c family :

father(tom,amy).
father(jack,fred).
father(tony,carolII).
father(fred,carolIII).
mother(grace,amy).
mother(amy,fred).

Fernando Sáenz-Pérez 174/204

Universidad Complutense de Madrid

Datalog Educational System

mother(carolI,carolII).
mother(carolII,carolIII).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

The query ancestor(tom,X) yields the following answer (that is, it computes
the set of descendants of tom):
{
 ancestor(tom,amy),
 ancestor(tom,carolIII),
 ancestor(tom,fred)
}
Info: 3 tuples computed.

Solving the view:

son(S,F,M) :- father(F,S),mother(M,S).

yields the following answer, computing the set of sons:
Info: Processing:
 son(S,F,M) :- father(F,S),mother(M,S).
{
 son(amy,tom,grace),
 son(carolII,tony,carolI),
 son(carolIII,fred,carolII),
 son(fred,jack,amy)
}
Info: 4 tuples computed.

The file family.sql contains the SQL counterpart code, which can be
executed with /process family.sql :

create table father(father,child);
insert into father values('tom','amy');
insert into father values('jack','fred');
insert into father values('tony','carolII');
insert into father values('fred','carolIII');
create table mother(mother,child);
insert into mother values('grace','amy');
insert into mother values('amy','fred');
insert into mother values('carolI','carolII');
insert into mother values('carolII','carolIII');
create view parent(parent,child) as
 select * from father
 union
 select * from mother;
create or replace view ancestor(ancestor,descendant) as
 select parent,child from parent
 union
 select parent,descendant from parent,ancestor
 where parent.child=ancestor.ancestor;

Fernando Sáenz-Pérez 175/204

Universidad Complutense de Madrid

Datalog Educational System

The two example queries above can be formulated in SQL as:

select * from ancestor where ancestor='tom';

select child,father,mother
 from father,mother
 where father.child=mother.child;

And also as RA queries as:

/ra select ancestor='tom' (ancestor);

project child,father,mother
 (father zjoin father.child=mother.child mother);

6.5 Basic Recursion Problem (file recursion.dl)

This example is intended to show that queries involving recursive predicates do
terminate thanks to DES fixpoint solving, by contrast with Prolog’s usual SLD
resolution.

p(0).
p(X) :- p(X).
p(1).

The query p(X) returns the inferred facts from the program irrespective of the
apparent infinite recursion in the second rule. (Note that the Prolog goal p(1) does not
terminate. You can easily check it out with /prolog p(1) .)

6.6 Transitive Closure (files tranclosure.{dl,sql,ra})

With this example, we show a possible use of mutual recursion by means of a
Datalog program that defines the transitive closure of the relations p and q12. It can be
consulted with /c tranclosure .

p(a,b).
p(c,d).
q(b,c).
q(d,e).
pqs(X,Y) :- p(X,Y).
pqs(X,Y) :- q(X,Y).
pqs(X,Y) :- pqs(X,Z),p(Z,Y).
pqs(X,Y) :- pqs(X,Z),q(Z,Y).

The query pqs(X,Y) returns the whole set of inferred facts that model the
transitive closure.

File tranclosure.sql contains the SQL counterpart code, which can be
executed with /process tranclosure.sql :

create table p(x,y);
insert into p values ('a','b');

12 Taken from [Diet87].

Fernando Sáenz-Pérez 176/204

Universidad Complutense de Madrid

Datalog Educational System

insert into p values ('c','d');
create table q(x,y);
insert into q values ('b','c');
insert into q values ('d','e');
create view pqs(x,y) as
 select * from p
 union
 select * from q
 union select pqs.x,p.y from pqs,p where pqs.y=p.x
 union select pqs.x,q.y from pqs,q where pqs.y=q.x ;

The query select * from pqs returns the same answer as before.

File tranclosure.ra contains the RA formulation:

pqs(x,y) :=
 p
 union
 q
 union
 project pqs.x,p.y (pqs zjoin pqs.y=p.x p)
 union
 project pqs.x,q.y (pqs zjoin pqs.y=q.x q);

/ra select true (pqs)

6.7 Mutual Recursion (files mutrecursion.{dl,sql,ra})

The following program shows a basic example about mutual recursion:
p(a).
p(b).
q(c).
q(d).
p(X) :- q(X).
q(X) :- p(X).

Submitting the goal p(X) , we get:
{
 p(a),
 p(b),
 p(c),
 p(d)
}
Info: 4 tuples computed.

which is the same set of values for arguments for the query q(X) . The file
mrtc.dl is a combination of this example and that of the previous section.

The file mutrecursion.sql contains the SQL counterpart code, which can be
executed with /process mutrecursion.sql :

/sql
/assert p(a)
/assert p(b)
/assert q(c)
/assert q(d)

Fernando Sáenz-Pérez 177/204

Universidad Complutense de Madrid

Datalog Educational System

-- View q must be given a prototype for view p to b e defined
create view q(x) as select * from q;
create or replace view p(x) as select * from q;
create or replace view q(x) as select * from p;

Note that it is needed to build a void view for q in order to have it declared
when defining the view p. The void view is then replaced by its actual definition. The
contents of both views can be tested to be equal with:

select * from p;
select * from q;

File mutrecursion.ra contains the RA formulation:

-- View q must be given a prototype for view p to b e defined
q(x) := select true (q);
p(x) := select true (q);
q(x) := select true (p);

select true (p);
select true (q);

6.8 Farmer-Wolf-Goat-Cabbage Puzzle (file puzzle.dl)

This example13 shows the classic Farmer–Wolf–Goat–Cabbage puzzle (also
Missionaries and Cannibals as another rewritten form). The farmer, wolf, goat, and
cabbage are all on the north shore of a river and the problem is to transfer them to the
south shore. The farmer has a boat which he can row taking at most one passenger at a
time. The goat cannot be left with the wolf unless the farmer is present. The cabbage,
which counts as a passenger, cannot be left with the goat unless the farmer is present.
The following program models the solution to this puzzle. The relation state/4
defines the valid states under the specification (i.e., those situations in which there is
no danger for any of the characters in our story; a state in which the goat is left alone
with the cabbage may result in an eaten cabbage) and imposes that there is a previous
valid state from which we depart from. The arguments of this relation are intended to
represent (from left to right) the position (north –n– or south –s– shore) of the farmer,
wolf, goat, and cabbage. We use the relation safe/4 to verify that a given
configuration of positions is valid. The relation opp/2 simply states that north is the
opposite shore of south and viceversa.

