
Introduction to Relational Databases,
SQL, JDBC

CSCE 156 – Computer Science II

1. Introduction

a. Database concepts

i. Persistence of data across systems, sessions, etc.

b. Your MySQL database on CSE

 Database name: same as login

 Change Password: ponca.unl.edu

 Command line usage: mysql –u user –p user

 Command line redirection, mysqldump, etc.

2. Relational Databases

a. Data (flat file problems)

EXAMPLE

 Repetition of data

 Incomplete data

 Integrity of data

 Organizational problems (to determine simple things like counts requires

processing entire file)

 Updating information can be difficult (must enumerate all possible changes,

entire file is processed)

 Formatting issues (delimiters)

 Concurrency issues

b. Key aspects

 RDBS (Relational* Database Systems) store data in tables

 Tables have a unique name and description of types (integer, string) of data

 Each column stores a single piece of data (field)

 Each row represents a record/object

 Each row may have a unique primary key (automatically incremented, unique

identifier—NUID; combination of fields—Geo data)

 Rows in different tables are related through foreign keys

 Order of rows/columns meaningless

 Constraints (nullity, bounds, enforced formatting, etc.)

 ACID

o Atomicity – modifications must be all or nothing (atomic operation, not

divisible or decomposable)

o Consistency – transaction will retain state of consistency (constraints,

cascades, triggers)

o Isolation – No transaction interferes with another

o Durability – Once committed, a transaction remains so (protected

against power loss/crash)

 Examples

o MS Access (hahaha)

o MySQL (GNU GPL, owned by Oracle)

o PostgreSQL (FOSS)

o Informix (IBM)

o DB2 (IBM)

o SQLServer

o Oracle Database

c. Advantages

 Data is structured instead of “just there”—better organization

 Duplication is minimized (with proper normalization)

 Updating information is easier

 Organization of data allows easy access

 Organization allows aggregation and more complex information

 Data integrity can be enforced (data types and user defined constraints)

 Faster

 Scalable

 Security

 Portability

 Concurrency

d. Structured Query Language

 Common language/interface to most databases

 Developed by Chamberlin & Boyce at IBM, 1974

 Implementations may violate standard, portabilitiy problems

 Comments: #--

 Create, manage tables (CREATE ALTER DROP

 CRUD – Create, Retrieve, Update, Delete

 Transactions (MySQL: begin transaction; rollback; or commit;)

e. Misc Issues

 Views

 Triggers

 Stored Procedures

3. Tables

a. Creating Tables

i. Syntax:

CREATE TABLE TableName (

 field_name fieldType [options],

 PRIMARY KEY (keys)

);

ii. Options

 NOT NULL

 AUTO_INCREMENT

 DEFAULT (value)

iii. MySQL helpful commands (WARNING)

 USE database;

 SHOW TABLES;

 DESCRIBE table;

b. Column Data Types

 VARCHAR(n) (also CHAR, NCHAR, NVCHAR)

 INTEGER (INT, SMALL INT)

 FLOAT (FLOAT, REAL, DOUBLE PRECISION)

 DECIMAL(n,m) (NUMERIC(n,m))

 Date/Time functions: rarely portable, for MySQL functions:

http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html

c. Primary Keys

 Need a way to distinguish records

 At most one primary key per table

 Must uniquely identify all possible records (not just those that exist)

 No two rows can have the same primary key value

 PKs can be one or more columns—combination of values determines key

 Should not use/allow NULL values

 Can/should* be automatically generated (let the database handle it)

d. Keys

 Can have multiple keys

 May be a combination of columns

 NULLs are allowed—may result in multiple rows

 Uniqueness is enforced (updates, inserts may fail)

 May be declared non-unique in which case it serves as an index (for database

optimization)

e. Foreign Keys

 Relations can be made between tables using FKs

 A FK is a column that references a key (PK or K) in another table

 Inserts cannot occur if the referenced record does not exist (NULL issue)

 Usually establishes a one to many relationship

 Table with FK (referencing table) references table with PK (referenced table)

http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html

 Cascades (evil): deleting rows in the referenced table cascade to the referencing

records (which are deleted)

4. Manipulating Data

a. Inserting Data

b. Querying Data

i. SELECT

1. Good Practice: be intentional (enumerate fields, us AS)

ii. Clauses

1. WHERE

a. wildcards

2. ORDER BY

3. GROUP BY

4. HAVING

iii. JOINs

iv. Temporary Tables

v. Nested Queries

c. Deleting data

i. CAREFUL: always use WHERE clause!

5. Designing a Database: a class roster

a. Identify entities:

i. Student

1. NUID: primary key? External, some begin with zero, all 8 digits

(additional key)

2. Name (first/last? Middle?): constraints (not blank, case sensitive)?

3. Email: Break out into another table, RFC 2821

ii. Course

1. Id?

2. Title

3. Description

iii. Enrollment

1. Many-to-many: foreign keys

2. Semester (representation? 20111 versus 1111, date, etc?)

6. JDBC – Java Database Connectivity API

a. API Overview

b. Establishing a connection

c. Making a query

d. Prepared Statements

e. Handling Exceptions, cleaning up

7. Good practice (design) (TODO: move this down)

 Use standard SQL!

 Use consistent naming conventions

 Use keys to enforce referential integrity

 The AUTO_INCREMENT problem (with relations)

 Use constraints to enforce data integrity

 Normalization

 Use transactions!

8. References

 MySQL 5.1 Reference Manual (http://dev.mysql.com/doc/refman/5.1/en/index.html)

 MySQL Community Server (http://www.mysql.com/downloads/)

 MySQL Workbench – a MySQL GUI (http://wb.mysql.com/)

 Connector/J (MySQL JDBC connector): http://www.mysql.com/downloads/connector/j/

http://dev.mysql.com/doc/refman/5.1/en/index.html
http://www.mysql.com/downloads/
http://wb.mysql.com/
http://www.mysql.com/downloads/connector/j/

