
Introduction to Java Database Connectivity API

CSCE 156 - Introduction to Computer Science II

Christopher M. Bourke
cbourke@cse.unl.edu

Your Database

I CSE hosts your database (MySQL)

I Database name: same as your login

I Changing your password: visit http://ponca.unl.edu

I Class database (may be used for examples, assignments): cse156
(password: cse156student)

I MySQL commandline usage:
mysql -u username -p dbname

I Command line redirection (careful!):
mysql -u username -p dbname < commands.sql

I mysqldump (database backup)

Java Database Connectivity API

Java Database Connectivity (JDBC)

I General API (using interfaces) for Java client code to
connect/interact with a database

I Database providers (IBM, Oracle, etc.) provide drivers

I Driver: specific implementation of the API for interacting with a
particular database

I Support for
I Statement
I PreparedStatement
I CallableStatement (stored procedures)
I Common Java data types (Integer, Double, java.sql.Date)

JDBC: basic step-by-step

1. Load the database JDBC driver
Note: your particular driver (.jar file) must be in the class or build
path of your project

2. Make a connection to the database

3. Formulate your query(ies) & prepare your statement (set parameters)

4. Execute your query

5. If its a SELECT query:

5.1 Get your result set
5.2 Process your results

6. Clean up your resources (close resources, close connection)

JDBC
Reflectively loading a driver

I For portability, applications written toward JDBC API, not a
particular driver

I Driver needs to be loaded at run time through reflection

I Could be made configurable or delegated by some controller� �
1 try {

2 Class.forName("com.mysql.jdbc.Driver").

newInstance ();

3 } catch (InstantiationException e) {

4 ...

5 } catch (IllegalAccessException e) {

6 ...

7 } catch (ClassNotFoundException e) {

8 ...

9 } 	� �

JDBC
Connection

Java provides connectivity through java.sql.Connection:� �
1 String url = "jdbc:mysql :// cse.unl.edu/

database_name";

2 String username = "cse156student";

3 Connection conn = null;

4 try {

5 conn = DriverManager.getConnection(url , username ,

password);

6 } catch (SQLException sqle) {

7 ...

8 } 	� �



JDBC
Transactions

I By default, all queries are auto-commit

I To change this, use conn.setAutoCommit(false)

I No changes committed until conn.commit() is called

I Implicitly: new transaction after each commit

I Able to explicitly rollback using conn.rollback()

I Some drivers may also support conn.setReadOnly(true)

JDBC
Querying – Prepared Statement

I Always good to use PreparedStatement

I Parameters denoted by ?, indexed by 1..n

I Can be reused (parameters reset and required)

I Parameters are safe!� �
1 String query = "SELECT ... FROM user WHERE nuid = ?

";

2 PreparedStatement ps = null;

3 try {

4 ps = conn.prepareStatement(query);

5 ps.setString (1, "35140602");

6 } catch (SQLException sqle) {

7 ...

8 } 	� �

JDBC I
Querying – Result Sets

I executeQuery() is for read-only (select statements)

I Select statements return results: columns and rows

I Results are encapsulated in a Java ResultSet object

I Initially a result set “points” just before the first row

I Iterating through a ResultSet: rs.next()

I Returns a boolean: true if the iteration was successful, false otherwise

I If successful, the “current” result row is now pointed to

I Columns can be referenced by String (alias) or index

I Standard getters provide functionality to get-and-cast columns

JDBC II
Querying – Result Sets

� �
1 ResultSet rs = null;

2 try {

3 rs = ps.executeQuery ();

4 while(rs.next()) {

5 Integer nuid = rs.getInt("nuid")

6 String firstName = rs.getString("first_name");

7 }

8 } catch (SQLException sqle) {

9 ...

10 } 	� �

JDBC
Querying – Updates

I Always use a prepared statement!

I Same syntax holds for INSERT statements� �
1 String query = "UPDATE user SET email = ?,

last_updated = ? WHERE nuid = ?";

2 PreparedStatement ps = null;

3 try {

4 ps = conn.prepareStatement(query);

5 ps.setString (1, "cmbourke@gmail.com");

6 ps.setString (2, "2011 -01 -01 00:00:01");

7 ps.setString (3, "35140602");

8 ps.executeUpdate ();

9 } catch (SQLException sqle) {

10 ...

11 } 	� �

JDBC
Good Practices – Rethrow Exceptions

I Most methods explicitly throw SQLException

I Occurs with DB errors or program bugs

I Little can be done either way

I Good to catch, log and rethrow� �
1 ...

2 } catch (SQLException sqle) {

3 System.out.println("SQLException: ");

4 sqle.printStackTrace ();

5 throw new RuntimeException(sqle);

6 } 	� �



JDBC
Cleaning Up

I Objects hold onto valuable external resources

I Network traffic (keep alive), limited connection pool, etc.

I Best practice to release resources as soon as they are no longer
needed: close() method� �

1 try {

2 if(rs != null && !rs.isClosed ())

3 rs.close ();

4 if(ps != null && !ps.isClosed ())

5 ps.close ();

6 if(conn != null && !conn.isClosed ())

7 conn.close();

8 } catch (SQLException e) {

9 ...

10 } 	� �

JDBC
Full Example Demonstration

Let’s take a look at a full example...

Good Practice Tip 1
ALWAYS use Prepared Statements

When available, in any framework or language, always use prepared
statements

I Safer

I Better for batch queries

I Myth: no performance hit

I Protects against injection attacks

I Using just one method: more uniform, less of a chance of a mistake

I Unfortunately: some frameworks support named parameters, not
JDBC

Injection Attack
Example

I Say we pull a string value from a web form (lastName)

I Not using a prepared statement:
String query = "SELECT primary_email FROM user WHERE

last_name = ’"+lastName+"’";

I Without scrubbing the input, say a user enters:
a’;DROP TABLE user;

I Actual query run:
SELECT primary_email FROM user WHERE last = ’a’;DROP TABLE

users;

I Another example: input is "’ or ’1’=’1"

I Actual query:
SELECT primary_email FROM user WHERE last_name = ’’OR ’1’=’1

’

Injection Attack
Example

Good Practice Tip 2
Enumerate fields in SELECT statements

I Using SELECT * ... grabs all fields even if you don’t use them

I Be intentional about what you want/need, only the minimal set

I Allows the database to optimize, reduces network traffic

I Protects against table changes

I Use aliasing (first_name AS firstName) on all fields to reduce
affects of changes to field names



Additional Issues

Additional Issues

I Security Issues
I Where/how should database passwords be stored?
I Good security policy: assume an attacker has your password & take

the necessary precautions (secure the server and network)
I Do not store sensitive data unencrypted

I Efficiency Issues
I Repeat: close your resources
I Connection Pools
I Good normalization, design, & practice

Resources

I MySQL 5.1 Reference Manual
(http://dev.mysql.com/doc/refman/5.1/en/index.html)

I MySQL Community Server (http://www.mysql.com/downloads/)

I MySQL Workbench – a MySQL GUI (http://wb.mysql.com/)

I Connector/J – MySQL JDBC connector
(http://www.mysql.com/downloads/connector/j/)

I Stanford’s Introduction to Databases free online course:
http://db-class.com/

Exercise

Write basic CRUD methods for the Employee/Person tables by
writing static methods to insert, delete, retrieve and update
records in both tables.