% Initial state
state(n,n,n,n).
% Farmer takes Wolf
state(X,X,U,V) :-
 safe(X,X,U,V),
 opp(X,X1),
 state(X1,X1,U,V).
% Farmer takes Goat
state(X,Y,X,V) :-

13 Adapted from [Diet87].

Fernando Sáenz-Pérez 178/204

Universidad Complutense de Madrid

Datalog Educational System

 safe(X,Y,X,V),
 opp(X,X1),
 state(X1,Y,X1,V).
% Farmer takes Cabbage
state(X,Y,U,X) :-
 safe(X,Y,U,X),
 opp(X,X1),
 state(X1,Y,U,X1).
% Farmer goes by himself
state(X,Y,U,V) :-
 safe(X,Y,U,V),
 opp(X,X1),
 state(X1,Y,U,V).

% Opposite shores (n/s)
opp(n,s).
opp(s,n).

% Farmer is with Goat
safe(X,Y,X,V).
% Farmer is not with Goat
safe(X,X,X1,X) :- opp(X,X1).

If we submit the query state(s,s,s,s) , we get the expected result:
{
 state(s,s,s,s)
}
Info: 1 tuple computed.

That is, the system has proved that there is a serial of transfers between shores
which finally end with the asked configuration (this problem is not modeled to show
this serial). If we ask for the extension table contents regarding the relation state/4
(with the command /list_et state/4), we get for the answers:
{
 state(n,n,n,n),
 state(n,n,n,s),
 state(n,n,s,n),
 state(n,s,n,n),
 state(n,s,n,s),
 state(s,n,s,n),
 state(s,n,s,s),
 state(s,s,n,s),
 state(s,s,s,n),
 state(s,s,s,s)
}
Info: 10 tuples in the answer set.

This is the complete set of valid states which includes all of the valid paths from
state(n,n,n,n) to state(s,s,s,s) . However, the order of states to reach the
latter is not given, but we can find it by observing this relation, i.e.:

state(n,n,n,n) →→→→ Farmer takes Goat to south shore →→→→
state(s,n,s,n) →→→→ Farmer returns to north shore →→→→
state(n,n,s,n) →→→→ Farmer takes Wolf to south shore →→→→

Fernando Sáenz-Pérez 179/204

Universidad Complutense de Madrid

Datalog Educational System

state(s,s,s,n) →→→→ Farmer takes Goat to north shore →→→→
state(n,s,n,n) →→→→ Farmer takes Cabbage to south shore →→→→
state(s,s,n,s) →→→→ Farmer returns to north shore →→→→
state(n,s,n,s) →→→→ Farmer takes Goat to south shore →→→→
state(s,s,s,s) Final safe state

Observe that there is two states in the relation state/4 which do not form part
of the previous path:

state(s,n,s,s)
state(n,n,n,s)

These states come from another possible path:14

state(n,n,n,n) →→→→ Farmer takes Goat to south shore →→→→
state(s,n,s,n) →→→→ Farmer returns to north shore →→→→
state(n,n,s,n) →→→→ Farmer takes Cabbage to south shore →→→→
state(s,n,s,s) →→→→ Farmer takes Goat to north shore →→→→
state(n,n,n,s) →→→→ Farmer takes Wolf to south shore →→→→
state(s,s,s,n) →→→→ Farmer takes Goat to north shore →→→→
state(s,s,n,s) →→→→ Farmer returns to north shore →→→→
state(n,s,n,s) →→→→ Farmer takes Goat to south shore →→→→
state(s,s,s,s) Final safe state

6.9 Paradoxes (files russell.{dl,sql,ra})

When negation is used, we can find paradoxes, such as the Russell’s paradox
(the barber in a town shaves every person who does not shave himself) shown in the
next example (please note that this example is not stratified and, in general, we cannot
ensure correctness for non-stratifiable programs):

DES> /verbose on
Info: Verbose output is on.

DES> /c russell
Info: Consulting russell...
 shaves(barber,M) :-
 man(M),
 not(shaves(M,M)).
 man(barber).
 man(mayor).
 shaved(M) :-
 shaves(barber,M).
 end_of_file.
Info: 4 rules consulted.
Info: Computing predicate dependency graph...
Info: Computing strata...
Warning: Non stratifiable program.

14 Remember that the system returns all of the possible solutions.

Fernando Sáenz-Pérez 180/204

Universidad Complutense de Madrid

Datalog Educational System

If we submit the query shaves(X,Y) , we get the positive facts as well as a set
of undefined inferred information (in our example, whether the barber shaves himself),
as follows (here, verbose output is enabled):

DES> shaves(X,Y)
Warning: Unable to ensure correctness for this quer y.
{
 shaves(barber,mayor)
}
Info: 1 tuple computed.
Undefined:
{
 shaves(barber,barber)
}
Info: 1 tuple undefined.

If we look at the extension table contents by submitting the command
/list_et , we get as answers:
Answers:
{
 man(barber),
 man(mayor),
 not(shaves(mayor,mayor)),
 shaves(barber,mayor)
}
Info: 4 tuples in the answer set.

We can see that, in particular, we have proved additional negative information
(the mayor does not shaves himself) and that no information is given for the undefined
facts. The current implementation uses an incomplete algorithm for finding such
undefined facts. We can see this incompleteness by adding the following rule:

shaved(M) :- shaves(barber,M).

The query shaved(M) returns:

Warning: Unable to ensure correctness for this quer y.
{
 shaved(mayor)
}
Info: 1 tuple computed.

That is, the system is unable to prove that shaved(barber) is undefined.

