
Introduction to Databases & SQL

CSCE 156 - Introduction to Computer Science II

Christopher M. Bourke
cbourke@cse.unl.edu

Introduction to Databases & SQL

I Lifetime of a program is short-lived

I Applications perform small ephemeral operations

I Can crash and die

I Programs may be limited to sessions or even single requests

I Need a way to persist data or program state across program lives

I Databases provide such a means

Motivating Example I
Flat Files

Consider the following data, stored in a flat file:

Course Course Name Student NUID Email

waits, tom 11223344 tomwaits@hotmail.com
CSCE 156 Intro to CSII Lou Reed 11112222 reed@gmail.com
CSCE 156 Intro to CSII Tom Waits 11223344 twaits@email.com
CSCE 230 Computer Hardware Student, J. 12345678 jstudent@geocities.com
CSCE 156 Intro to CSII Student, John 12345678 jstudent@geocities.com
CSCE 230 Computer Hardware Student, J. 12345678 jstudent@geocities.com
CSCE 235 Discrete Math Student, John 12345678 jstudent@geocities.com
CSCE 235 Discrete Math Tom Waits 11223344 twaits@email.com
NONE Null Tom Waits 11223344 twaits@email.com

Table: Course enrollment data

Motivating Example II
Flat Files

Problems?

I Repetition of data

I Incomplete data

I Integrity of data

I Organizational problems: any aggregation requires processing all
records

I Updating information is difficult (must enumerate all possible
changes, side effects so that information is not lost)

I Formatting Issues

I Concurrency Issues

Relational Databases I
Key Aspects

Solution: Relational Database Systems (RDBS) or Relational Database
Management System (RDMS)

I Stores data in tables

I Tables have a unique name and type description of its fields (integer,
string)

I Each column stores a single piece of data (field)

I Each row represents a record (or object!)

Relational Databases II
Key Aspects

I Each row may have a unique primary key which may be
I Automatically incremented
I An external unique identifier: SSN, ISBN, NUID
I Based on a combination of fields (Geographical data)

I Rows in different tables are related to each other through foreign keys

I Order of rows/columns is meaningless



Relational Databases III
Key Aspects

I Supports Transactions: an interaction or batch of interactions treated
as one unit

I Constraints
I Allowing or disallowing NULL
I Disallowing “bad” values (ranges)
I Enforcing formatting (capitalization, precision)
I Limiting combinations of data fields

Relational Databases IV
Key Aspects

I ACID principles
I Atomicity – Data modifictions must be an all-or-nothing process
I Atomic operation: not divisible or decomposable
I Consistency – Transactions will retain a state of consistency
I All constraints, triggers, cascades preserve a valid state after the

transaction has completed
I Isolation – No transaction interferes with another
I Durability – Once committed, a transaction remains so
I Data is to be protected from catastrophic error (power loss/crash)

Commercial RDBMs

I MS Access ,
I MySQL (owned by Oracle, released under GNU GPL)

I PostgreSQL (true FOSS!)

I Informix (IBM)

I DB2 (IBM)

I SQLServer (Microsoft)

I Oracle Database

Advantages I

I Data is structured instead of “just there”

I Better organization

I Duplication is minimized (with proper normalization)

I Updating information is easier

I Organization of data allows easy access

I Organization allows aggregation and more complex information

Advantages II

I Data integrity can be enforced (data types and user defined
constraints)

I Faster

I Scalable

I Security

I Portability

I Concurrency

Structured Query Language

We interact with RDBMs using Structured Query Language (SQL)

I Common language/interface to most databases

I Developed by Chamberlin & Boyce, IBM 1974

I Implementations may violate standards: portability issues

I Comments: -- or # (MySQL on cse)

I Create & manage tables: CREATE, ALTER, DROP

I Transactions: START TRANSACTION, ROLLBACK, COMMIT



Structured Query Language
CRUD

Basic SQL functionality: CRUD:

I Create – insert new records into existing tables

I Retrieve – get a (subset) of data from specific rows/columns

I Update – modify data in fields in specified rows

I Destroy – delete specific rows from table(s)

