Introduction to Relational Databases, SQL, JDBC

CSCE 156 – Computer Science II

- 1. Introduction
 - a. Database concepts
 - i. Persistence of data across systems, sessions, etc.
 - b. Your MySQL database on CSE
 - Database name: same as login
 - Change Password: ponca.unl.edu
 - Command line usage: mysql –u user –p user
 - Command line redirection, mysqldump, etc.
- 2. Relational Databases
 - a. Data (flat file problems)
 - EXAMPLE
 - Repetition of data
 - Incomplete data
 - Integrity of data
 - Organizational problems (to determine simple things like counts requires processing entire file)
 - Updating information can be difficult (must enumerate all possible changes, entire file is processed)
 - Formatting issues (delimiters)
 - Concurrency issues
 - b. Key aspects
 - RDBS (Relational* Database Systems) store data in tables
 - Tables have a unique name and description of types (integer, string) of data
 - Each column stores a single piece of data (field)
 - Each row represents a record/object
 - Each row may have a unique *primary key* (automatically incremented, unique identifier—NUID; combination of fields—Geo data)
 - Rows in different tables are related through foreign keys
 - Order of rows/columns meaningless
 - Constraints (nullity, bounds, enforced formatting, etc.)
 - ACID
 - Atomicity modifications must be all or nothing (atomic operation, not divisible or decomposable)

- Consistency transaction will retain state of consistency (constraints, cascades, triggers)
- Isolation No transaction interferes with another
- Durability Once committed, a transaction remains so (protected against power loss/crash)
- Examples
 - o MS Access (hahaha)
 - MySQL (GNU GPL, owned by Oracle)
 - PostgreSQL (FOSS)
 - o Informix (IBM)
 - o DB2 (IBM)
 - o SQLServer
 - Oracle Database
- c. Advantages
 - Data is structured instead of "just there" better organization
 - Duplication is minimized (with proper normalization)
 - Updating information is easier
 - Organization of data allows easy access
 - Organization allows aggregation and more complex information
 - Data integrity can be enforced (data types and user defined constraints)
 - Faster
 - Scalable
 - Security
 - Portability
 - Concurrency
- d. Structured Query Language
 - Common language/interface to most databases
 - Developed by Chamberlin & Boyce at IBM, 1974
 - Implementations may violate standard, portabilitiy problems
 - Comments: #--
 - Create, manage tables (CREATE ALTER DROP
 - CRUD Create, Retrieve, Update, Delete
 - Transactions (MySQL: begin transaction; rollback; or commit;)
- e. Misc Issues
 - Views
 - Triggers
 - Stored Procedures
- 3. Tables
 - a. Creating Tables
 - i. Syntax:
 - CREATE TABLE TableName (

field_name fieldType [options],

PRIMARY KEY (keys)

);

- ii. Options
 - NOT NULL
 - AUTO_INCREMENT
 - DEFAULT (value)
- iii. MySQL helpful commands (WARNING)
 - USE database;
 - SHOW TABLES;
 - DESCRIBE table;
- b. Column Data Types
 - VARCHAR(n) (also CHAR, NCHAR, NVCHAR)
 - INTEGER (INT, SMALL INT)
 - FLOAT (FLOAT, REAL, DOUBLE PRECISION)
 - DECIMAL(n,m) (NUMERIC(n,m))
 - Date/Time functions: rarely portable, for MySQL functions: <u>http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html</u>
- c. Primary Keys
 - Need a way to distinguish records
 - At most one primary key per table
 - Must uniquely identify all possible records (not just those that exist)
 - No two rows can have the same primary key value
 - PKs can be one or more columns—combination of values determines key
 - Should not use/allow NULL values
 - Can/should* be automatically generated (let the database handle it)
- d. Keys
 - Can have multiple keys
 - May be a combination of columns
 - NULLs are allowed—may result in multiple rows
 - Uniqueness is enforced (updates, inserts may fail)
 - May be declared non-unique in which case it serves as an index (for database optimization)
- e. Foreign Keys
 - Relations can be made between tables using FKs
 - A FK is a column that references a key (PK or K) in another table
 - Inserts cannot occur if the referenced record does not exist (NULL issue)
 - Usually establishes a one to many relationship
 - Table with FK (referencing table) references table with PK (referenced table)

- Cascades (evil): deleting rows in the referenced table cascade to the referencing records (which are deleted)
- 4. Manipulating Data
 - a. Inserting Data
 - b. Querying Data
 - i. SELECT
 - 1. Good Practice: be intentional (enumerate fields, us AS)
 - ii. Clauses
 - 1. WHERE
 - a. wildcards
 - 2. ORDER BY
 - 3. GROUP BY
 - 4. HAVING
 - iii. JOINs
 - iv. Temporary Tables
 - v. Nested Queries
 - c. Deleting data
 - i. CAREFUL: always use WHERE clause!
- 5. Designing a Database: a class roster
 - a. Identify entities:
 - i. Student
 - NUID: primary key? External, some begin with zero, all 8 digits (additional key)
 - 2. Name (first/last? Middle?): constraints (not blank, case sensitive)?
 - 3. Email: Break out into another table, RFC 2821
 - ii. Course
 - 1. Id?
 - 2. Title
 - 3. Description
 - iii. Enrollment
 - 1. Many-to-many: foreign keys
 - 2. Semester (representation? 20111 versus 1111, date, etc?)
- 6. JDBC Java Database Connectivity API
 - a. API Overview
 - b. Establishing a connection
 - c. Making a query
 - d. Prepared Statements
 - e. Handling Exceptions, cleaning up
- 7. Good practice (design) (TODO: move this down)
 - Use standard SQL!
 - Use consistent naming conventions

- Use keys to enforce referential integrity
- The AUTO_INCREMENT problem (with relations)
- Use constraints to enforce data integrity
- Normalization
- Use transactions!
- 8. References
 - MySQL 5.1 Reference Manual (<u>http://dev.mysql.com/doc/refman/5.1/en/index.html</u>)
 - MySQL Community Server (<u>http://www.mysql.com/downloads/</u>)
 - MySQL Workbench a MySQL GUI (<u>http://wb.mysql.com/</u>)
 - Connector/J (MySQL JDBC connector): <u>http://www.mysql.com/downloads/connector/j/</u>
 - •