If you look at the predicate dependency graph and the stratification of the
program:

DES> /pdg

Nodes: [man/1,shaved/1,shaves/2]
Arcs : [shaves/2-shaves/2,shaves/2+man/1,shaved/1+s haves/2]

DES> /strata

[non-stratifiable]

Fernando Sáenz-Pérez 181/204

Universidad Complutense de Madrid

Datalog Educational System

you get the predicate dependency graph shown in Figure 4, and you are informed that
the program is non-stratifiable. This figure shows a negation in a cycle, so that the
program is not stratifiable. (The system warned of this situation when the program was
loaded.)

 +
shaves

man shaved

+

-

Figure 4. Predicate Dependency Graph for russell.dl

However, even when a program is non-stratifiable, there may exist a query with
an associated predicate dependency subgraph so that negation does not occur in any
cycle. For instance, this occurs with the query man(X) in this program:

DES> man(X)
Info: Stratifiable subprogram found for the given q uery.
{
 man(barber),
 man(mayor)
}
Info: 2 tuples computed.

Here, the system recomputed the strata for the predicate dependency subgraph,
and informed that it found a stratifiable subprogram for such a query. In this simple
case, no more negations were involved in the subgraph, but more elaborated
dependencies can be found in other examples (cf. Sections 6.10 and 6.11).

Stratification may be needed for programs without negation as long as a
temporary view contains a negated goal. Consider the following view under the
program relop.dl (rules in the program with negation are not present in the
subgraph for the query d(X)):

DES> d(X) :- a(X), not(b(X))
Info: Processing:
 d(X) :- a(X),not(b(X)).
{
 d(a2),
 d(a3)
}
Info: 2 tuples computed.

In this view, the query d(X) is solved with a solve-by-stratum algorithm,
described in Section 5.16.3. In this case, this means that the goal b(X) is solved before
obtaining the meaning of d(X) because b is in a lower stratum than d and it is needed
for the computation of d.

The basic paradox p:-not(p) can be found in the file paradox.dl, whose
model is undefined as you can test with the query p.

Fernando Sáenz-Pérez 182/204

Universidad Complutense de Madrid

Datalog Educational System

6.10 Parity (file parity.dl)

This example program15 is intended to compute the parity of a given base
relation br(X) , i.e., it can determine whether the number of elements in the relation
(cardinality) is even or odd by means of the predicates br_is_even , and br_is_odd ,
respectively. The predicate next defines an ascending chain of elements in br based
on their textual ordering, where the first link of the chain connects the distinguished
node nil to the first element in br . The predicates even and odd define the even,
resp. odd, elements in the chain. The predicate has_preceding defines the elements
in br such that there are previous elements to a given one (the first element in the
chain has no preceding elements). The rule defining this predicate includes an
intended error (fourth rule in the example) which will be used in Section 6.13 to show
how it is caught by the declarative debugger.

% Pairs of non-consecutive elements in br
between(X,Z) :-
 br(X), br(Y), br(Z), X<Y, Y<Z.

% Consecutive elements in the sequence, starting at nil
next(X,Y) :-
 br(X), br(Y), X<Y, not(between(X,Y)).
next(nil,X) :-
 br(X), not(has_preceding(X)).

% Values having preceding values in the sequence
has_preceding(X) :-
 br(X), br(Y), Y>X. %error: Y>X should be Y<X

% Values in an even position of the sequence, inclu ding nil
even(nil).
even(Y) :-
 odd(X), next(X,Y).

% Values in an odd position of the sequence
odd(Y) :-
 even(X), next(X,Y).

% Succeeds if the cardinality of the sequence is ev en
br_is_even :-
 even(X), not(next(X,Y)).

% Succeeds if the cardinality of the sequence is od d
br_is_odd :-
 odd(X), not(next(X,Y)).

% Base relation
br(a).
br(b).

15 Adapted from [ZCF+97].

Fernando Sáenz-Pérez 183/204

Universidad Complutense de Madrid

Datalog Educational System

6.11 Grammar (file grammar.dl)

Parsers can also be coded as Datalog programs. In this example16, a simple left-
recursive grammar analyser is coded for the following grammar rules.

A –> a

A –> Ab

A –> Aa

It was tested with the input string “ababa”, which is coded with the relation
t(F,T,L) , F for the position of token T that ends at position L.

t(1,a,2).
t(2,b,3).
t(3,a,4).
t(4,b,5).
t(5,a,6).
a(F,L) :- t(F,a,L).
a(F,L) :- a(F,M), t(M,b,L).
a(F,L) :- a(F,M), t(M,a,L).
DES> a(1,6)
{
 a(1,6)
}
Info: 1 tuple computed.

6.12 Fibonacci (file fib.{dl,sql,ra})

The all-time classics Fibonacci program17 can be coded in DES thanks to
arithmetic built-ins. It can be formulated as follows:

fib(0,1).
fib(1,1).
fib(N,F) :-
 N>1,
 N2 is N-2,
 fib(N2,F2),
 N1 is N-1,
 fib(N1,F1),
 F is F2+F1.

Since DES is implemented with extension tables, computing high Fibonacci
numbers is possible with linear complexity:

DES> fib(1000,F)
{
fib(1000,703303677114228158218352548771835497701812 6983635873274
260490508715453711819693357974224949456261173348775 0449241765991

16 Taken from [FD92].

17 Taken from [FD92].

Fernando Sáenz-Pérez 184/204

Universidad Complutense de Madrid

Datalog Educational System

088186363265450223647106012053374121273867339111198 1393731255987
67690091902245245323403501)
}
Info: 1 tuple computed.

Also, it is possible to formulate this in SQL, even when the next view features
non-linear recursion (file fib.sql):

create view fib(n,f) as
 select 0,1
 union
 select 1,1
 union
 select fib1.n+1,fib1.f+fib2.f
 from fib fib1, fib fib2
 where fib1.n=fib2.n+1 and fib1.n<10;

As well, next there is a possible RA formulation (file fib.ra):

fib(n,f) :=
 project 0,1 (dual)
 union
 project 1,1 (dual)
 union
 project fib1.n+1,fib1.f+fib2.f
 (rename fib1(n1,f1) (fib)
 zjoin
 n1=n2+1 and n1<10
 rename fib2(n2,f2) (fib));

6.13 Hanoi Towers (file hanoi.dl)

Another well-known toy puzzle is the towers of Hanoi, which can be coded as:

hanoi(1,A,B,C).
hanoi(N,A,B,C) :-
 N>1,
 N1 is N-1,
 hanoi(N1,A,C,B),
 hanoi(N1,C,B,A).

