CSCE310H - Data Structures and Algorithms

Spring 2017
9:30-10:20am MWF – Avery 111
Instructor: Charles Riedesel, 259 Avery, mailto:chuckr@unl.edu, find schedule at http://cse.unl.edu/~riedesel (follow link to appointments)
Teaching Assistants:

· Suraj Gampa (.50 GTA), suraj.gampa@huskers.unl.edu - office hours 3:30-4:30 Tuesday and Thursday
· Skyler Davis (UTA), skyman1796@yahoo.com - office hours in SRC 9:30-11:00 Tuesday and 12:30-2:00 Friday
· Collin Victor (UTA), collinzacharyvictor@gmail.com - office hours in SRC 5:00-6:00 Tuesday and Thursday
Course Concept:

This is an honors section of CSCE 310 being offered Spring semester 2017, MWF from 9:30AM-10:20AM in Avery 111 by Prof. Charles Riedesel. By the end of the course students will have covered the same material as in the regular section (see course specifications below) but in greater depth and with an orientation and pedagogy related to programming contests, ala ACM’s ICPC.

At least some sections of all chapters in the Levitin text (3rd ed.) will be covered. Appendix B on analysis techniques and certain other sections may be covered only very briefly, with the expectation that honors students will already be familiar with the topics.

Student Requirements:
The following 6 components are each rated at 15% of the final grade. That adds up to 90%. The remaining 10% will be allocated to whichever component(s) represent the student’s best work. Be aware that grades will not be based on accumulating points. In contrast to standard courses, it is expected that all students should be capable of doing excellent work, so that A’s and perhaps a few B’s should be the norm. Most feedback will be through comments and suggestions for improving performance, both written (as in the case of homework exercises) and oral (as for contests). The goal of this course is learning, not grades. The measure of this is primarily in how much you can impress yourself, the TAs, and instructor.
1. Contest Problem-Set – 15% of the final grade will be derived from this team project in which exercises will be created and cast as programming contest problems, complete with description, sample input and output, judges input and output, and sample solutions in both C/C++ and Java. The exercises will exemplify specified algorithms or algorithmic design strategies as covered in the chapters of the text. The problem-set will be produced progressively over the semester with opportunities to resubmit earlier problems until perfected.
2. Homework – 15% of the final grade will come from classic textbook exercises and “puzzlers”. A host of exercises in several categories will be listed with the expectation that students (and in some cases teams) will work at solving a significant subset of them. There will be too many for any one person to solve, and there is no expectation that anyone should attempt this! Quality, not quantity, is the objective. The more you can think through the challenging ones with a minimum of collaboration, the better. Exercises will be announced early in the course. Deadlines are mostly up to each student to set and meet. Having the self-discipline to manage a good work pace has been one of the most challenging aspects of this course.
3. Cheat Sheet – 15% of the final grade will be based on group production of a 25 page PDF collection of notes, examples, etc. plus coded classes or functions and structs (depending on the language choice) of advanced data structures and algorithms, suitable as a contest “cheat sheet” designed for quick entry and easy adaptation in programming contests. These should be updated and resubmitted following each of the monthly contests.
4. Participation – 15% of the final grade will come from individual participation including attendance, assistance with CSE Day, certain outside competitions such as CCSC, and other involvements outside of class. Credit can be earned through class presentations. A schedule will be set for teams to present from a selection of topics on Fridays throughout the semester. Teams are free to swap weeks (and topics). With about 10 teams, this could allow for a few to present more than once for additional credit. Presentation details must be reviewed with the instructor prior to class.
5. Contests – 15% of the final grade will come from participation in monthly (five) full 5-hour contests in lieu of midterms and final exam. Grading is a composite of observations during the contest, final scores, and debriefings. Conditions for the contests may vary. Some may reuse past regional contests; one could include exercises from the team generated contests (see item #1); allowed material is typically only the cheat sheet from item #3 above.
6. Portfolio – 15%: The final submission for the semester will be a portfolio of whatever work each student feels is his/her best. This may include components from any of the above categories. With team products, it will be expected that the student’s contribution is identified.
CSCE 310 Catalog Description:

Theoretical concepts with programming assignments.  A review of algorithm analysis, asymptotic notation, and solving recurrence relations. Advanced data structures and their associated algorithms, heaps, priority queues, hash tables, trees, binary search trees, and graphs. Algorithmic techniques, divide and conquer, transform and conquer, space-time trade-offs, greedy algorithms, dynamic programming, randomization, and distributed algorithms. Introduction to computability and NP-completeness.

Relationship of Course to Program Requirements:

Required for Computer Science and Computer Engineering programs.

Textbook(s) and/or Other Required Materials:

1. Anany Levitin, The Design and Analysis of Algorithms, supplemented as necessary with handouts.

Prerequisites by Topic:

1. Mastery of data structures and operations for lists, stacks, queues, trees, graphs. Abstract data types. Discrete mathematics topics including induction and recursion, set theory, elementary combinatorics, elementary graph theory.