Misc RDMS Issues I

Important aspects that will be omitted (good advanced topics):

Views – RDBSs allow you to create view of data; predefined select
statements that aggregate (or limit) data while appearing to be a separate
table to the end user

Triggers – SQL routines that are executed upon predefined events
(inserts/updates) in order to create side-effects on the database

Misc RDMS Issues II

Stored Procedures – SQL routines (scripts) that are available to the end
user

Temp Tables – Temporary tables can be created to store intermediate
values from a complex query

Nested Queries – SQL supports using subqueries to be used in other
queries

MySQL
Getting Started

Useful MySQL commands to get you started:

I USE dbdname;

I SHOW TABLES;

I DESCRIBE tablename;

Warning: these are MySQL commands, not SQL!

Creating Tables

Syntax:� �
1 CREATE TABLE table_name (

2 field_name fieldType [options],

3 ...

4 PRIMARY KEY (keys) 	� �
Options:

I AUTO_INCREMENT (for primary keys)

I NOT NULL

I DEFAULT (value)

Column Types

I VARCHAR(n) – variable character field (or CHAR, NCHAR, NVCHAR – fixed
size character fields)

I INTEGER or INT

I FLOAT (REAL, DOUBLE PRECISION)

I DECIMAL(n,m), NUMERIC(n,m)

I Date/Time functions: rarely portable

I MySQL: see http://dev.mysql.com/doc/refman/5.0/en/

date-and-time-functions.html



Creating Tables
Example

� �
1 CREATE TABLE book (

2 id INTEGER PRIMARY KEY AUTO_INCREMENT NOT

NULL ,

3 title VARCHAR (255) NOT NULL ,

4 author VARCHAR (255),

5 isbn VARCHAR (255) NOT NULL DEFAULT ’’,

6 dewey FLOAT ,

7 num_copies INTEGER DEFAULT 0

8 ); 	� �

Primary Keys

I Records (rows) need to be distinguishable

I A primary key allows us to give each record a unique identity

I At most one primary key per table

I Must be able to uniquely identify all records (not just those that exist)

I No two rows can have the same primary key value

I PKs can be one ore more columns–combination determines key

I Should not use/allow NULL values

I Can/should1 be automatically generated

1How to handle the foreign key problem?

Keys

I Tables can have multiple keys

I May be a combination of columns

I NULL values are allowed

I Uniqueness is enforced (updates, inserts may fail)

I May be declared non-unique in which case it serves as an index
(allows database lookup optimization)

I MySQL syntax:
KEY(column1, column2,...)

Foreign Keys I

I Relations between records in different tables can be made with
foreign keys

I A FK is a column that references a key (PK or regular key) in another
table

I Inserts cannot occur if the referenced record does not exist

I Foreign Keys establish relationships between tables:
I One-to-many relations
I Many-to-one
I Many-to-Many relations: requires a Join Table

Foreign Keys II

I Table with FK (referencing table) references table with PK
(referenced table)

I Deleting rows in the referenced table can be made to cascade to the
referencing records (which are deleted)

I Cascades can be evil

I MySQL Syntax:
FOREIGN KEY (column)REFERENCES table(column)

Inserting Data

I Need a way to load data into a database

I Numerical literals

I String literals: use single quote characters

I Ordering of columns irrelevant

I MySQL Syntax:
INSERT INTO table_name (column1, column2, ...)VALUES (value1

, value2);

I Example:
INSERT INTO book (title, author, isbn)VALUES (’The Naked and

the Dead’, ’Normal Mailer’, ’978-0312265052’);



Updating Data

I Existing data can be changed using the UPDATE statement

I Should be used in conjunction with clauses

I Syntax:
UPDATE table SET column1 = value1, column2 = value2, ...