We can submit the following query for 10 discs:

DES> hanoi(10,a,b,c)
{
 hanoi(10,a,b,c)
}
Info: 1 tuple computed.

Note that the answer to this query does not reflect the movements of the discs,
which can be otherwise shown as the intermediate results kept in the extension table:

DES> /list_et hanoi
Answers:
{
 hanoi(1,a,c,b),

Fernando Sáenz-Pérez 185/204

Universidad Complutense de Madrid

Datalog Educational System

 hanoi(1,b,a,c),
 hanoi(1,c,b,a),
 hanoi(2,a,b,c),
 hanoi(2,b,c,a),
 hanoi(2,c,a,b),
 hanoi(3,a,c,b),
 hanoi(3,b,a,c),
 hanoi(3,c,b,a),
 hanoi(4,a,b,c),
 hanoi(4,b,c,a),
 hanoi(4,c,a,b),
 hanoi(5,a,c,b),
 hanoi(5,b,a,c),
 hanoi(5,c,b,a),
 hanoi(6,a,b,c),
 hanoi(6,b,c,a),
 hanoi(6,c,a,b),
 hanoi(7,a,c,b),
 hanoi(7,b,a,c),
 hanoi(7,c,b,a),
 hanoi(8,a,b,c),
 hanoi(8,b,c,a),
 hanoi(8,c,a,b),
 hanoi(9,a,c,b),
 hanoi(9,c,b,a),
 hanoi(10,a,b,c)
}
Info: 27 tuples in the answer set.
...

6.14 Other Examples

Directory examples include some other examples as the files bom.dl (bill of
materials) and trains.dl (train connections) which show more example applications
including negation. Other examples are orbits.dl (a cosmos tiny database), sg.dl
(same generation for a family database), tc.dl (transitive closure), and
empTraining.{ra,sql} (taken from [Diet01]). Also, the folder persistent
contains examples for persisting predicates, the folder ontology includes examples of
authoring ontologies, including some documentation, and folders DLDebugger and
SQLDebugger include examples for debugging Datalog programs and SQL views,
respectively.

7. Contributions

This section collects the contributions from external developers up to now:

• Test Case Generator.
Authors: Rafael Caballero-Roldán, Yolanda García-Ruiz, and Fernando Sáenz-Pérez
Date: 10/2009 (upgraded version supported since DES 1.8.0)
Description: Tool for generating test cases for SQL views
License: LGPL
Contact: Yolanda García-Ruiz (Implementor)

Fernando Sáenz-Pérez 186/204

Universidad Complutense de Madrid

Datalog Educational System

• Datalog Declarative Debugger.
Authors: Rafael Caballero-Roldán, Yolanda García-Ruiz, and Fernando Sáenz-Pérez
Date: 5/2007
Description: Tool for the declarative debugging of Datalog programs
License: LGPL
Contact: Yolanda García-Ruiz (Implementor)

• ACIDE (A Configurable Development Environment).
Authors: Diego Cardiel Freire, Juan José Ortiz Sánchez, Delfín Rupérez Cañas (SI
2006/2007), Miguel Martín Lázaro (SI 2007/2008), and Javier Salcedo Gómez (SI
2010/2011) leaded by Fernando Sáenz.
Date: 3/2007 (ACIDE 0.1, first version), 11/2008 (ACIDE 0.7, current alpha version)
Description: This project is aimed to provide a multiplatform configurable
integrated development environment which can be configured in order to be used
with any development system such as interpreters, compilers and database
systems. Features of this system include: project management, multifile editing,
syntax colouring, and parsing on-the-fly (which informs of syntax errors when
editing programs prior to the compilation).
License: GPL.
Project Web Page: http://acide.sourceforge.net/

• Emacs development environment.
Author: Markus Triska.
Date: 2/22/2007
Description: Provides an integration of DES into Emacs. Once a Datalog file has
been opened, you can consult it by pressing F1 and submit queries and commands
from Emacs. This works at least in combination with SWI Prolog (it depends on the
–s switch); other systems may require slight modifications.
License: GPL.
Project Web Page: http://stud4.tuwien.ac.at/~e0225855/index.html
Contact: markus.triska@gmx.at
Installation: Copy des.el (in the contributors web page) to your home directory
and add to your .emacs :
(load "~/des")
; adapt the following path as necessary:
(setq des-prolog-file "~/des/systems/swi/des.pl")
(add-to-list 'auto-mode-alist '("\\.dl$" . des-mode))

Restart Emacs, open a *.dl file to load it into a DES process (this currently only
works with SWI Prolog). If the region is active, F1 consults the text in the region.
You can then interact with DES as on a terminal.

8. Related Work

There has been a high amount of work around deductive databases [RU95] (its
interest delivered many workshops and conferences for this subject) which dealt to
several systems. However, to the best of our knowledge, there is no a friendly system
oriented to introducing deductive databases with several query languages to students.
Nevertheless, on the one hand, we can comment some representative deductive
database systems. On the other hand, also some technological transfers to face real-
world problems.

Fernando Sáenz-Pérez 187/204

Universidad Complutense de Madrid

Datalog Educational System

8.1 Deductive Database Systems

4QL [MS11] is a recent development of a rule-based database query language
with negation allowed in bodies and heads of rules, which is founded on a four-valued
semantics with truth values: true, false, inconsistent and unknown. It provides means
for a uniform treatment of Open and Local Closed World, other
nonmonotonic/commonsense formalisms, including various variants of default
reasoning, autoepistemic reasoning and other formalisms application-specific
disambiguation of inconsistent information, including defeasible reasoning.

ConceptBase [JJNS98] is a multi-user deductive object manager mainly intended
for conceptual modeling and coordination in design environments. It is multiplatform,
object-oriented, it enjoys integrity constraints, database updates and several other
interesting features.

The LDL project at MCC lead to the LDL++ system [AOTWZ03], a deductive
database system with features such as X-Y stratification, set and complex terms,
database updates and aggregates. It can be currently used through Internet using a
Java–enabled client.