2. Familiarity with recursive algorithms and recurrence relations.

Course Objectives:

1. Mastery of algorithmic approaches including greedy method and divide-and-conquer. A variety of common algorithms for searching and sorting, hashing, heaps; DFS, BFS, and other elementary algorithms on trees and graphs.

2. Familiarity with problems on graphs and advanced graph algorithms; algorithm correctness.

3. Exposure to dynamic programming, NP Completeness, decidability.

4. Exposure to issues involved in advanced algorithm techniques such as distributed computing, parallel algorithms, or randomized algorithms.

Topics Covered:

It is expected that specific algorithms, problem solving techniques, and complexity analysis will be taught as textbook topics and strongly reinforced with substantial theoretical and programming assignments, including theoretical and empirical analyses of complexity. "Mastery" implies ability to apply the knowledge gained in innovative and novel ways. This requires practice.

1. Review of algorithm analysis and asymptotic notation, solving summations and recurrences.

2. Advanced data structures and associated algorithms

a. Heaps and applications (priority queues, heapsort)

b. Hash Tables: advanced hashing techniques, collision resolution, rehashing and applications

c. Advanced tree data structures: binary search trees and balanced search tree such as AVL and 2-3 Trees

d. Graph representations and algorithms: DFS, BFS, and applications: topological sort, strongly connected components, spanning trees, shortest-path, etc.

3. Algorithmic techniques

a. Brute force algorithms for string matching, closest pair of points, etc.

b. Decrease-and-conquer algorithms: binary search, fake-coin problem, etc.

c. Divide-and-conquer algorithms for closest pair of points, convex hull, matrix multiplication, etc.

d. Space and time trade-offs: input enhancement in string matching, hashing, etc.

e. Dynamic programming: optimal substructure property, shortest paths algorithms, 0-1 knapsack problem, etc.

f. Greedy algorithms: greedy choice and optimal substructure properties, e.g. fractional knapsack, Huffman codes, MST.

4. Introduction to NP-Completeness, and decidability.

Relationship of Course to Program Objectives:

Contributes to Computer Engineering Program Objectives 1, 2, 3, 4 and Student Outcomes 2.a, 3.a, and 3.b, and contributes to Computer Science Program Objectives 1, 3 and 4 and Student Outcomes 2.a, 3.a and 3.b.

Class/Laboratory Schedule:

Lecture: 45 hours = 3 hours/week for 15 weeks. Recitation: 15 hours = 1 hour/week for 15 weeks. (Note: No recitation is included in the honors section. Instead there will be monthly 5-hour-long programming contests at dates and times agreed upon by the class.)

Online Contest Resources:

http://en.wikipedia.org/wiki/Competitive_programming - Online_contest_and_training_resources
http://cm.baylor.edu/ICPCWiki/Wiki.jsp?page=Problem Resources
http://www.makeuseof.com/tag/8-onlineprogramming-contests-challenge-win/
http://uva.onlinejudge.org/
http://www.topcoder.com/
http://code.google.com/codejam/
http://www.codechef.com/
http://acm.mipt.ru/judge/problems.pl
http://acm.timus.ru/
http://enigma.csmit.org/online-programming-contest/
http://campusconnect.infosys.com/Aspirations/StaticPages/AP/ProgrammingContest.aspx
http://www.techgig.com/codecontest
http://www.codeforces.com/
http://projecteuler.net/problems
http://www.ieee.org/membership_services/membership/students/competitions/xtreme/index.html
http://www.spoj.com/
https://www.interviewstreet.com/challenges/
Accommodations for students with disabilities:

Students with disabilities are encouraged to contact the instructor for a confidential discussion of their individual needs for academic accommodation. It is the policy of the University of Nebraska-Lincoln to provide flexible and individualized accommodations to students with documented disabilities that may affect their ability to fully participate in course activities or to meet course requirements. To receive accommodation services, students must be registered with the Services for Students with Disabilities (SSD) office, 132 Canfield Administration, 472-3787 voice or TTY.

Suggestion Box Details:

The CSE Department has an anonymous suggestion box that you may use to voice your concerns about any problems in the course or department if you do not wish to be identified.

Check Email!

It is CSE Department policy that all students in CSE courses are expected to regularly check their email so they do not miss important announcements.

Academic Integrity:

The standard for CSE students is this: All homework assignments, quizzes, exams, etc. must be your own work. No direct collaboration with fellow students, past or current, is allowed unless otherwise stated (which will be allowed in most instances in this course!). The Computer Science & Engineering department has an Academic Integrity Policy. All students enrolled in any computer science course are bound by this policy. You are expected to read, understand, and follow this policy. Violations will be dealt with on a case-by-case basis and may result in a failing assignment or a failing grade for the course itself.

The Contest Problem Set, Cheat Sheet, and Contests are all team based, with grades apportioned according to individual evaluations of the team activity. Contributions between teams should be documented. Standard homework exercises are to be attempted individually, and if stumped, then reach out to the team. Care should be taken to document whether these are individual or team completed. It is imperative that the team based solutions are understood and can be explained by each member.
Student Resource Center:

Note that the Student Resource Center is in Avery 12: http://cse.unl.edu/src