WHERE (condition)

I Example: UPDATE book SET author = ’Norman Mailer’WHERE isbn =

’978-0312265052’;

Deleting Data

I Data can be deleted using the DELETE statement

I Should be used in conjunction with clauses

I Unless you really want to delete everything

I Syntax:
DELETE FROM table WHERE (condition)

I Example: DELETE FROM book WHERE isbn = ’978-0312265052’;

Querying Data

I Data can be retrieved using the SELECT statement

I Syntax:
SELECT column1, column2... FROM table WHERE (condition);

I Example:
SELECT author, title FROM book WHERE isbn = ’978-0312265052’

;

I Can select all columns by using the * wildcard:
SELECT * FROM book

Querying Data
Aliasing

I Names of the columns are part of the database

I SQL alllows us to “rename” them in result of our query using aliasing

I Syntax: column_name AS column_alias

I Sometimes necessary if column has no name (aggregates)� �
1 SELECT title AS bookTitle ,

2 num_copies AS numberOfCopies

3 FROM book; 	� �

WHERE Clause

I Queries can be quantified using the WHERE clause

I Only records matching the condition will be affected (updated,
deleted, selected)

I Compound conditions can be composed using parentheses and:
I AND
I OR� �

1 SELECT * FROM book WHERE num_copies > 10 AND (title

!= ’The Naked and the Dead’ OR author = ’Dr.

Seuss ’); 	� �
To check nullity: WHERE dewey IS NULL, WHERE dewey IS NOT NULL

LIKE Clause

I VARCHAR values can be searched/partially matched using the LIKE

clause

I Used in conjunction with the string wildcard, %

I Example:
SELECT * FROM book WHERE isbn LIKE ’123%’;

I Example:
SELECT * FROM book WHERE author LIKE ’%Mailer%’;



IN Clause

I The IN clause allows you to do conditionals on a set of values

I Example:
SELECT * FROM book WHERE isbn in (’978-0312265052’, ’

789-65486548’, ’681-0654895052’);

ORDER BY Clause

I In general, the order of the results of a SELECT clause is irrelevant

I Nondeterministic, not necessarily in any order

I To impose an order, you can use ORDER BY

I Can order along multiple columns

I Can order descending or ascending (DESC, ASC)

I Example:
SELECT * FROM book ORDER BY title;

I Example:
SELECT * FROM book ORDER BY author DESC, title ASC

Aggregate Functions

I Aggregate functions allow us to compute data on the database
without processing all the data in code

I COUNT provides a mechanism to count the number of records

I Example:
SELECT COUNT(*)AS numberOfTitles FROM book;

I Aggregate functions: MAX, MIN, AVG, SUM

I Example:
SELECT MAX(num_copies)FROM book;

I NULL values are ignored/treated as zero

GROUP BY clause

I The GROUP BY clause allows you to project data with common values
into a smaller set of rows

I Used in conjunction with aggregate functions to do more complicated
aggregates

I Example: find total copies of all books by author:
SELECT author, SUM(num_copies)AS totalCopies FROM book GROUP

BY author;

I The projected data can be further filtered using the HAVING clause:
SELECT author, SUM(num_copies)AS totalCopies FROM book GROUP

BY author HAVING totalCopies > 5;

I HAVING clause evaluated after GROUP BY which is evaluated after any
WHERE clause

JOINs

A join is a clause that combines records from two or more tables.

I Result is a set of columns/rows (a “table”)

I Tables are joined by shared values in specified columns

I Common to join via Foreign Keys

I Table names can be aliased for convenience
I Types of joins we’ll look at:

I (INNER) JOIN
I LEFT (OUTER) JOIN

I Other types of joins: Self-join, cross join (cartesian product), right
outer joins, full outer joins

INNER JOIN I

I Most common type of join

I Combines rows of table A with rows of table B for all records that
satisfy some predicate

I Predicate provided by the ON clause

I May omit INNER

I May provide join predicate in a WHERE clause



INNER JOIN II

� �
1 SELECT * FROM book b

2 INNER JOIN person p ON b.author = p.name

3

4 SELECT * FROM book b

5 JOIN person p ON b.author = p.name

6

7 SELECT *

8 FROM book b, person p

9 WHERE b.author = p.name

10

11 SELECT * FROM student s

12 JOIN email e ON s.student_id = e.student_id; 	� �

LEFT OUTER JOIN I

I Left Outer Join joins table A to table B, preserving all records in
table A

I For records in A with no matching records in B: NULL values used for
columns in B