DLV [FP96] is a multiplatform system for disjunctive Datalog with constraints,
true negation (à la Gelfond & Lifschitz) and queries. It includes the K planning system,
a frontend for abductive diagnosis and Reiter's diagnosis, support for inheritance, and
a SQL front-end which prototypes some novel SQL3 features. DLVDB is an extension of
DLV which provides interfaces with relational databases, taking advantage of their
efficient implementations to speed-up computations.

XSB [RSSWF97] (http://xsb.sourceforge.net/) is an extended Prolog
system that can be used for deductive database applications. It enjoys a well–founded
semantics for rules with negative literals in rule bodies and implements tabling
mechanisms. It runs both on Unix/Linux and Windows operating systems. Datalog++
[Tang99] is a front-end for the XSB deductive database system.

bddbddb [WL04] stands for BDD-Based Deductive DataBase. It is an
implementation of Datalog that represents the relations using binary decision diagrams
(BDDs). BDDs are a data structure that can efficiently represent large relations and
provide efficient set operations. This allows bddbddb to efficiently represent and
operate on extremely large relations.

IRIS (Integrated Rule Inference System) [IRIS2008] is a Java implementation of
an extensible reasoning engine for expressive rule-based languages provided as an
API. Supports safe or un-safe Datalog with (locally) stratified or well-founded negation
as failure, function symbols and bottom-up rule evaluation.

Coral [RSSS94] is a deductive system with a declarative query language that
supports general Horn clauses augmented with complex terms, set–grouping,
aggregation, negation, and relations with tuples that contain (universally quantified)
variables. It only runs under Unix platforms. There is also a version which allows
object–oriented features, called Coral++ [SRSS93].

FLORID (F-LOgic Reasoning In Databases) [KLW95] is a deductive object-
oriented database system supporting F-Logic as data definition and query language.
With the increasing interest in semistructured data, Florid has been extended for

Fernando Sáenz-Pérez 188/204

Universidad Complutense de Madrid

Datalog Educational System

handling semistructured data in the context of Information Integration from the
Semantic Web.

The NAIL! project delivered a prototype with stratified negation, well–founded
negation, and modularity stratified negation. Later, it added the language Glue, which
is essentially single logical rules, with SQL statements wrapped in an imperative
conventional language [PDR91, DMP93]. The approach of combining two languages is
similar to the aforementioned Coral, which uses C++. It does not run on Windows
platforms.

Another deductive database following this combination of declarative and
imperative languages is Rock&Roll [BPFWD94].

ADITI 2 [VRK+91] is the last version of a deductive database system which uses
the logic/functional programming language Mercury. It does not run on Windows
platforms. There is no further development planned for Aditi.

See also the Datalog entry in Wikipedia (http://en.wikipedia.org/wiki/

Datalog).

8.2 Technological Transfers

Datalog has been extensively studied and is gaining a renowned interest thanks
to their application to ontologies [FHH04], semantic web [CGL09], social networks
[RS09], policy languages [BFG07], and even for optimization [GTZ05]. Companies as
LogicBlox, Exeura, Semmle, and Lixto embody Datalog-based deductive database
technologies in the solutions they develop. The high-level expressivity of Datalog and
its extensions has therefore been acknowledged as a powerful feature to deal with
knowledge-based information.

The first commercial oriented deductive database system was the Smart Data
System (SDS) and its declarative query language Declarative Reasoning (DECLARE)
[KSSD94], with support for stratified negation and sets. Currently, XSB and DLV have
been projected to spin-off companies and they develop deductive solutions to real-
world problems.

9. Future Enhancements

The following list (in order of importance) suggests some points to address for
enhancing DES:

• Multiple DB connections

• Disjunctive heads

• Information about cycles involving negation in the loaded program

• Complete algorithm for finding undefined information

• Constraints (reals, integers, enumerated types)

• Precise error reporting for SQL and Datalog syntax errors

If you find worthwhile for your application either some of the points above, or
others not listed, please inform the author for trying to guide the implementation to the
most demanded points.

Fernando Sáenz-Pérez 189/204

Universidad Complutense de Madrid

Datalog Educational System

10. Caveats and Limitations

• Datalog:

o No compound terms as arguments in user relations

o Termination is ensured up to arithmetic. There is no provision for
numerical bounds

o No database updates via Datalog rules are allowed

o Rules in consulted files must end with a dot, in contrast to command
prompt inputs in single-line mode, which the dot is optional. Rules in a
consulted file may span on multiple lines and ending dot is mandatory,
irrespective the multi-line mode

• SQL:

o User identifiers (including tables, views, column names) are case
sensitive

o Some incorrect SQL statements are not rejected (as those containing a
GROUP BY clause and columns in the projection list which do not occur
in the grouping list). Rather, they raise exceptions at run-time

o Computable SQL statements follow the grammar in Section 4.2.8 of this
manual. The current grammar parses extra clauses which cannot be
computed yet (e.g., ORDER BY, ANY, ...)

o See also Section 5.1.7 regarding ODBC connections

• SQL debugger:

o SQL debugging is not supported for ODBC connections, up to now

• Test case generator:

o Source distribution for Ciao partially supports this feature

o Source distribution for GNU Prolog does not support negative integers

o Test case generation is not supported for ODBC connections, up to now

• SQL tracer:

o SQL tracing is not supported for ODBC connections, up to now

• Miscellanea:

o Enabling duplicates can notably harm performance (cf. Fibonacci
example)

o Users should not write predicate identifiers starting with the symbol '$'.
Otherwise, unexpected behaviour might happen

o Batch processing cannot be nested

• Prolog systems' specific issues:

o Safety checks for aggregates and distinct /2 are not supported in Ciao
source version

Fernando Sáenz-Pérez 190/204

Universidad Complutense de Madrid

Datalog Educational System

o Line numbers of the consulted programs are not reported for the source
distribution of GNU Prolog since this system does not provide this
information through read_term .

o GNU Prolog source distribution does not detect the ISO arithmetic error
float_overflow , int_overflow , and int_underflow , so that it is
possible to get erroneous results when computations involve large
numbers

o GNU Prolog Windows application does not handle interactive
command shells

o GNU Prolog 1.4.0 does not seem to work on Windows XP SP3
(error(system_error('error trying to execute pl2wam (maybe

not found)'),consult/1))

o Ciao source distribution does not support well SQL implementation as
its FD constraint library is not complete enough for type checking

o Ciao Prolog, GNU Prolog and SWI-Prolog distributions do not allow
arithmetic expressions involving log/2

• ODBC issues:

o Neither Ciao Prolog nor GNU Prolog source distributions support
ODBC connections

11. Release Notes

This section lists release notes of the current DES version.

