
Lab Handout: SQL II 

CSCE 156 – Lab: SQL II 

Handout 

0. Prior to the Laboratory 
1. Review the previous lab handout.   

2. Review this handout. 

3. Review the following materials (red items are important): 

Topic Link 

Creating Tables 
http://www.w3schools.com/sql/sql_create_table.asp  

http://www.w3schools.com/sql/sql_autoincrement.asp 

Types http://www.w3schools.com/sql/sql_datatypes.asp 

Primary Keys & Auto 
Incrementing 

http://www.w3schools.com/sql/sql_primarykey.asp 

http://www.w3schools.com/sql/sql_autoincrement.asp 

Foreign Keys http://www.w3schools.com/sql/sql_foreignkey.asp 

Remove Table From DB http://www.w3schools.com/sql/sql_drop.asp 

Modify Structure of Existing 
Tables 

http://www.w3schools.com/sql/sql_alter.asp 

Other Constraints 

http://www.w3schools.com/sql/sql_notnull.asp 

http://www.w3schools.com/sql/sql_unique.asp 

http://www.w3schools.com/sql/sql_default.asp 

Advanced Activity http://www.w3schools.com/sql/sql_top.asp 

1. Lab Objectives & Topics 
Upon completion of this lab you should: 

 Gain experience with simple database design strategy 

 Understand the motivation for entity relations and concepts 

 Learn how to create a database from your design 

2. Problem Statement 
In this lab we will continue to work with the Album database.  For reference, the database schema is 

presented in Figure 1 as an Entity-Relation diagram. 

http://www.w3schools.com/sql/sql_create_table.asp
http://www.w3schools.com/sql/sql_autoincrement.asp
http://www.w3schools.com/sql/sql_datatypes.asp
http://www.w3schools.com/sql/sql_primarykey.asp
http://www.w3schools.com/sql/sql_autoincrement.asp
http://www.w3schools.com/sql/sql_foreignkey.asp
http://www.w3schools.com/sql/sql_drop.asp
http://www.w3schools.com/sql/sql_alter.asp
http://www.w3schools.com/sql/sql_notnull.asp
http://www.w3schools.com/sql/sql_unique.asp
http://www.w3schools.com/sql/sql_default.asp
http://www.w3schools.com/sql/sql_top.asp


Lab Handout: SQL II 

 

Figure 1: The Albums Database 

A careful examination of the DDL file provided (albums.sql) indicates how these tables were built 

and related to each other.  New requirements may mean that the underlying data model must be 

modified to support new pieces of data.  For example, if we wanted to keep track of the emails of each 

Musician we could modify the Musicians table to include an email address.  SQL allows us to alter tables: 

ALTER TABLE Musicians ADD EmailAddress VARCHAR(50); 

A better solution would add support for multiple emails in which case we would need to add an entirely 

new table. 

CREATE TABLE email ( 

    EmailID INT NOT NULL AUTO_INCREMENT, 

    MusicianID INT NOT NULL, 

    Address VARCHAR(100) NOT NULL, 

    PRIMARY KEY(email_id), 

    FOREIGN KEY `fk_email_to_musician` (MusicianID) REFERENCES  

    Musician(MusicianID) 

); 

In this lab, you will build on the Albums database to add support for modeling venues (concert halls) at 

which bands are under contract to play select album songs. You will add tables and keys to this database 

to support this functionality. 

Activity 1: Solution out line 
In this activity you will design entities and relation(s) to extend the Albums database such that it 

supports the following concert information: 



Lab Handout: SQL II 

1. The band playing at the concert 
2. The band’s select album songs played at the concert 
3. The date the concert was held 
4. The name of the hall where the concert was held 
5. The number of seats in the concert hall 
6. The number of concert tickets sold 

List 1 The information which needs to be supported by the new database. 

 
The entities and relations illustrated in Figure 2 serves as a basis for the solution. You will add fields and 

another entity by following the first section of the worksheet. 

 
Figure 2 The songs table is part of the original 

 
The Songs table is part of the original Albums database. Relationships between two entities are 

indicated by a line between the two entities and in general are either a one-to-one relationship or a 

one-to-many relationship.  Figure 3Figure 3 shows the standard way to draw the two types of relations. 

 
Figure 3 The line connecting the Country entity and the Capital entity describes a one-to-one relation. The line connecting 

the Team entity with the TeamMember entity describes a one-to-many relation. 

 
Complete the first section of the worksheet.  

Activity 2: SQL Script Modification 
Now that you have properly designed the database modifications, you will realize them by writing SQL 

scripts (or modifying the original DDL file, albums.sql).  Follow the directions in the worksheet in 

order to add the entities and relations you have designed in the previous activity to the tables and 

relations in the original Albums database. 