I OUTER may be omitted

LEFT OUTER JOIN II

� �
1 SELECT * FROM book b

2 LEFT OUTER JOIN person p ON b.author = p.name

3

4 SELECT * FROM book b

5 LEFT JOIN person p ON b.author = p.name

6

7 SELECT * FROM student s

8 LEFT JOIN email e ON s.student_id = e.

student_id; 	� �

DISTINCT Clause

I Many records may have the same column value

I May want to query only the unique values

I May only want to count up the number of unique values

I SQL keyword: DISTINCT� �
1 SELECT DISTINCT author FROM book;

2 SELECT COUNT(DISTINCT author) FROM book; 	� �

Good Practice Tip 1
Use consistent naming conventions

I Short, simple, descriptive names

I Avoid abbreviations, acronyms
I Use consistent styling

I Table/field names: Lower case, underscores, singluar or
I Camel case, pluralized

I Primary key field: table_name_id

I Use all upper-case for SQL commands

I Foreign key fields should match the fields they refer to

I End goal: unambiguous, consistent, self-documenting

Good Practice Tip 2
Ensure Good Data Integrity

Data can break code, code should not break data.

I Data/databases are a service to code

I Different code, different modules can access the same data

I The database does not use the code!

I Should do everything you can to prevent bad code from harming data
(constraints, foreign & primary keys, etc).

I Database is your last line of defense against bad code



Good Practice Tip 3
Keep Business Logic Out!

I Databases offer “programming functionality”

I Triggers, cascades, stored procedures, etc.

I Use them sparingly!!!

I RDMSs are for the management and storage of data, not processing

I Demarcation of responsibility

I DBAs should not have to be Application Programmers, and vice versa

Current Trends I

I Additional Data-layer abstraction tools (JPA, ADO for .NET)

I RDBMs are usually tuned to either small, frequent read/writes or
large batch read-transactions

I Nature and scale of newer applications does not fit well with
traditional RDBMs

I Newer applications are data intensive:
I Indexing a large number of documents
I High-traffice websites
I Large-scale delilvery of multimedia (streaming video, etc.)
I Search applications, data mining
I New tools generating HUGE amounts of data (biological, chemical,

sensor networks, etc)

Current Trends II

I Newer (revived) trend: NoSQL
I Non-relational data
I Sacrivifes rigid ACID principles for performance
I Eventual consistency
I Limited transactions
I Emphasis on read-performance
I Simplified Key-Value data model
I Simple interfaces (associative arrays)

I Example: Google’s BigTable (key: two arbitrary string (keys) to
row/column with a datetime, value: byte array)

I XML-based databases (using XQuery)

Designing A Database
Exercise

Exercise Design a database to support a course roster system. The
database design should be able to model Students, Courses, and their
relation (ability of students to enroll in courses). The system will also need
to email students about updates in enrollment, so be sure your model is
able to incorporate this functionality.

Designing A Database

Figure: A normalized database design, ER diagram generated in MySQL
Workbench

End Result

I Pieces of data are now organized and have a specific type

I No duplication of data

I Entities are represented by IDs, ensuring identity (Tom Waits is now
the same as t. Waits)

I Data integrity is enforced (only one NUID per Student)
I Relations are well-defined

I A student has email(s)
I A course has student(s) and a student has course(s)



Data from flat file

student id first name last name nuid

1 Tom Waits 11223344
2 Lou Reed 11112222
5 John Student 12345678

email id student id address

8 2 reed@gmail.com
10 1 tomwaits@hotmail.com
13 1 twaits@email.com
14 5 jstudent@geocities.com

course id name description

42123 CSCE 156 Computer Science II
12333 CSCE 230 Computer Hardware
11132 CSCE 235 Discrete Mathematics

enrollment id student id course id semester

15 5 11132 Fall 2011
23 1 42123 Fall 2011
24 2 42123 Fall 2011
10 1 11132 Fall 2011
29 5 42123 Spring 2011
32 5 12333 Fall 2011