11.1 Version 3.0 of DES (released on May, 10th, 2012)

• Enhancements:

o New commands:

� /close_db Name Close the given ODBC connection. TAPI enabled

� /drop_assertion Drop an assertion

� /start_stopwatch Start stopwatch. Precision depends on host
Prolog system (1 second or milliseconds)

� /stop_stopwatch Stop stopwatch

� /reset_stopwatch Reset stopwatch

� /display_stopwatch Display stopwatch

� /list_persisted Display the persisted predicates. TAPI enabled

� /show_dbs Display the open database connections. TAPI enabled

� /show_sql Display whether SQL statements which are sent to an
external database are to be displayed

� /show_sql Switch Enable or disable display of SQL statements
which are sent to an external database (on or off, resp.)

Fernando Sáenz-Pérez 191/204

Universidad Complutense de Madrid

Datalog Educational System

� /use_db Name Make Name the current ODBC connection. TAPI

enabled

� /dbschema Connection: Name Display the database schema for
the given view or table name in the given connection

� /license Display GPL and LGPL licenses. If not found, please
visit http://www.gnu.org/licenses

o New assertions:

� :-persistent(PredSpec[, Connection])) Make a predicate
to persist on an external RDBMS via an ODBC connection.
PredSpec can be either the pattern PredName/ Arity or
PredName(Schema) , where Schema can be either ArgName1, …,
ArgNameN or ArgName1:Type1, …, ArgNameN:TypeN . If a
connection name is not provided, the current open database is used

o Binary flags in commands are no longer case-sensitive

o New port to SICStus Prolog 4.2.1. This release fixes in particular some issues
with ODBC connections (exceptions about misencoded string in non-ASCII
ODBC messages, and incorrect handling of SQL_BIGINT and related types)

o New port to SWI-Prolog 6.0.2

• Changes:

o License has been relaxed to GNU Lesser General Public License

o New versions of command /debug_sql does not admit a traversing order
yet (order option removed)

o Release notes of older DES versions are moved to the new document:
releasenotesDES.pdf

• Fixed bugs:

o Some spanned inputs without leading blanks in multi-line mode were not
recognised

o Duplicated object rules were retrieved several times

o Some commands were not recognized in mixed or uppercase

o Some listings in development mode did not display all rules

o Some hypothetical queries led to exceptions

o Existency of table and attributes in an INSERT SQL statement with a SQL
data source was not checked

o Parsing of a SQL relation separated by a leading space before the comma
lead to syntax error

o Predefined strong constraints relating a tuple of column names were
rejected if its lexicographic order did not match the order in which they
occur in table definition

o Running info were logged

Fernando Sáenz-Pérez 192/204

Universidad Complutense de Madrid

Datalog Educational System

o Some rules with conjunctions and disjunctions were not parsed correctly
from consulted files

o GNU Prolog source distribution stopped processing of batch files while
encountering a /shell command

o Predicate dependency graph and strata were not computed after issuing
DML SQL statements INSERT, DELETE and DQL SQL statement WITH

12. Acknowledgements

The author wishes to thank the Clip group for providing their free Ciao system,
and in particular to F. Bueno and J. Correas for his help in porting DES to the Ciao
system. Also thanks to J. Wielemaker and D. Diaz for providing their free Prolog
systems. Mats Carlsson and Per Mildner supported the development providing help
and new capabilities in the ODBC library. Also, thanks to all the people providing
feedback, since they are guiding DES to suit more demanded requirements.
Contributors are specially acknowledged: Markus Triska, for developing the Emacs
IDE and also author of the SWI-Prolog clpfd library, R. Haemmerlé for tweaking the
Ciao clpfd library, and the students Diego Cardiel Freire, Juan José Ortiz Sánchez,
Delfín Rupérez Cañas, Miguel Martín, and Javier Salcedo, who developed and
improved ACIDE. Thanks to Yolanda García and Rafael Caballero for making
declarative debugging true for both Datalog and SQL databases. They are also key
authors in the inclusion of test case generation for SQL views. In particular, Yolanda
took the implementation effort supported by Rafael. Gabriel Aranda López and Sonia
Estévez Martín generated Mac OSX Snow Leopard and Leopard executables, resp.
Enrique Martín Martín fixed the Linux distribution of DES 1.5.0. Finally, thanks to the
Spanish projects FAST-STAMP (TIN2008-06622-C03-01), Prometidos-CM (S2009TIC-
1465) and GPD-UCM (UCM-BSCH-GR35/10-A-910502) which supported this work.

Fernando Sáenz-Pérez 193/204

Universidad Complutense de Madrid

Datalog Educational System

Appendix A. License

A.1 Software License

DES licensing comes from the ideas of the Free Software Foundation. Since version 3.0,
it is distributed under version 3 of the GNU Lesser General Public License (LGPL),
which supplements version 3 of the GNU General Public License.

DES is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

DES is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

DES versions prior to 3.0 were distributed under GNU General Public License (GPL).

A.2 Documentation License

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Fernando Sáenz-Pérez 194/204

Universidad Complutense de Madrid

Datalog Educational System

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of
this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the
Document to the Document's overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

Fernando Sáenz-Pérez 195/204

Universidad Complutense de Madrid

Datalog Educational System

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, "Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to
the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve
the Title" of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for
copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque

Fernando Sáenz-Pérez 196/204

Universidad Complutense de Madrid

Datalog Educational System

copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous
sentence.

Fernando Sáenz-Pérez 197/204

Universidad Complutense de Madrid

Datalog Educational System

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

Fernando Sáenz-Pérez 198/204

Universidad Complutense de Madrid

Datalog Educational System

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various
original documents, forming one section Entitled "History"; likewise combine any
sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an "aggregate" if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

Fernando Sáenz-Pérez 199/204

Universidad Complutense de Madrid

Datalog Educational System

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version"
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a
principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organization.

Fernando Sáenz-Pérez 200/204

Universidad Complutense de Madrid

Datalog Educational System

"Incorporate" means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with … Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

Fernando Sáenz-Pérez 201/204

Universidad Complutense de Madrid

Datalog Educational System

Bibliography

[Agra88] R. Agrawal, "Alpha: An Extension of Relational Algebra to Express a
Class of Recursive Queries", IEEE Transactions on Software
Engineering archive, Volume 14 Issue 7, July 1988.

[AO08] P. Ammann and J. Offutt, “Introduction to Software Testing”,
Cambridge University Press, 2008.

[AOTWZ03] F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo, “The deductive
database system LDL++”, TPLP, 3(1):61–94, 2003.

[BCC97] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López–García,
and G. Puebla. “The Ciao Prolog system. Reference manual”, School of
Computer Science, Technical University of Madrid (UPM), 1997.
http://www.clip.dia.fi.upm.es .

[BFG07] M. Becker, C. Fournet, and A. Gordon. Design and Semantics of a
Decentralized Authorization Language. In CSF ’07: Proceedings of the
20th IEEE Computer Security Foundations Symposium, pages 3–15,
Washington, DC, USA, 2007. IEEE Computer Society.

[BPFWD94] M.L. Barja, N.W. Paton, A. Fernandes, M.H. Williams, A. Dinn, “An
Effective Deductive Object–Oriented Database Through Language
Integration”, In Proc. of the 20th VLDB Conference, 1994.

[Caba05] Caballero, R., A declarative debugger of incorrect answers for
constraint functional-logic programs, in: WCFLP ’05: Proceedings of
the 2005 ACM SIGPLAN workshop on Curry and functional logic
programming (2005), pp. 8–13.

[CGL09] A. Calì, G. Gottlob, and T. Lukasiewicz. Datalog+-: a unified approach
to ontologies and integrity constraints. In ICDT ’09: Proceedings of the
12th International Conference on Database Theory, pages 14–30, New
York, NY, USA, 2009. ACM.

[CGS06b] R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez, “Towards a Set
Oriented Calculus for Logic Programming”, Programación y
Lenguajes, P. Lucio y F. Orejas (editors), CIMNE, pp. 41-50, Barcelona,
Spain, September, 2006.

[CGS07] R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez, “A New Proposal for
Debugging Datalog Programs”, 16th International Workshop on
Functional and (Constraint) Logic Programming, 2007.

[CGS08] R. Caballero, Y. García-Ruiz and F. Sáenz-Pérez, “A Theoretical

Framework for the Declarative Debugging of Datalog Programs” In
International Workshop on Semantics in Data and Knowledge Bases
(SDKB 2008), LNCS 4925, pp. 143-159, Springer, 2008.

[CGS10a] R. Caballero, Y. García-Ruiz and F. Sáenz-Pérez, “Applying Constraint

Logic Programming to SQL Test Case Generation”, In 10th

Fernando Sáenz-Pérez 202/204

Universidad Complutense de Madrid

Datalog Educational System

International Symposium on Functional and Logic Programming

(FLOPS 2010), 2010.

[CGS11b] R. Caballero, Y. García-Ruiz and F. Sáenz-Pérez, “Algorithmic
Debugging of SQL Views”, Eigth Ershov Informatics Conference,
PSI’11, Novosibirsk, Akademgorodok, Russia, June, 2011.

[CGS12a] R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez, "Declarative
Debugging of Wrong and Missing Answers for SQL Views", In 11th
International Symposium on Functional and Logic Programming
(FLOPS 2012), Springer, Lecture Notes in Computer Science, Kobe,
Japan, May, 2012.

[Chan78] C.L. Chang, “Deduce 2: Further Investigations of Deduction in
Relational Databases”, H. Gallaire and J. Minker (eds.), Logic and
Databases, Plenum Press, 1978.

[Diaz] D. Diaz, http://www.gnu.org/software/prolog .

[Diet87] S.W. Dietrich, “Extension Tables: Memo Relations in Logic
Programming”, IV IEEE Symposium on Logic Programming, 1987.

[Diet01] S.W. Dietrich, “Understanding Relational Database Query
Languages,“, Prentice Hall, 2001.

[DMP93] M. Derr, S. Morishita, and G. Phipps, “Design and Implementation of
the Glue–NAIL Database System”, In Proc. of the ACM SIGMOD
International Conference on Management of Data, pp. 147–167, 1993.

[Drax92] Draxler, Chr., A Powerful Prolog to SQL Compiler, CIS-Bericht-92-61,
Centrum für Informations und Sprachverarbeitung, Ludwig-
Maximilians-Universität München, 1992.

[FD92] C. Fan and S. W. Dietrich, "Extension Table Built-ins for Prolog",
Software - Practice and Experience Vol. 22 (7), pp. 573-597, July 1992.

[FHH04] R. Fikes, P.J. Hayes, and I. Horrocks. OWL-QL - a language for
deductive query answering on the Semantic Web. J. Web Sem., 2(1):19–
29, 2004.

[FP96] Wolfgang Faber and Gerald Pfeifer. DLV homepage, since 1996. url
http://www.dlvsystem.com/ .

[GR68] C.C. Green and B. Raphael, “The Use of Theorem–Proving Techniques
in Question–Answering Systems”, Proceedings of the 23rd ACM
National Conference, Washington D.C., 1968.

[GTZ05] S. Greco, I. Trubitsyna, and E. Zumpano. NP Datalog: A Logic
Language for NP Search and Optimization Queries. Database
Engineering and Applications Symposium, International, 0:344–353,
2005.

[GUW02] H. Garcia-Molina, J. D. Ullman, J. Widom, “Database Systems: The
Complete Book”, Prentice-Hall, 2002.

[HA92] M. A. W. Houtsma and P. M. G. Apers, " Algebraic optimization of
recursive queries", Data & Knowledge Engineering, Volume 7 Issue 4,
March 1992.

Fernando Sáenz-Pérez 203/204

Universidad Complutense de Madrid

Datalog Educational System

[IRIS2008] IRIS-Reasoner, http://iris-reasoner.org .

[JGJ+95] M. Jarke, R. Gallersdörfer, M.A. Jeusfeld, M. Staudt, S. Eherer:
ConceptBase - a deductive object base for meta data management. In
Journal of Intelligent Information Systems, Special Issue on Advances
in Deductive Object-Oriented Databases, Vol. 4, No. 2, 167-192, 1995.
System available at: http://www-i5.informatik.rwth-
aachen.de/CBdoc/

[KLW95] M. Kifer, G. Lausen, J. Wu, "Logical Foundations of Object Oriented
and Frame Based Languages", Journal of the ACM, vol. 42, p. 741-843,
1995.

[KSSD94] W. Kiessling, H. Schmidt, W. Strauss, and G. Dünzinger, “DECLARE
and SDS: Early Efforts to Commercialize Deductive Database
Technology”, VLDB Journal, 3, pp. 211–243, 1994.

[KT81] C. Kellogg and L. Travis, “Reasoning with Data in a Deductively
Augmented Data Management System”, H. Gallaire, J. Minker, and J.
Nicolas (eds.), Advances in Data Base Theory, Volume 1, Plenum
Press, 1981.

[Lloy87] J. Lloyd, “Foundations of Logic Programming”, Springer Verlag, 1987.

[Mink87] J. Minker, “Perspectives in Deductive Databases”, Technical Report
CS–TR–1799, University of Maryland at College Park, March 1987.

[MN82] J. Minker and J.–M. Nicolas, “On Recursive Axioms in Deductive
Databases, Information Systems”, 16(4):670–702, 1991.

[MS11] J. Małuszyński and A. Szałas: Living with Inconsistency and Taming
Nonmonotonicity. To appear in Datalog 2.0, G. Gottlob, G. Grasso, O.
de Moor, and A. Sellers, eds., LNCS 6702, 334-398, Springer-Verlag,
2011.

[PDR91] G. Phipps, M. A. Derr, and K.A. Ross, “Glue–NAIL!: A Deductive
Database System”. In Proc. of the ACM SIGMOD Conference on
Management of Data, pp. 308–317, 1991.

[Robi65] J.A. Robinson, “A Machine–Oriented Logic Based on the Resolution
Principle”, Journal of the ACM, 12:23–41, 1965.

[RS09] R. Ronen and O. Shmueli. Evaluating very large Datalog queries on
social networks. In EDBT ’09: Proceedings of the 12th International
Conference on Extending Database Technology, pages 577–587, New
York, NY, USA, 2009. ACM.

[RSSS94] R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The
Coral deductive system. VLDB Journal, 3(2):161–210, 1994.

[RSSWF97] P. Rao, Konstantinos F. Sagonas, Terrance Swift, David Scott Warren,
and Juliana Freire, “XSB: A System for Efficiently Computing WFS",
Logic Programming and Non–monotonic Reasoning, 1997.

[RU95] R. Ramakrishnan and J.D Ullman, “A Survey of Research on Deductive
Database Systems”, Journal of Logic Programming, 23(2): 125–149,
1995.

Fernando Sáenz-Pérez 204/204

Universidad Complutense de Madrid

Datalog Educational System

[SD91] C. Shih and S. W. Dietrich, "Extension Table Evaluation of Datalog
Programs with Negation", Proceedings of the IEEE International
Phoenix Conference on Computers and Communications, Scottsdale,
AZ, March 1991, pp. 792-798.

[Sae07] F. Sáenz-Pérez, “ACIDE: An Integrated Development Environment
Configurable for LaTeX”, The PracTeX Journal, 2007, Number 3, ISSN
1556-6994, August, 2007.

[Shap83] Shapiro, E., “Algorithmic Program DeBugging”, ACM Distinguished
Dissertation, MIT Press, 1983.

[SICStus] SICS, http://www.sics.se/sicstus .

[Silv07] Silva, J., A Comparative Study of Algorithmic Debugging Strategies,
in: Proc. of International Symposium on Logic-based Program
Synthesis and Transformation LOPSTR 2006, 2007, pp. 134–140.

[SRSS93] D. Srivastava, R. Ramakrishnan, S. Sudarshan, and P. Seshadri,
“Coral++: Adding Object–Orientation to a Logic Database Language”,
Proceedings of the International Conference on Very Large Databases,
1993.

[Tang99] Z. Tang, "Datalog++: An Object-Oriented Front-End For The Xsb
Deductive Database Management System", http://citeseer.ist.psu.
edu/tang99datalog.html.

[TS86] H. Tamaki and T. Sato, “OLD Resolution with Tabulation”,
Proceedings of ICLP’86, Lecture Notes on Computer Science 225,
Springer–Verlag, 1986.

[Ullm95] J.D. Ullman. Database and Knowledge-Base Systems, Vols. I (Classical
Database Systems) and II (The New Technologies), Computer Science
Press, 1995.

[VRK+91] J. Vaghani, K. Ramamohanarao, D.B. Kemp, Z. Somogyi, and P.J.
Stuckey, “Design Overview of the Aditi Deductive Database System”,
In Proc. of the 7th Intl. Conf. on Data Engineering, pp. 240–247, 1991.

[Wiele] J. Wielemaker, http://www.SWI-Prolog.org .

[WL04] J. Whaley and M. Lam, Cloning-based context-sensitive pointer alias
analyses using binary decision diagrams. In: Prog. Lang. Design and
Impl., 2004.

[ZCF+97] C. Zaniolo, S. Ceri, C. Faloutsos, T.T. Snodgrass, V.S. Subrahmanian,
and R. Zicari, "Advanced Database Systems", Morgan Kauffmann
Publishers, 1997.

[ZF97] U. Zukowski and B. Freitag, “The Deductive Database System LOLA”,
In: J. Dix and U. Furbach and A. Nerode (Eds.). Logic Programming
and Nonmonotonic Reasoning. LNAI 1265, pp. 375–386. Springer,
1997.

